APM 203, Fall 2005
lan Eisenman
(1) $i$. fixed points: $0=f\left(x^{*}\right)=1-e^{-x^{* 2}} \Rightarrow x^{*}=0$ stability: $\quad f^{\prime}\left(x^{*}\right)=2 x e^{-x^{* 2}}=0$
linearized stability fails; use graphical approach
(Note: Analytically, $f\left(x^{*}+\delta x\right)=f(\delta x) \simeq 1-\left(1-\delta x^{2}\right)=\delta x^{2}$, so

$$
x^{*}=0 \text { is semi-stable }
$$

ii. fixed points: $0=f\left(x^{*}\right)=x^{*}\left(a-x^{* 2}\right) \Rightarrow x^{*}=\{0, \pm \sqrt{a}\}$ stability: $f^{\prime}\left(x^{*}\right)=a-3 x^{* 2}$
$a<0: f^{\prime}(0)=a<0 \Rightarrow x^{*}=0$ is stable
$a>0: \quad f^{\prime}(0)=a>0 \Rightarrow x^{*}=0$ is unstable

$$
f^{\prime}( \pm \sqrt{a})=-2 a^{2} 0 \Rightarrow x^{*}= \pm \sqrt{a} \text { is stable }
$$

$a=0 . \quad f^{\prime}(0)=0 \Rightarrow$ linearized stability fails; use graphical approach
(Note: An
$\underbrace{x} x$

$$
x^{*}=0 \text { is stable }
$$

Note: supercritical pitchfork bifurcation occurs at $a=0, x^{*}=d$
iii. fixed points: $0=f\left(x^{*}\right)=x^{*}\left(1-x^{*}\right)\left(2-x^{*}\right)=\{0,1,2\}$
stability: $f^{\prime}\left(x^{*}\right)=3 x^{* 2}-6 x+2$
$f^{\prime}(0)=2 \Rightarrow x^{*}=0$ is unstable
$f^{\prime}(1)=-2 \Rightarrow x^{*}=1$ is stable

$$
f^{\prime}(2)=2 \Rightarrow x^{*}=2 \text { is unstable }
$$

iv. fixed points: $0=f\left(x^{*}\right)=x^{* 2}\left(6-x^{*}\right) \Rightarrow x^{*}=\{0,6\}$
stability: $\quad f^{\prime}\left(x^{*}\right)=12 x-3 x^{2}$

$$
f^{\prime}(6)=-36 \Rightarrow x^{*}=6 \text { is stable }
$$

$f^{\prime}(0)=0 \quad \Rightarrow$ linearized stability fails; use graphical approach (Note: Analytically, $f(\delta x)=6 \delta x^{2}+0\left(\delta x^{3}\right)$, so )


$$
x^{*}=0 \quad \text { is semi-stable }
$$

V. fixed points: $0=f\left(x^{*}\right)=\ln \left(x^{*}\right) \Rightarrow x^{*}=1$ stability:

$$
f^{\prime}\left(x^{*}\right)=\frac{1}{x^{*}}=1 \Rightarrow x^{*}=1 \text { is unstable }
$$

(2) a) ${ }_{\frac{1}{4}}^{x_{n+1}} \xrightarrow{\longrightarrow} x_{n}$

$$
x_{n+1}=f\left(x_{n}\right)=r x_{n}\left(1-x_{n}\right), \quad 0 \leqslant x \leqslant 1
$$

First, we need to place some restrictions on $r$ so, that all $x_{n} \in[0,1]$ map to an $x_{n+1} \in[0,1]$. $\Gamma \geq 0$ : otherwise $x_{n} \in[0,1]$ map to $x_{n+1}<0$.

$$
\max \{f([0,1])\}=f\left(\frac{1}{2}\right)=\frac{r}{4} \Rightarrow r \leq 4
$$

$\rightarrow$ Require $0 \leq r \leq 4$
dissipative if $\left|f^{\prime}(x)\right|<1$ everywhere on interval.
$|r(1-2 x)|<1$, and since $\quad \underset{\rightarrow}{\left.\Delta\right|_{0} ^{t r}(1-2 x) \mid}$ (max at o\&1)

$$
|r(1-2 \cdot 0)|=|r(1-2)|=|r|<1
$$

so map is dissipative for $0 \leq T \angle 1$
b) Here are a few different approaches:
method 1: series. Since $0 \leqslant x \leqslant 1,(1-x) \leq 1$, so $x_{n+1} \leqslant r x_{n}$
 for large $n$. (small $x_{n}$ ), $x_{n+1} \simeq r x_{n}$, so $x_{N+n} \simeq x_{N} r^{n}$. method 2: fixed points. $x^{*}=f\left(x^{*}\right)=r x^{*}\left(1-x^{*}\right)$

So $x^{*}=\left\{0,1-\frac{1}{r}\right\}$, and $\left(1-\frac{1}{r}\right)<0$ since $r 4$.
Stability?.. $\left|f^{\prime}\left(x^{*}\right)\right|=r\left(1-2 x^{*}\right)=r<11$
So there's only 1 f.p., $x^{*}=0$, and it's stable $\Rightarrow x_{n} \rightarrow 0$ as $n \rightarrow$ method 3. cobweb plot

c) Analytically

$$
x_{n+1}^{*}=x_{n}^{*}=r x_{n}^{*}\left(1-x_{n}^{*}\right) \Rightarrow x_{n}^{*}=\left\{0,1-\frac{1}{r}\right\}
$$

$\left|f^{\prime}\left(x^{*}\right)\right|<1$ for stability

$$
\left|f^{\prime}\left(x^{*}\right)\right|=r\left|1-2 x^{*}\right|=\{r, \mid 2-r 1\}
$$

$0 \leq r 41$ : Only $x^{*}=0$ is in $[0,1]$.

$$
\left|f^{\prime}(0)\right|=r<1 \Rightarrow x^{*}=0 \text { is stable }
$$

$r=1:\left|f^{\prime}(0)\right|=1$, so linearized stability fails.

$$
x_{*}+\delta x_{n+1}=\delta x_{n+1}=f\left(\delta x_{n}\right)=\delta x_{n}\left(1-\delta x_{n}\right)=\delta x_{n}-\delta x_{n}^{2}<\delta x_{n}
$$

$\rightarrow \delta x_{n+1} 2 \delta_{x_{n}}$ and $\delta x>0$ since $x \in[0,1] \Rightarrow x^{*}=0$ is (marginally)
$\left|\angle r<3:\left|f^{\prime}(0)\right|=r>1 \Rightarrow x^{*}=0\right.$ is unstable

$$
\left|f^{\prime}\left(1-\frac{1}{r}\right\rangle\right|=|2-r|<1 \Rightarrow x^{*}=1-\frac{1}{r} \text { is stable }
$$

$r=3:\left|f^{\prime}(0)\right|=r>1 \Rightarrow x^{*}=0$ is unstable
$\left|f^{\prime}\left(1-\frac{1}{r}\right)\right|=|2-r|=1$, so linearized stability fails.

$$
\delta x_{n+1}=f\left(x^{*}+\delta x_{n}\right)-x^{*}=-\delta x_{n}\left(1+3 \delta x_{n}\right) \text { so map }
$$

oscillates about $x^{*}=1-\frac{1}{r}\left(\delta x_{n+1} \simeq-\delta x_{n}\right)$. Iterate again.

$$
\delta x_{n+2}=f\left(f\left(x^{*}+\delta x_{n}\right)\right)-x^{*}=\delta x\left(1-18 \delta x^{2}\right)+O\left(\delta x^{4}\right)
$$

Since $\left(1-18 \delta x^{2}\right) 4, \quad x^{*}=1-\frac{1}{r}$ is (marginally) stable
$3<r \leqslant 4:\left|f^{\prime}(0)\right|=r>1 \Rightarrow x^{*}=0$ is unstable
$\left|f^{\prime}\left(1-\frac{1}{r}\right)\right|=|2-r|>1 \Rightarrow x^{*}=1-\frac{1}{r}$ is unstable
Summary

| range | $x^{*}=0$ | $x^{*}=1-\frac{1}{r}$ |
| :---: | :---: | :---: |
| $0 \leqslant r 41$ | stable | - |
| $r=1$ | marginally <br> stable | $\left[1-\frac{1}{r}=0\right]$ |
| $1<r<3$ | unstable | stable |
| $r=3$ | unstable | marginally |
| $3<r \leq 4$ | unstable |  |
| 3 | unstable |  |

c) Graphically

$$
0 \leq r \leq 1
$$



$$
x^{*}=0 \text { is stable }
$$


$x^{*}=0$ is unstelile

$$
1-r \leq 3
$$

$$
3<r \leq 4
$$


$X^{*}=0 \quad$ is unstable
$x^{*}=1-\frac{1}{r}$ is unstable


Plots in right column only include $60<x<100$

2d) cont'd logistic map, $r=3.2$



logistic map, $r=3.2$




Now all values of $x$ in [ 0,1$]$ are visited; curve eventually becomes continuous
$x(n+1)=r x(n)(1-x(n))$ for $x$ in $[0,1]$.
Varies erratically in range [0,1].

A continuous range of values in $[0,1]$ are being visited. No periodicity, no limiting value.

Plots in right column only include $\mathbf{6 0 < x < 1 0 0}$

