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1 Cluster-based prediction

1.1 Introduction

The supplemental information contains a description of the clustering-based
prediction approach, which is an improved version of that presented in S.
Totz, E. Tziperman, D. Coumou, K. Pfeiffer, and J. Cohen, “Winter precipi-
tation forecast in the european and mediterranean regions using cluster anal-
ysis.” Geophys. Res. Lett., 44 (doi:10.1002/2017GL075674):12,41812,426,
2017. The corresponding code is available at
https://www.seas.harvard.edu/climate/eli/Downloads/Clustering-based-prediction/
European-temperature-2018b/

1.2 Cluster-based prediction methodology

Given the time series of the quantity to be predicted (predictand, e.g.,
anomaly winter (DJF) precipitation) and precursors (predictors, e.g., au-
tumn (SON) sea ice cover and snow cover extent), we calculate the clusters
of the predictand, and then use them to construct the prediction as described
below. In order to obtain a cross-validated forecast, we choose one year to
be predicted and then use all other years in order to build the prediction
model. This is repeated for all years and the skill presented below is the
average over all of these prediction calculations. For each predicted year, we
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first remove the mean of the precipitation using data from all years except
for the predicted year.

Consider a forecast of precipitation anomaly time series at several loca-
tions, given by the predictand vector prcp(t). These precipitation data will
be predicted using given precursors, e.g., time series of snow cover extent
anomalies at several spatial locations given by the time-dependent vector
sce(t), and time series of sea ice extent at several spatial locations, sic(t).

We assume that there are Nclusters significant precipitation clusters. We
use bold upper case variable names to denote clusters and composites, and
lower case bold variable names to denote time series data. The predic-
tion procedure requires the winter (DJF) precipitation clusters PRCPi,
i = 1, . . . , Nclusters and the corresponding precursor composites (e.g., sea
ice cover and snow cover extent anomalies from the autumn SON mean),
COMPOSITEi. The clusters are calculated using hierarchical clustering
of the winter precipitation anomaly data, while the composites for a given
cluster i are calculated by averaging the predictors over all times in which
the precipitation anomaly is assigned to its cluster i.

We also need a time series of the autumn-mean (averaged over SON)
precursor anomaly (predictors) precursorSON(t), for each spatial location.
The time t denotes the year, where the precursors are evaluated during the
fall (SON) and the precipitation of that year refers to the following DJF. For
example, if the precursors are sea ice and snow cover, the vector of precur-
sors (predictors) time series, and the vector of composites are calculated as
follows.

First, we remove the mean of each precursor using all precursors data
except the predicted year. Next, we normalize each precursor by the standard
deviation. Finally, we combine different precursors into a single vector,

sic′
SON(t) = sicSON(t) − sicSON

ŝicSON(t) = sic′
SON(t)/σsic

precursorSON(t) = (ŝicSON(t), ŝceSON(t))T

The variable sicSON is the time mean of the sea ice concentration using all
times except the predicted year. The variable σsic is the standard deviation
over all times and all grid points.

Then, we find the composites of the different autumn predictors by av-
eraging the normalized predictors (ŝce(t),ŝic(t)) over all autumn seasons
(SON) for which the following winter precipitation anomaly is assigned to a
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given cluster. The predictors composites of the same cluster are combined
into one composite

COMPOSITE1,2 = (SIC1,2,SCE1,2)
T

To obtain the prediction for the precipitation, we first find the projection of
the current state of the predictors (snow cover and sea ice) on the Nclusters

predictor composites corresponding to the precipitation clusters.
Each predictor composite is associated with a precipitation cluster and

provides information about the amplitude and spatial structure of winter
precipitation expected given the autumn predictor composite. This allows
us to calculate the expected precipitation pattern due to the projection of
the current state of predictors on each cluster. Finally, we sum the contri-
butions to the precipitation due to all clusters, to obtain the predicted total
precipitation anomaly.

Mathematically, this proceeds as follows. To calculate the projection of
precursorSON(t) on the composite COMPOSITEi, we expand the current
precursor state in terms of the precursor composites, to find the expansion
coefficients, noting that the composites are not necessarily orthogonal. The
expansion takes the form,

precursorSON(t) ≈
Nclusters∑

i=1

ai(t) COMPOSITEi.

The expansion may only be approximate because the composites are not
necessarily a complete set of vectors. To find the expansion coefficients ai(t),
multiply by precursor composite COMPOSITEj, remembering that they
are not necessarily orthogonal,

precursorSON(t) · COMPOSITEj =
Nclusters∑

i=1

ai(t) COMPOSITEi · COMPOSITEj.

Next, we write this as a matrix equation for the unknown vector a(t) of
coefficients ai(t). Define a matrix, Bij = COMPOSITEi ·COMPOSITEj,
and the right-hand side Γj(t) = precursorSON(t) · COMPOSITEj. This
leads to the linear equations,

B a(t) = Γ(t),

that may be solved for the coefficients ai(t) at every time step (year t) in
the data. Given that the matrix B may be ill conditioned, there may be
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many solutions for a(t). We choose the one with the smallest norm, using
the SVD-based pseudo inverse such that singular values that are smaller than
1% of the largest singular value are set to zero (using python’s pinv-function
with the threshold set to 0.01).

The final expression for the predicted precipitation anomaly is obtained
by summing the contribution of all clusters, each multiplied by the projection
of the current state of precursors, a(i),

prcp(t) =
Nclusters∑

i=1

ai(t) PRCPi. (1)
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2 Alternative Statistical Learning Approaches

kNN

Given the vector of features (e.g., lagged measurements, model forecasts,
temporal characteristics, and geographic characteristics) associated with a
target date and forecast region, a k-nearest neighbor (kNN) method would
search for the historical dates and regions (neighbors) with features most sim-
ilar to the target. The predicted weather pattern would then be a weighted
average of the realized weather patterns associated with all neighbors. Such
kNN approaches are especially popular in recommender systems (Bobadilla
et al. 2013), where the algorithm is used to recommend items similar to
items previously enjoyed by a customer or to recommend items enjoyed by
customers similar to target customer. See Chapter 13 of Hastie et al. (2001)
for more details.

Random forests

A decision tree is a prediction method that hierarchically partitions fore-
casting targets into homogeneous groups based on associated features (e.g.,
lagged measurements, location, and model forecasts) and forecasts the aver-
age historical weather pattern in each group. A random forest is an ensemble
method that aggregates many different trees by averaging their predictions.
To make the individual trees more diverse, the method uses only a randomly
selected subset of features to create each partition. Random forests (Breiman
2001) and the closely related Bayesian additive regression tree method (Chip-
man et al. 2010) have led to state-of-the-art performance in a wide variety
of prediction tasks including predicting disease progression in Lou Gehrigs
disease patients (Kffner et al. 2015) and identifying breast lesions at high
risk of cancer (Bahl et al. 2017). For more details and examples, see Chapter
8 of James et al. (2013).

Boosted decision trees

Boosting (Freund & Schapire 1997) is a learning method which sequentially
combines lower-accuracy prediction rules, like decision trees, into a final
higher accuracy ensemble. For boosted decision trees, we train a sequence
of decision trees sequentially, each to correct the errors of the last: start by
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growing a tree to predict a target variable (e.g., future temperature on a
given location), build a second tree to predict the mistakes made by the first
tree, and then keep building trees to predict on the errors of the previous
one. The aim is to improve prediction performance with the addition of each
new tree. Boosting has delivered state-of-the-art performance for a variety of
prediction tasks including Higgs Boson classification in high-energy physics
and insurance claim classification (Chen & Guestrin 2016). More details can
be found in Chapter 8 of James et al. (2013).

Gaussian processes

An extremely popular model in spatial statistics, Gaussian process regression,
views the response variable (temperature, precipitation, etc.) as a smooth
spatial surface. The smoothness of the surface is controlled by the covariance
function of the Gaussian process, and spatial trends in the response variable
are controlled by the mean function. The mean function can depend on
additional features such as lagged measurements or other model forecasts.
The result is a regression model that takes into account spatial dependencies.
Gaussian processes have been used to forecast wind speed (Chen et al. 2014)
and predict forest biomass (Banerjee et al. 2008). For an overview of the
methodology, see Rasmussen & Williams (2006).

Neural networks

Neural networks are a highly flexible model class for relating a collection of
inputs (e.g., lagged measurements or model forecasts at a set of locations)
to a collection of outputs (e.g., temperature measurements at a set of lo-
cations). The inputs undergo a series of nonlinear transformations in the
neural network’s hidden layers; as the neural network is trained, the weights
associated with these nonlinear transformations are learned in order to min-
imize prediction error. Neural networks, particularly deep networks with
many hidden layers, have dramatically improved performance on a variety
of learning tasks, including image recognition and machine translation (see,
e.g., Deng & Yu 2014).
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Causal effect networks

Causal discovery algorithms allow for interpretation of causal links between
variables by determining whether we can say that, statistically, x provides
more information about future values of y than past values of y alone. The
causal effect network (CEN) aims to detect causal relationships amongst a set
of time-series by iteratively testing the partial correlations conditioning on
combinations of other time-series at different lags (Kretschmer et al. 2016).
Thus, causal links in the CEN are those for which the linear relationship
cannot be explained by the (combined) influence of other included indices or
by auto-correlation. CEN is related to Granger-causality but allows for much
stronger causal statements beyond, for example, the bi-variate only concept
(Kretschmer et al. 2016).

Classically, one of the major limitations of statistical forecast models has
been overfitting, which results in very high correlations to R-squared values
on training data but the forecast fails on independent test data. Recent
studies have introduced causal discovery algorithms to identify the causal
precursors and remove those that arise from spurious correlations. This is
an effective way to avoid overfitting problems and has resulted in robust
statistical forecasts of polar vortex (PV) strength (Kretschmer et al. 2017)
and Indian summer monsoon rainfall (Di Capua & Coumou 2017).
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