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Europa is one of the most probable places in the solar system 
to find extra-terrestrial life1,2, motivating the study of its deep 
(~100 km) ocean3–6 and thick icy shell3,7–11. The chaotic terrain 
patterns on Europa’s surface12–15 have been associated with 
vertical convective motions within the ice8,10. Horizontal gra-
dients of ice thickness16,17 are expected due to the large equa-
tor-to-pole gradient of surface temperature and can drive a 
global horizontal ice flow, yet such a flow and its observable 
implications have not been studied. We present a global ice 
flow model for Europa composed of warm, soft ice flowing 
beneath a cold brittle rigid ice crust3. The model is coupled to 
an underlying (diffusive) ocean and includes the effect of tidal 
heating and convection within the ice. We show that Europa’s 
ice can flow meridionally due to pressure gradients associated 
with equator-to-pole ice thickness differences, which can be 
up to a few km and can be reduced both by ice flow and due to 
ocean heat transport. The ice thickness and meridional flow 
direction depend on whether the ice convects or not; mul-
tiple (convecting and non-convecting) equilibria are found. 
Measurements of the ice thickness and surface temperature 
from future Europa missions18,19 can be used with our model to 
deduce whether Europa’s icy shell convects and to constrain 
the effectiveness of ocean heat transport.

The surface properties of Europa and its tidal forcing are well 
known, yet its inner structure and properties are less certain7,12. The 
known surface properties include the incoming solar radiation16 
(~16 W m−2 year-round at the equator and between 0 and ~4 W m−2 
at the poles) and the tidal forcing that is expected to lead to a triaxial 
ellipsoid structure17 at a period of 3.55 Earth days16. Among the less 
certain interior properties are the thickness of the outer ice layer20,21 
(estimated as a few km to more than 30 km), depth of the subsurface 
ocean3 (~100 km), and rates of heating at the ocean bottom due to 
tidal heating within the core22 (33–230 mW m−2) and of radiogenic 
heating (~8 mW m−2) due to the assumed chondritic abundance of 
U, K and Th in the solid iron core23 (oceanic tidal heating is neg-
ligible22). Our focus here is the global-scale horizontal ice flow on 
Europa. The polar surface of Europa is colder by tens of degrees than 
the equatorial regions16,24, which could lead to meridional ice thick-
ness gradients and therefore to pressure gradients that may drive ice 
flow from high to low latitudes. This is reminiscent of Snowball Earth 
events over 580 million years ago, when the ocean was covered by a 
~1-km-thick ice layer25. Ice tidal movements result in a strain rate 
and heating within the ice that varies in both the zonal and meridi-
onal directions16,17 and can also lead to a large-scale lateral ice flow.

Europa’s ice thickness is significantly smaller than the horizontal 
scales of global ice flow, justifying the use of the ‘shallow ice approxi-
mation’, which is commonly used to represent soft land ice flow over 

the solid Earth surface26. Our two-dimensional (latitude-depth) ice 
flow model for Europa is therefore based on an ‘upside-down’ shal-
low ice approximation, representing soft, flowing ice under a cold 
rigid external ice crust3, separated by a ductile-to-brittle transition 
zone. The model is coupled with a simple (one layer) ocean model 
whose meridional heat transport is parameterized via effective dif-
fusivity, which is meant to represent the transport by both ocean 
circulation and eddies. The model’s variables are the ice flux q, ice 
thickness hI, and ocean temperature To and salinity So (see Methods). 
The model includes the role of geothermal heating at the ocean bot-
tom and the ice-tidal heating, and parameterizes vertical convection 
within the ice. The annual mean surface temperature, Ts, is calcu-
lated based on the energy balance between the incoming solar radia-
tion, internal heating and outgoing longwave radiation16.

Below, we first show that when the roles of ocean and ice con-
vection are ignored the ice flow effectively homogenizes observable 
horizontal ice thickness gradients. We then show that meridional 
ocean heat transport can lead to the homogenization of ice thick-
ness as well. Finally, we show that ice convection can lead to reversed 
equator-to-pole ice flow in which the enhanced polar tidal heating 
plays a major role.

Starting with the simplest case, Fig.  1 shows the model’s equi-
librium  solution when taking into account the tidal heating, but 
disabling ice convection and meridional ocean heat transport, such 
that the heat flux into the ice base is locally equal to the geothermal 
heating rate at the ocean bottom, Qg =​ 0.05 W m−2 (ref. 22). Given the 
uncertainties in grain size, and therefore ice viscosity27, we calcu-
lated the model’s solution for a range of melting viscosity values, η0.

Figure  1b shows that the ice is thicker at the poles, where the 
surface temperature is colder. It also shows that a global pole-to-
equator ice flow develops (Fig. 1d,f). The equator-to-pole thickness 
difference is dramatically reduced when ice flow is present for the 
lower values of the specified melting viscosity, from 3.2 km for the 
stiffer ice to only 350 m for the softer ice. The maximum meridional 
ice flux occurs where thickness gradients are maximal (Fig.  1d), 
and  the ice velocity is maximal at the bottom of the ice where it 
is softest and decreases rapidly upward as the ice becomes stiffer. 
The ice stiffness is exponential in terms of ice temperature, which 
(Fig.  1c) varies nearly linearly with depth in this case, not being 
affected by the presence of weak ice tidal heating. Smaller viscosity 
also leads to smaller mean ice thickness because the softer ice allows 
for more tidal heating within the ice (see equation (11); ref. 9).  
The freezing at high latitudes and melting at low latitudes imply an 
equatorward flow (Fig. 1e). The maximal melting in the cases corre-
sponding to mid-range and softer ice viscosity (blue and red curves) 
is at mid-latitude due to the value of the vertical temperature gra-
dient at the ice bottom as a function of latitude (see equation (9)).  
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The effective homogenization of ice thickness by the global flow is 
large enough to be detected by the future missions to Europa.

We now proceed to the second case, which includes oceanic heat 
transport, but no ice convection (Fig. 2). The ocean heat transport is 
represented as a diffusive process with an eddy coefficient κo that is 
varied over several orders of magnitude. This simplified representa-
tion allows us to study the effect of a very broad range of heat trans-
port efficiencies due to both ocean circulation and eddies25,28–30. 
When the ocean efficiently transports heat (a larger eddy coeffi-
cient), the gradients in ice thickness are much smaller than in the 
case of an ocean that does not transport heat efficiently (Fig. 2a): in 
the absence of ocean heat transport, melting occurs at low latitudes 
because the geothermal heat flux that is  transferred directly from 

the ocean bottom into the ice base is larger than the upward diffu-
sive heat flux within the ice (equation (9)) and this heat excess leads 
to melting. Freezing at high latitudes11 occurs due to the opposite 
situation. The ocean heat transport carries the heat excess at low 
latitudes to high latitudes, such that the heat flux from the ocean 
into the ice base nearly balances the upward diffusive heat flux 
within the ice at all latitudes. The resulting lower melting and freez-
ing rates (Supplementary Fig. 1b) eliminate the need for meridional 
ice transport, which is therefore smaller (Fig. 2b). Smaller meridi-
onal thickness gradients imply weaker ice transport. The latitudi-
nal variations in ocean temperature (Fig.  2a, right axis) are very 
small. The ocean temperature is nearly linear in ice thickness and 
the two are therefore represented by the same curves in Fig.  2a, 
mostly because the temperature is close to the freezing temperature 
(Supplementary Fig. 1a), which in turn is linear in ice thickness due 
to the dependence of melting temperature on pressure (Methods).

Interestingly, without ocean heat transport (Fig.  1), a smaller 
equator-to-pole thickness difference (blue curve, η0 =​ 1013 Pa·s) 
occurs in combination with a strong meridional ice flow, while in 
the presence of effective ocean heat transport, a small equator-to-
pole thickness difference occurs in combination with a weak ice 
flow (Fig. 2, black curve, κo =​ 1 m2 s−1). Finally, the ice thickness, ice 
flux, ice velocity and melting rates are hardly affected when ocean 
salinity transport is included. However, previous studies31 have 
shown that salinity transport within the ice can significantly influ-
ence the partial melting and therefore the ice flow.

When included, the ocean salinity exhibits larger meridional 
gradients for smaller oceanic eddy mixing coefficients, weakly 
affecting the freezing rates and ocean temperatures (Supplementary 
Fig. 2). Estimates of Europa’s ocean salinity vary widely, from being 
nearly fresh to highly saline32. We chose an intermediate value of 
50 ppt and show the sensitivity to this value in Supplementary Fig. 6.

Previous studies have shown that a sufficiently thick icy shell may 
convect, creating an upper stagnant conductive layer  overlaying a 
lower vertically convecting one7,9,17,27,33. It has been suggested that ice 
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Fig. 1 | Equilibrium state of the icy shell of Europa when the meridional ocean heat transport and ice convection are not included. a–f, We show the 
meridional (latitudinal) distribution of surface ice temperature (a), ice thickness (b), meridional ice transport (d) and ice freezing rate (e), for several 
melting viscosities (η0 =​ 1013, 1014 and 1015 Pa·s), as well as the ice temperature (c) and meridional ice velocity (f) as a function of vertical coordinate 
and latitude for η0 =​ 1014 Pa·s. As the ice floats over the ocean, sea level is denoted here as z =​ 0, where the ice level below sea level is zb =​ −​μhI and the 
thickness above sea level is zs =​ (1 −​ μ)hI. The grey lines in c and f indicate the depth of the ductile-to-brittle transition.
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Fig. 2 | Equilibrium state of the icy shell of Europa when ocean heat 
transport is included, while ice convection is absent. a,b, We show the 
ice thickness (a) and ice flux (b) as a function of latitude. The ocean 
temperature is linearly related to ice thickness and the corresponding 
values are presented on the right vertical axis of a. The results are shown 
for several values of the ocean eddy mixing coefficient κo =​ 10−4, 10−3, 10−2, 
10−1 and 1 m2 s−1. Here, the melting viscosity is set to η0 =​ 1014 Pa·s. Smaller 
meridional gradients are obtained for more efficient ocean heat transport 
(larger ocean eddy mixing coefficients).
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convection enhances tidal heating9, affects ice transport17 and leads 
to multiple solutions under the same forcing (bi-stability) in the 
solution for the thickness27. We therefore examined the effect of ice 
convection on ice flow and ice thickness in the absence of ocean heat 
transport (Fig. 3). The ice temperature in the convecting lower layer 
(Fig. 3c) is much more uniform and closer to the freezing tempera-
ture than in the absence of convection (Fig. 1c). The ice is relatively 
soft in the convective layer, where tidal heating is also larger9 and 
extends over a much wider depth range than in the non-convect-
ing case (Fig. 3a). Furthermore, the ice is more than 3 km thicker 
than in the non-convecting case. When convecting, the ice is com-
posed of a conducting layer (the depth range above the dashed line 
in Fig. 3c) overlaying a 5–6-km-thick convecting layer. Due to the 
enhanced high latitude total tidal heating (Fig. 4d), melting increases 
there and the polar ice becomes thinner than that at low latitudes. 
Consequently, for not-very-high values of the melting viscosity, 
the ice flow reverses to be from the equator to the poles (Fig. 3d,f). 
Moreover, the ice velocity within the deep convective layer is sig-
nificantly larger (Fig. 3f versus Fig. 1f) and the meridional ice flux 
is more than 16 times larger than that without convection (Fig. 3d).

Our parameterized convection scheme leads to bi-stability, also 
found in previous, non-global ice models27, and the two possible 
equilibrium solutions for the average ice thickness as a function 
of the melting viscosity are shown in Fig. 3e. The convective solu-
tion is characterized by more uniform thickness, thicker ice and 
stronger, reversed (equator-to-poles) ice transport (Fig.  3b,d) for 
η0 <​ 6 ×​ 1014 Pa·s. We note, though, that previous studies of local 
convection on Europa suggested that convection generally hap-
pens for thicker ice than that found using our simple convection 

parameterization at any given viscosity value7,9,27,34,35 and, in the 
future, such local calculations could be used as further constraints 
on the convection parameterization.

The solutions presented here and the above discussion have 
important observational implications. Instantaneous and daily 
mean surface temperatures have been estimated by the Galileo mis-
sion24 and are expected to be observed again by the European Space 
Agency’s JUpiter ICy moons Explorer (JUICE) mission18 and, in 
particular, by the National Aeronautics and Space Administration’s 
Europa Clipper mission19, which is also expected to observe the ice 
thickness. We found that potentially observable weak equator-to-
pole thickness gradients may result either from low viscosity lead-
ing to stronger meridional ice transport or effective meridional 
ocean heat transport in conjunction with weak ice transport.

Consider two examples of using observations to deduce aspects 
of Europa’s icy shell and ocean dynamics, demonstrated in Fig.  4 
using the model that now includes all elements: ice flow, convection 
and ocean heat transport. First, Fig. 4a,b shows the equator-to-pole 
thickness difference (colours) and mean ice thickness (contours) as 
functions of the melting viscosity and the ocean eddy mixing coef-
ficient for the convecting (Fig.  4a) and non-convecting (Fig.  4b) 
solutions. Given the observations of the ice thickness and the  
equator-to-pole ice thickness difference, we can determine whether 
the ice is convecting and constrain the viscosity and ocean heat 
transport coefficients. As an example, the black ‘×​’ symbol in Fig. 4b 
marks a thickness of 9.4 km and a thickness difference of 1.25 km. 
These values imply that the ice is not convecting (such values do 
not occur in Fig. 4a) and that the two unobservable parameters of 
melting viscosity and ocean eddy mixing coefficient are constrained 
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Fig. 3 | Equilibrium solutions when meridional ocean heat transport is absent and ice convection is active. a–f, We show the tidal heating (a), ice 
thickness (b), ice temperature (c), meridional ice transport (d) as a function of latitude, and the mean ice thickness as a function of the melting viscosity 
coefficient η0 when the ice is convecting (blue) and non-convecting (red) (e) and meridional ice velocity (f). In c and f, the solid grey line indicates the 
ductile-to-brittle transition depth and the dashed grey line indicates the top of the convecting layer (see Methods). The dashed lines in b and d indicate 
the equilibrium states for the non-convecting case also shown in Fig. 1b,d. The melting viscosity is set to η0 =​ 1014 Pa·s in c and f. Note the dramatic 
differences between the convecting and non-convecting solutions (b, d and e; see Fig. 1 for comparison).
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to be η0 =​ 2.15 ×​ 1014 Pa·s and κo =​ 3 ×​ 10−3 m2 s−1. These estimates 
are subject to all model assumptions and to the uncertainty in the 
model parameters. The corresponding minimum and maximum ice 
fluxes are shown in Supplementary Fig. 3.

Note that in the convective state, the pole-to-equator thickness 
difference is negative in most parameter domains (below the black 
contour in Fig.  4a), indicating thicker equatorial ice. Because we 
include the effect of meridional ice flow here, this testable prediction 
is quite different from that discussed in ref. 17, where a thicker equator 
was predicted only for very weak geothermal heating. Nimmo et al.17  
also conjectured the convecting case to be of a nearly uniform  
thickness due to the homogenization by lateral flow, as confirmed 
by our results (Fig. 3b, solid lines).

As a second example of observational constraints, consider the 
winter solstice surface ice temperature at the high latitudes (Fig. 4c), 
showing a difference of 3.1 K between the convecting and non-
convecting solutions. Because of the lack of insolation at the winter 
pole, the heat flux coming out of the ice is the only heat source and is 
balanced by longwave radiation, determining the surface tempera-
ture. This heat flux is higher in the convecting case due to greater 
tidal heating (Figs. 3a and 4d). This is a small difference, yet it may 
be observable.

The model presented here lacks important features, including 
zonal thickness variations due to tidal effects9,16,17, the effect of the 

tidal strain rate on the non-Newtonian ice rheology16,27, our use of a 
simple convection parameterization7,9,27 and the use of a simplified 
ocean representation. Previous, more detailed localized convection 
studies7,27 suggested that convection occurs for a thicker icy shell 
than reported here. In addition, there are some unknown or poorly 
constrained parameters, such as geothermal heat flux, ice melting 
viscosity and the ocean eddy heat transport coefficient.

While simple, the main qualitative conclusions of our model—
that the ice flows under its weight, that this flow weakens as a result 
of meridional ocean heat transport and that convection plays an 
important role in the direction and intensity of the ice flow—should 
be robust. These results may be relevant to future missions such as 
JUICE18 and Europa Clipper19.

Methods
First, we briefly summarize the model equations. Then, we demonstrate the 
robustness of the results to various aspects of model formulation and provide a 
detailed description of each of the model components. The parameters are listed in 
Supplementary Table 1.

Model overview. The ice thickness hI is governed by a mass conservation equation 
based on an ‘upside-down’ shallow ice approximation,
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where θ is the latitude, the meridional ice transport q(θ) is calculated from the ice 
thickness gradients, S(θ) is the source term due to freezing and melting at the base 
of the ice, r is the radius of Europa and μ is the ratio between ice and water densities.

The ocean temperature To and meridional heat flux are determined via a heat 
budget that incorporates geothermal heat flux from the ocean bottom, Qg, into the 
ice base and parameterized eddy heat transport by both ocean macro-turbulence 
and large-scale circulation,

ρ β
ρ

θ
κ θ∂ = − − + ∂ ∂θ θc h T Q T T

c

r
h T( )

sin
( sin )o p,o o t o g o f

o p,o
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where ρo is the reference density for Europa’s ocean, ho(θ) is the ocean depth and  
Tf (θ) is the freezing temperature. Both the ice thickness and ocean temperature are 
solved from 89° S to 89° N, with a 1/2° resolution. No flow boundary conditions for 
the meridional velocity (v =​ 0) and no flux conditions for temperature and salinity 
are applied at the poles. The vertical temperature within the ice is determined by 
a temperature equation that incorporates tidal heating and a parameterization of 
vertical convection within the ice based on a Rayleigh number criterion7, which 
determines the vertical structure of an effective diffusion κ(z) within the ice as a 
function of depth and is solved using 400 vertical levels, ∂z(κ(z)∂zT) =​ H(z)/(cp,IρI). 
The tidal heating H(z) is calculated following ref. 9. The surface ice temperature 
is calculated using an energy balance between incoming solar radiation, outgoing 
longwave radiation and internal heating16,36, assuming a zero heat capacity of the ice 
and a surface albedo of 0.62 (ref. 24).

The ice flow model: ‘upside-down’ shallow ice approximation. We start from the 
momentum equations in spherical coordinates (longitude, ϕ, co-latitude, θ, and 
radial, r) when assuming zonal symmetry37,
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where p is the pressure, τij are the different components of the deviatoric stress 
tensor, g is the gravity constant and ρI is the density of ice (which is assumed to be 
constant). Since the ice is restricted to a thin layer (~10 km) compared with the 
radius of Europa38 (1,561 km), we apply the ‘thin-shell’ approximation where r is 
regarded as a constant when it appears by itself. However, variations in the radial 
direction are important and, to avoid confusion, are denoted by a dependence 
on a vertical coordinate z; for example, ∂r is replaced by ∂z. In the shallow ice 
approximation, the only stress component that needs to be included is τzθ, which is 
related to the strain rate ϵ° θz , given by

ϵ° ≈ ∂θ v1
2

(3)z z

where v is the meridional ice velocity. The derivative along the i direction is 
indicated by ∂i while the subscripts of τ and ϵ° indicate the different components 
of the stress and strain rate tensors. Note that in the seemingly similar problem 
of Snowball Earth, and unlike here, the global ice flow may be assumed to be 
independent of depth within the ice37,39. In equation (1), only the pressure term 
and the τzθ term need to be considered in this approximation, as all other terms are 
much smaller (we verified that these terms are indeed small given the results of our 
simulations). Then,

τ= − ∂ + ∂θ θr
p0 1 ( ) (4)z z

While ice is a non-Newtonian fluid, generally obeying a nonlinear rheology40–43, 
at very small strain rates, it behaves as a Newtonian fluid with a linear rheology, as 
also used in previous studies of Europa’s ice flow9,17,27,44

τ η η η= ϵ° = −


























T T
Q
R T T

( ) , ( ) exp 1 1
(5)ij ij 0

l

m

where T is the ice temperature, Ql is the activation energy for diffusive creep, R is 
the universal gas constant45, Tm is the melting temperature of ice and η0 is a constant 
that quantifies the viscosity of the ice at the melting temperature. For consistency 
with previous studies9,27, the melting temperature appearing in the rheology, Tm,  
is assumed constant—rather than being equal to the freezing temperature  
Tf calculated from the salinity and pressure (see below). Using a variable Tm yielded 
very similar results. We have verified that our solution for the ice flow produces 
stress and strain rates that are in the range appropriate for a linear rheology 
(Supplementary Fig. 3c,d). Our next objective is to obtain an expression for the ice 

velocity. Integrating the hydrostatic equation (2), we find the pressure gradient in 
terms of the ice thickness,

θ ρ θ= −p z g z z( , ) ( ( ) )I s

where zs(θ) indicates the height of the surface of the ice above sea level. In the 
standard shallow ice approximation43, one uses the fact that the stress vanishes at 
the top of the ice sheet, where it is in contact with air. Here, in our upside-down 
approximation, we use the fact that the stress vanishes instead at the ice bottom, 
where it is in contact with water. Substituting in equation (4) this expression for 
the pressure and integrating from the bottom zbθ to a level z using the boundary 
condition at the bottom τzθ(zb) =​ 0, we find,

ρ θ τ= − − ∂ +θ θg z z
r

z z0 ( ) 1 ( ) ( )I b s z

Using τ η= ϵ°θ θT( )z z  and using the equation (3) for ϵ° θz , we have

ρ η= − − ∂ + ∂ .θg z z
r

z T v0 ( ) 1 1
2

( ) zI b s

Next, using zs =​ (1 −​ μ)hI, zb =​ −​μhI we find

μ ρ∂ = − − ∂θv
r

gA T z z h2 (1 ) ( )( ) (6)z I b I

where hI is the ice thickness, μ is the ratio between the ice density and ocean water 
density and A(T) =​ 1/η(T). We next obtain the velocity itself by integrating this 
equation from z to ztrans, the depth of the ductile-to-brittle ice transition46, where 
the velocity vanishes; ztrans is specified at the transition temperature Ttrans given in 
Supplementary Table 1. Note again that the standard shallow ice approximation 
assumes that the velocity vanishes at the bottom of the ice, while here it vanishes at 
the top of the viscous ice layer, ztrans. Another vertical integration now gives the total 
meridional ice flux,

∫ ∫= ∂ ′′q z v zd d (7)
z

z

z

z

z
b

trans trans

Next, the ice volume conservation equation that relates the total transport q to the 
ice thickness hI is

θ
θ

μ
∂ + ∂ =θh

r
q S1

sin
( sin ) 1

(8)t I

where S(θ) is a source term (meters of ocean water per second) due to freezing  
and melting at the base of the ice, and S/μ represents the rate of change of ice 
thickness due to the source. This source term is calculated using a heat budget of 
the ice bottom:

ρ ρ κ β= − ∂ − −L S c T T T( ) (9)z
zo I p,I I o f

b

where the first term on the right-hand side is the upward heat flux away from the 
ice base and the second is the flux into the ice bottom from the ocean, such that 
β(To −​ Tf) =​ Qg in the absence of meridional ocean heat transport. The sum of the 
two, if non-zero, leads to melting or freezing as shown on the left-hand side. In 
this equation, Toθ is the ocean temperature (not necessarily equal to the freezing 
temperature Tfθ), L is the latent heat constant of ice, κI is the heat conductivity 
constant of ice, cp,I is the specific heat constant of ice and β is the ocean sensible heat 
flux coefficient taken from ref. 47.

Temperature within the ice. We solve a diffusion equation for the temperature 
within the ice,

κ ρ∂ ∂ = − ∕z T H z c( ( ) ) ( ) ( ) (10)z z p,I I

where the bottom and top boundary conditions are

θ θ= =T z T T z T( ) ( ), ( ) ( )b f s s

and the tidal heating within the ice is that of equation (13) of ref. 9:

η η η η
=

∕ + ∕
H z

H
( )

2
(11)max

max max

Here, ηmax =​ μE/ω and ̄μ ω= ϵ° ∕H ijmax E

2
 where μE is the elastic shear modulus of 

ice shell, ω is the rotation rate of Europa and ̄ϵ°ij  is taken from Fig. 3 of ref. 17 and 
approximated as ̄ ϕϵ° = . × − . × +− − .2 81072 10 6 823 10 (1 cos(2 ))ij

10 11 0 75, ϕ being  
the latitude.
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Note that the advection terms are neglected in equation (10) and 
Supplementary Figs. 4 and 5 show that this is a self-consistent approximation as 
these terms are indeed much smaller than the diffusion and heat source terms 
that are used to calculate the temperature—both when convection within the ice is 
present and when it is absent. The diffusion coefficient κ(z) is small and equals to 
the molecular diffusion in the stagnant layer, but is much larger within the lower 
convecting layer, representing the efficient heat mixing by convective motions 
there9,27,34. This is represented as follows,

κ κ κ κ Δ

Δ

= + − − − +

≡ ∕ +

 



z z z z z z

x x z

( ) ( ) ( ) ( ( 2 ))

( ) 1
2

(tanh( ) 1)

I I,c I conv b conv

conv

where κI,c is the diffusion coefficient when the ice is convecting and  is the 
Heaviside-like step function. The transition depth between the convective and 
diffusive layers is denoted by zconv and is assumed to be at the depth where the ice 
temperature is 22 K lower than the freezing temperature (indicating the depth at 
which the viscosity is approximately one order of magnitude larger than the bottom 
of the ice melting viscosity7). Convection is also assumed to occur only when the 
thickness of the convective layer yields a Rayleigh number that is larger than a 
critical Rayleigh number7,27 Rac =​ 1,000; then, κI,c =​ 10κI and otherwise κI,c =​ κI. The 
Rayleigh number is defined as Ra =​ αρIgΔ​THconv/(κIη0), where α is the thermal 
expansion coefficient of ice, Δ​T =​ 22 K is the temperature difference over the 
convective layer, Hconv is the thickness of the convecting layer calculated as zconv −​ zb 
and η0 is the viscosity coefficient at the base of the ice7,27.

The surface heat flux, which is needed for the calculation of the surface 
temperature36, is given by the bottom heat flux plus the integrated internal  
tidal heating,

∫ρ κ= ∂ +Q c T H z z( ) dz z
z

z

s I p,I I b
b

conv

The freezing temperature depends on latitude via its dependence on pressure 
and hence on ice thickness, and via its dependence on salinity, as follows48, 
Tf =​ A −​ BhI, where A =​ 0.0901 −​ 0.0575So +​ 273.16 (So being the salinity of the 
ocean) and B =​ 7.61 ×​ 10−8gρI (note that the original expression48 for Tf is given in 
degrees Celsius and B multiplies the pressure in dBar, while we converted Tf to 
degrees Kelvin and reformulated B such that it is multiplied by the ice thickness). 
In the treatment of the freezing temperature dependence on salinity, we implicitly 
assumed here that the seawater composition of Europa is similar to that of Earth’s 
ocean, although the actual composition of Europa’s ocean is uncertain32. The 
variations of the freezing temperature at the base of the ice due to variations in 
ice thickness are very small—about a 0.09 K temperature difference for a 1 km 
difference in ice thickness.

Ocean model. The ocean temperature To and heat transport play important  
roles in determining ice thickness and are calculated here using a simple heat 
budget equation,

ρ β
ρ

θ
κ θ∂ = − − + ∂ ∂θ θc h T Q T T

c

r
h T( )

sin
( sin ) (12)o p,o o t o g o f

o p,o
2 o o o

where cp,o is the specific heat constant of the water and θ μ≡ − −h H h h( ) ( )o o I I  is the 
ocean depth where Ho is the mean ocean depth and hI  the latitudinal average of 
the ice thickness. Meridional heat transport by both eddy mixing and large-scale 
circulation is parameterized using an eddy mixing coefficient κo

25,28–30,49. Thus, 
according to equation (12), the rate of ocean heating equals the sum of the internal 
heating, Qg, sensible heat flux between the ocean and ice −​β(To −​ Tf) and lateral 
ocean transport parameterized as eddy mixing29,30,50. The uncertainty in the physics 
of Europa’s ocean heat transport mechanism is sufficiently large that representing it 
by diffusion and varying the diffusion coefficient over orders of magnitude, as done 
here, accounts for the necessary wide range of possible transport efficiencies by 
both ocean circulation and eddies.

Our ocean model formulation is diffusive, does not calculate a circulation 
and therefore does not rely on a seawater density calculation. The ocean water 
density, the salinity and pressure dependence of the freezing temperature and other 
thermodynamic properties of seawater can be calculated using the Gibbs Seawater 
package51, which permits self-consistent calculations of the density and other 
properties of both the fluid and the ice, although one expects the difference from 
our simpler formulation48,52 to be small.

Estimates of Europa’s ocean salinity vary widely from it being nearly fresh to 
highly saline32,53. To study the sensitivity to the specified mean ocean salinity, So, we 
added a transport equation similar to the one used for the ocean temperature,

θ
κ θ∂ = + ∂ ∂θh S S S

r
h S1

sin
( sin ) (13)o t o o 2 q o o o

where S(θ) is the source term from equation (9). This equation simply states that 
local temporal changes in salinity are due to melting and freezing of the ice (the 
S So  term, where So  is the meridionally averaged salinity, which in the above 

formulation is also constant in time) and meridional salinity transport (the 
diffusion term). This equation does not take into account brine rejection due to 
freezing, only salinity changes due to the change of local (positive or negative) 
input of freshwater11.

We examined the ice dynamics for a range of prescribed mean ocean 
salinity values between 0 and 100 ppt and found that the mean ice thickness 
(Supplementary Fig. 6a) varies by a few hundred meters and the freezing 
temperature varies by several degrees Kelvin (Supplementary Fig. 6c), yet the ice 
flow (Supplementary Fig. 6b) is only slightly affected. This dependence on the 
salinity can be understood as follows. Higher salinity values linearly decrease the 
freezing temperature48 by 5.75 K per 100 ppt salinity change (following the freezing 
temperature equation discussed above). Thus, fresher ocean water leads to a larger 
temperature difference between the surface of Europa and the ocean, and thus to 
thicker ice. This difference in ice thickness also affects the freezing temperature 
due to the pressure effect. In any case, the sensitivity of the thickness to the 
salinity is not large (of about 30 m per 10 ppt). The ice thickness difference due to 
changes in the mean freezing temperature can be estimated by Δ​hI ≈​ κIρIcp,IΔ​T/Qg, 
which yields a ≈​56.5 m increase in ice thickness for an increase in the freezing 
temperature of 1 K.

Thus, the model’s variables are q, hI, To and So and they are solved using 
equations (7), (8), (12) and (13). These solutions are then used to evaluate the 
velocity and temperature as functions of latitude and depth in the ice, v(θ,z), T(θ,z).

Code availability. The code used for this work is posted on the authors’ websites 
http://www.bgu.ac.il/~ashkena/Europa-ice-flow/ (Y.A.) and http://www.seas.
harvard.edu/climate/eli/Downloads/ (E.T.).

Data availability. Data are available from the corresponding author on request.
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