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Dynamic Europa ocean shows transient Taylor
columns and convection driven by ice melting and
salinity
Yosef Ashkenazy 1✉ & Eli Tziperman 2

The deep (~100 km) ocean of Europa, Jupiter’s moon, covered by a thick icy shell, is one of

the most probable places in the solar system to find extraterrestrial life. Yet, its ocean

dynamics and its interaction with the ice cover have received little attention. Previous studies

suggested that Europa’s ocean is turbulent using a global model and taking into account non-

hydrostatic effects and the full Coriolis force. Here we add critical elements, including con-

sistent top and bottom heating boundary conditions and the effects of icy shell melting and

freezing on ocean salinity. We find weak stratification that is dominated by salinity variations.

The ocean exhibits strong transient convection, eddies, and zonal jets. Transient motions

organize in Taylor columns parallel to Europa’s axis of rotation, are static inside of the tangent

cylinder and propagate equatorward outside the cylinder. The meridional oceanic heat

transport is intense enough to result in a nearly uniform ice thickness, that is expected to be

observable in future missions.
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The possibility of life outside Earth has long-fascinated
humankind, and Europa, one of the four Galilean moons
of Jupiter, is often mentioned as a candidate1–3 due to its

deep (~100 km) ocean4–6 that underlies a thick icy shell (several
to tens of kms)4,5,7–9). Europa has a relatively young surface10,
indicating active ice shell tectonics5, and exhibiting chaotic ter-
rain patterns4,11. The existence of an ocean under the icy shell is
indicated by the observed induced magnetic field12, the indica-
tions of ice tectonics13 and perhaps also by water vapor plumes
over Europa’s mid-southern latitudes14,15.

Europa’s ocean dynamics have been studied using a variety of
models and mechanisms16–24. It has been suggested that localized
ocean convection plumes may underlie the observed surface
patterns of Europa16,17,22. On Earth, due to the very low oceanic
aspect ratio (depth over horizontal scale, ~10−3), only the vertical
component of the Coriolis force is relevant. However, the aspect
ratio of Europa’s ocean is much higher (~1/16), and thus the
horizontal components of the Coriolis force must be included and
have been suggested to result in convection plumes that are
parallel to the axis of rotation20,21,23,25. Scaling arguments were
used to suggest the existence of alternating zonal jets20, and tidal
forcing was proposed to lead to Rossby–Haurwitz waves and thus
to oceanic tidal dissipation19. Tides can also excite internal
waves26 and libration-driven elliptical instability can also drives
ocean motions27. Recent studies of Europa’s ocean23,25 used a
global model, taking into account elements such as non-
hydrostatic effects and the full Coriolis force, to study the
ocean dynamics, and reported a wide low-latitude eastward jet, a
high-latitude westward jet, and a rich eddy field. However, the
model was adopted from core convection applications and
therefore neglected salinity and ice freezing and melting effects
that are shown below to dominate those of temperature; it also
used upper and lower boundary conditions of prescribed
temperature.

Here we show that a more self-consistent formulation, of
prescribed bottom heat flux, and a top boundary condition that
represents the full interaction with the icy shell and the resulting
heat and fresh water fluxes, lead to a very different ocean tem-
perature distribution. Our resolution is higher than that used
previously by an order of magnitude, and the viscosity accord-
ingly lower, allowing interesting small scale features to appear.

Results
The model. We use a very high-resolution ocean General Cir-
culation Model (GCM), the MITgcm28,29 to investigate the ocean
dynamics of Europa, first in a 2d (latitude-depth) configuration,
and then in a near pole-to-pole 3d geometry. While the 2d
simulations lack several important physical processes, these
simulations provide invaluable insight into several critical ele-
ments that cannot be addressed in 3d, mostly due to computa-
tional cost. We include all components of the Coriolis force, and
use the full, non-hydrostatic dynamics. We use a prescribed heat
flux as a boundary condition at the bottom rather than pre-
scribing the temperature. This allows the temperature, and in
particular the vertical temperature gradient (stratification) to be
determined by the model. We follow the modern oceanographic
literature and use a three equation formulation30 (see subsection
“3-equation top boundary condition formulation”) of the inter-
action between the icy shell and the ocean temperature and
salinity fields, which takes into account the effects of freezing and
melting of the icy shell, and diffusion of heat through the ice, on
the temperature and salinity. The icy shell is assumed of uniform
thickness, an assumption that we show below to be self-consistent
with the calculated ocean meridional heat fluxes that were shown
previously31 to lead to a uniform ice thickness. Estimates of the

mean salinity of Europa’s ocean vary widely32, and we choose a
value that is close to the lower end of estimates, of 50 ppt (g/kg).
We later analyze the sensitivity to this choice.

2d Model results: stratification, salinity and Taylor columns.
The 2d (latitude-depth) simulations (Fig. 1) show that the bottom
geothermal heating results in a (potential) temperature at depth
that is higher than near the ice-ocean interface by a mere 0.01 °C
(Fig. 1a), suggesting that the ocean is well mixed. In addition,
note several interesting features. First, surprisingly, the coldest
water is at low latitudes, despite the much warmer low-latitude ice
surface temperature33,34, in contradiction to the findings of pre-
vious studies of Europa’s ocean23,25. This is explained below as an
effect of the Taylor columns. The ocean is stably stratified at high
latitudes and unstable at low latitudes (Fig. 1c), as opposed to the
globally unstable stratification imposed in the above mentioned
previous studies. Water density variations are dominated by
salinity variations, which dwarf the effects of temperature varia-
tions (βΔS/αΔT≫ 1, where α and β are the temperature and
salinity expansion coefficients). Previous studies suggest that the
salinity may in fact be even higher than assumed here32. In that
case, the salinity gradients due to melting and freezing are
expected to be even larger, as salinity rate of change is propor-
tional to the fresh water forcing times the mean salinity (e.g., in
the limit of a fresh ocean evaporation does not lead to salinity
changes). We therefore focus on the sensitivity of our results to
lower mean salinity values and show below that for a wide range
of parameters the idea that salinity dominates density variations
is robust (Supplementary Figs. 1–5). The zonal velocity (Fig. 2a,
d) is westward in the low-latitude upper ocean and eastward
elsewhere, with a typical velocity of a few cm per second. The
deep equatorial zonal velocity is positive (eastward), indicating a
superrotation, further discussed below.

Prominent arc-like structures appear in all fields (Figs. 1 and 2),
which reflect features parallel to the rotation axis when plotted in
spherical geometry (Fig. 2e). These are Taylor columns with ocean
velocity nearly independent of the direction parallel to the rotation
axis, and expected for an ocean with a nearly uniform density.
While these columns were previously anticipated based on scaling
arguments20, simulated and attributed to convection25, and seen
in simulations of magnetically-driven ocean circulation24, their
detailed dynamics, structure, role in setting the large-scale
temperature and salinity structure, and their spacing and
propagation have not been studied.

The velocity along the Taylor columns fluctuates as one moves
from Europa’s center outward, between being positive and
negative. Accordingly, the heat advection changes sign as well.
In the region inside of the tangent cylinder that is aligned with the
rotation axis and has the radius of Europa’s rocky core,
corresponding to latitudes less than about 20°21, the columns
intersect the ocean bottom and the ice base, and their along-
column motions effectively transfer the bottom geothermal heat
to the ocean surface. However, outside the tangent cylinder, there
is no such effective bottom-to-surface heat transport mechanism,
as the Taylor columns do not intersect Europa’s ocean bottom
there, and this results in the colder ocean surface in the equatorial
regime seen in Fig. 1a. This leads to freezing there, and thus to
brine rejection and to the higher salinity as seen in Fig. 1b.

We find that the spacing between the Taylor columns is less
than 20 km (0.75° latitude, Fig. 3a). In order to analyze the Taylor
columns, we project the model’s meridional v and vertical w
velocity components on the directions parallel and perpendicular
to the axis of rotation. The velocity parallel to the axis of rotation,
upar ¼ w sin ϕþ v cosϕ where ϕ is the latitude, shows clear
Taylor columns in which it is independent of the direction
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parallel to the axis of rotation (Fig. 2b, e), in accordance with the
Taylor–Proudman theorem. This parallel velocity is significantly
smaller than the zonal velocity (Fig. 2a, d) and significantly larger
than the velocity perpendicular to the axis of rotation in the
latitude-depth plane uper ¼ w cosϕ� v sin ϕ (Fig. 2c). In the
zonal momentum budget of the 2d model, the two Coriolis terms
dominate the others, so that the momentum balance is
2Ωw cos ϕ� 2Ωv sin ϕ � 0, where Ω is Europa’s rotation rate.
This leads to uper ≈ 0, explaining the observation that uper≪ upar.
The parallel and zonal velocities are symmetric with respect to the
equator, while the perpendicular velocity is anti-symmetric,
vanishing at the equator.

The distance between the Taylor columns can be estimated
using scaling arguments (see subsection “The spacing between the
Taylor columns”). In the zonal and meridional dominant
momentum balances, the sum of the two dominant Coriolis

terms is balanced by parameterized horizontal viscosity, and one
can form a length scale from the two relevant parameters, the
horizontal viscosity coefficient νh (m2 s−1) and the rotation rate Ω
(s−1), to find that the relevant length scale is C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νh sinðϕÞ=Ω

p
where C ≈ 14 is an empirical constant found from the numerical
results (Fig. 3a). The horizontal viscosity coefficient we used (50
m2 s−1) represents parameterized viscosity (see subsection “Eddy
coefficients, subgrid-scale representation”). Further verification of
the scaling for the distance between columns is obtained below in
the 3d runs, where the effective resolved eddy viscosity is found to
be larger (300 m2 s−1, see subsection “Estimating eddy coeffi-
cients”), and the column distance is indeed larger (Supplementary
Fig. 6). While this particular spacing is likely sensitive to model
assumptions, the qualitative dynamical insights obtained should
be valid. Additional simulations suggest that the distance between
the Taylor columns in the high latitudes scales like the square

Fig. 1 2d simulation results—tracers. Latitude-depth snapshot plots of a temperature (°C), b salinity (g kg−1), and c density (kg m−3). The dotted lines in
these panels shows the tangent cylinder.
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root of the ocean depth. The existence of Taylor columns in
Europa, and the corresponding zonal jet structure was predicted
by ref. 20 to be related to the Rhines scale, although our findings
regarding the spacing between the columns is different from the
Rhines scale scaling predicted in that work. These columns seem
to also appear in one of the simulations of25 that was
characterized by low viscosity, although no detailed analysis
was provided.

In absence of dissipation the Taylor columns were predicted to
be at a fixed latitude, as the potential vorticity (q= (2Ω+ ζ)/h,
where h is the column height, which depends on latitude) is
preserved20. Yet we find the columns to show prominent
equatorward propagation outside of the tangent cylinder (Fig. 3b,
c) whose mechanism would require further elucidation in future
work. No propagation is visible within the tangent cylinder
(Fig. 3b, c). We also note the oscillatory variations along the
maximum/minimum lines (Fig. 3b, c). While the discussion in
this subsection clearly explains the structure and spacing of the
(2d) Taylor columns, the necessarily-over simplified eddy
viscosity formulation used may affect the simulation. Below we
show, based on 3d simulations, that in fact the eddy
parameterized coefficient is much larger than the one used in
the 2d results, lending credibility to the 2d results.

3d Model results: eddies, convecting plumes. We next consider
a 3d simulation of Europa’s ocean at very high resolution (1/24 of
a degree, compared with ~1° of previous studies23). The model
spans 30° longitude and we assume periodic boundary conditions
in the zonal direction. The added 3rd, zonal, dimension allows for
waves and eddies to develop and enables us to examine the
interaction of eddies with the Taylor columns and convection
(Figs. 4 and 5). The Taylor columns now appear most promi-
nently in the simulated meridional and vertical velocity fields as
isolated columns with a width and separation of about 20–50 km
(Supplementary Figs. 7–11). The columns are again largely
aligned with the rotation axis20,25 as in the 2d model. At low
latitudes, high-salinity downward convection plumes originate
from the ice-ocean interface (Fig. 4b) due to brine-rejection
during the freezing process that was not included in previous
studies of Europa’s ocean (upper part of Fig. 4b and Supple-
mentary Videos 1 and 2). Upward plumes are seen in Fig. 4c to
originate from the ocean bottom due to the geothermal heating
there. These convective plumes are nearly perpendicular to the
Taylor columns near the equator, in contradiction to expectations
based on regional simulations20–22, and are also visibly advected
by the mean zonal flows. The orthogonality of the low-latitude
convection and Taylor columns suggests that these two classes of

Fig. 2 2d simulation results—velocity. Latitude-depth snapshot plots of a zonal velocity (cm s−1, dashed line shows the zero contour), b velocity parallel to
the axis of rotation, upar (cm s−1), and c velocity perpendicular to the axis of rotation, uper (cm s−1). The dotted lines in these panels shows the tangent
cylinder. d Zonal velocity at the top and bottom of the ocean (cm s−1) as a function of latitude. e The spherical presentation of the velocity parallel to the
axis of rotation upar (also shown in b), demonstrating Taylor columns that are parallel to the axis of rotation. The ocean depth extent is 100 km in all three
frames shown, where the latitudinal extent of the main (black) frame is 70°S–70°N, the low latitude (red) frame is 8°S–8°N, and the high latitude (blue)
frame is 61°N–70°N.
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Fig. 3 The dynamics and structure of the Taylor columns. a The distance (km) between the Taylor columns in the 2d simulation as a function of the
distance from the axis of rotation (km), based on a snapshot of the velocity parallel to the axis of rotation, upar at a depth of 13 km under the ice-ocean
interface. Full circles represent the numerically estimated distances while the solid line represents the functional fit, see text. b The velocity parallel to the
axis of rotation (cm s−1) as a function of latitude and time (Earth years) at a depth of 19 km under the ice. The figure shows the equatorward propagation of
the Taylor columns, where the slope of the shown dashed line corresponds to a propagation velocity of 0.18° per year. c Same as b, showing a region inside
the tangent cylinder (at depth of 49 km under the ice), where the Taylor columns are static.
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motion are distinct. Furthermore, the 2d sensitivity run shown in
Supplementary Figs. 1–5 with a vanishing mean salinity shows a
regime that is completely stratified with no convection occurring
anywhere, yet with Taylor columns prominent in the zonal and
meridional velocity components. The energy source for the
Taylor columns, and in particular what is the specific instability
mechanism involved, requires further study.

The temperature field is clearly turbulent, showing richly
complex eddy filaments (Fig. 4a, see Supplementary Video 1).
The above relation between viscosity and Taylor column spacing,
together with the fact that the Taylor column spacing is larger in
the 3d simulation, suggests that the effective eddy viscosity due to
resolved eddies is about 15 times larger than the small explicit
parameterized viscosity used in the 3d runs for numerical stability,
following common ocean modeling practice. This is consistent
with an explicit estimate of the eddy coefficients calculated from
the 3d runs (Supplementary Fig. 12). As a result of the eddies and
convection plumes, the Taylor columns are less persistent along
the direction parallel to the rotation axis than in the 2d simulations
(Figs. 4 and 5 and Supplementary Figs. 7–11). The existence of
waves and eddies in the 3d simulation also affects mean flows. The
zonal velocity is typically several cm s−1 (Fig. 5b), 1–2 orders of
magnitude smaller than the previously reported velocities23,25;
thus, our estimate for Europa’s ocean kinetic energy (see below) is
several orders magnitude smaller than that of these previous
studies. Note in particular differences in the vertical structure of
the zonal jets along the equator, between the 2d (Fig. 2a, d) and 3d
(Fig. 5b) simulations; see also Supplementary Fig. 13. The 2d zonal
flow shows superrotation only at depth, while the 3d ones shows it
at all depths. The 2d vertical shear with superrotation at depth and
a retrograde surface current is likely supported by an eddy flux of
zonal momentum toward the rotation axis. The 3d superrotation

can be driven by Rossby waves that are possible in this
configuration. Moreover, the increasing 2d equatorial zonal
velocity with depth is consistent with the thermal-wind relation
(i.e., uz ¼ g

2Ωaρ0 sinðϕÞ ρϕ). In the 3d case, we find an additional term

that cannot be neglected (i.e., a sinðϕÞuz þ ðcosðϕÞuÞϕ ¼ g
2Ωρ0

ρϕ),

explaining the different vertical structure of the zonal velocity u.
The zonal domain of the model spans only 30° for computational
efficiency. However, because the typical size of eddies in the 3d
simulation is much smaller than the zonal extent, we expect the
eddy dynamics to be similar had we considered a fuller zonal
extent of 360°.

While the stratification is very weak and the ocean well-mixed
(Fig. 1a–c), as in the 2d case, the extent of unstable water column
with heavy water above light water is more limited in the 3d case
(compare Figs. 1a–c, 4c and 5a). This is because the eddies in the
3d simulation strengthen the stratification, by converting potential
energy into kinetic energy, as was suggested to be the case for
Earth’s snowball ocean35,36. The characteristic time of convection
may be estimated via the buoyancy frequency, N2=−g/ρ0∂ρ/
∂z ≈ (g/H)(Δρ/ρ0) where negative/positive N2 indicates statically
unstable/stable water column. We find typical buoyancy and
convection time scales, corresponding to positive and negative
values of the buoyancy frequency, with corresponding time scales
2π/∣N∣ that both exceed 50 days. The positive values represent time
scales of internal waves in Europa’s ocean and are much larger
than the corresponding time scales on Earth, and in fact represent
an interesting regime where the Coriolis time scale is shorter than
that of buoyancy oscillations. For negative values, the time scales
are again much longer than those on Earth, and are consistent
with the evolution times seen in the Supplementary Video chat 2
and with previous higher resolution regional runs22.

Fig. 4 Results of the 3d simulation—temperature. a Surface ocean temperature (°C) as a function of longitude and latitude for a 10 × 10° region, showing
a highly turbulent flow. b, c Depth-longitude temperature (°C) sections near the top and bottom of the ocean at the equator, showing downward and
upward convection plumes. At the equator, the local vertical (depth) direction is perpendicular to the Taylor columns, and the panels therefore
demonstrate that convection does not necessarily occur along the Taylor columns. d Latitude-depth plots of zonal mean temperature (°C).
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References 20,37 suggested the possibility of double diffusion in
Europa’s ocean. We find in the low latitudes in the 3d model and
in the high latitudes of the 2d model, warm salty water under a
surface layer of 1–2 grid points that is cold and fresh, and where
the stratification is stable. While this is a scenario that can, in
principle, lead to double diffusion and therefore to an enhanced
vertical mixing, the surface layer is hardly resolved numerically
and our results therefore do not seem to provide definite evidence
for or against the idea that double diffusion may play a role in
Europa’s ocean.

One can get further insight into the eddy field from an
energetic point of view. The oceanic available potential energy
(APE) is the potential energy that may be converted into kinetic
energy (KE). The ratio between the APE and the KE provides a
measure of the efficiency of kinetic energy extraction from the
stratification, and an indication of the source of eddy kinetic
energy. For present-day Earth, the ratio between the APE and the
KE ocean is over 33,00038. Europa’s APE calculated following39 is
2.3 × 1018 J for our 3d model domain, only 190 times larger than
the KE, a factor similar to that of the Snowball Earth ocean, where
APE/KE was estimated at about 30036. While the estimate of38

may be sensitive to the mean vertical density gradient used, we
use the method of ref. 39 because it does not depend on this
gradient and is more appropriate for a very weakly stratified
ocean. The ratio being much smaller in these Europa simulations
is therefore a robust result. On Earth, macro-turbulence in the
ocean and atmosphere is generated mostly by the drawing down
of APE via baroclinic instability. Our results suggest that in
Europa’s ocean, convective plumes and barotropic instability of
the zonal jets play a more prominent role in the generation of
ocean macro-turbulence relative to baroclinic instability.

A previous study of the dynamics of the icy shell31 showed that
an efficient meridional ocean heat transport can lead to a uniform
shell thickness. The geothermal heat flux entering the ocean from
below is larger than the heat escaping through the ice in the
tropics and smaller at high latitudes, due to the meridional ice
surface temperature gradient33,34. This would lead to melting at
low latitudes and freezing at high latitudes, leading to ice
thickness gradients balanced by ice flow31. However, an efficient
poleward ocean heat transport can carry the excess heat
meridionally, and thus overcome the tendency toward meridional
ice thickness gradients, and result in almost uniform ice thickness
(Fig. 6b). The meridional heat transports of the 2d and 3d ocean
simulations are shown by the solid lines in Fig. 6 to be poleward,
and have maximum values of about 0.5 × 1011W and
1.5 × 1011W, correspondingly. These estimates of the meridional
heat fluxes in a full ocean model are at least four times larger than
the heat transport estimated by ref. 31, because they include the
contribution due to latent heat of freezing at the equator and
melting at the poles, not included in previous studies.

The meridional heat flux without the latent heat contribution is
shown by the green solid curve. This heat flux is determined, as
explained above, by the geothermal and surface heat fluxes
calculated for the assumed uniform thickness ice shell. The ocean
has no difficulty transporting this heat flux in a way that is
consistent with the uniform ice shell assumption. An ocean
without an efficient meridional heat flux mechanism would have
been heated in the tropics and cooled in the high latitude, not
being able to reach a steady state. We conclude that the efficient
ocean heat transport in our simulation is self-consistent with the
assumption of a uniform ice thickness, justifying the use of a
uniform thickness icy shell in this study. That the 3d meridional
heat flux is somewhat larger than the 2d flux is a direct result of

Fig. 5 Results of the 3d simulation—salinity, zonal velocity, and vorticity.
a, b Latitude-depth plots of zonal mean salinity (g/kg) and zonal velocity
(cm s−1). c Vorticity (s−1) and velocity field (arrows) at the ocean surface,
as a function of longitude and latitude, demonstrating the rotational fluid
velocity around the Taylor columns.
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the larger latent heat due to freezing in the low latitudes in the 3d
case. The difference between the two model configurations is not
large, and is within the uncertainty of the internal ocean
variability, as estimated for example via the difference between
the two hemispheres in the 3d case. Spatial variations in tidal
heating within the ice may still cause a range of surface heat fluxes
and therefore ice thickness variations33,40, if the ice is sufficiently
thick (thicker than chosen here based on ref. 41) to allow
convection.

Discussion
The 2d and 3d high resolution simulations of Europa’s ocean
analyzed here show a number of surprising results. While both
the temperature and salinity are nearly uniform, salinity gra-
dients, not considered previously, dominate the gradients in
ocean water density, and the heaviest water (cold and saline) is
found, as a result, at low latitudes. We showed this to be a result
of the lack of direct communication along Taylor columns
between the ocean bottom and surface in the area outside of the
tangent cylinder. Taylor columns that are parallel to the axis of
rotation are prevalent and show two regimes21, the low latitudes
(outside of the tangent cylinder, equatorward of ~20°) at which
the Taylor columns do not intersect the ocean bottom and extend
from one hemisphere to the other, and higher latitudes at which
they intersect the ocean bottom. The Taylor columns, which were
previously expected not to propagate in latitude due to potential
vorticity conservation, and not to occupy the low-latitude
regime20, exhibit meridional propagation due to frictional
effects and occupy the entire ocean. Their spacing was explained
above in terms of the rotation rate and viscosity. The 3d simu-
lation shows a rich turbulent eddy flow, as well as convective
plumes due to freezing and brine rejection near the ice-ocean
interface, and due to geothermal heating from below. The con-
vection plumes are perpendicular to the Taylor columns at low
latitudes. We found superrotation at the equator, attributed it to
eddy fluxes of zonal momentum and thermal wind balance, and
attempted to explain the reasons for the difference in its structure
between the 2d and 3d simulations. The meridional heat flux
deduced here is much larger than previously estimated31, due to
the contribution of the latent heat of freezing that was not con-
sidered in previous studies. The ratio between the APE and the
KE is significantly smaller than on present-day Earth, yet similar
to that estimated for the Snowball Earth ocean35,36,42.

A few recently submitted manuscripts investigate com-
plementary aspects of the role of salinity in icy satellites to those

discussed here, although they do not deal with the eddy motions
and Taylor columns analyzed here. Reference43 examines the
effect of ocean salinity on ice thickness and meridional ocean
circulation. Reference44 examines the effects of low vs. high
salinity on the circulation and stratification of Enceladus via the
suppression of the water density anomaly by ocean salinity (see
also our sensitivity experiments, Supplementary Figs. 1–5).
Reference45 finds meridional overturning circulation and shallow
freshwater polar lenses in Enceladus simulations.

Several of our above predictions may be verified in future
missions to Europa, such as the Europa Clipper of NASA46,47 or
JUICE of ESA48. These include the uniform icy shell thickness
due to the efficient meridional heat transport of Europa’s ocean
predicted in our simulations. The small meridionally variations of
salinity predicted here may similarly be observable in future
missions as well through its magnetic signal49 although this may
be challenging. In addition to these observable predictions, the
eddy diffusivity and viscosity coefficients—estimated here from
an eddy-resolving simulation of Europa’s ocean—should help in
estimating ocean heat generation due to tides41. Similarly, the
weak or even weakly unstable stratification suggests that internal
wave breaking may not be a significant factor in tidal dissipation,
consistent with previous estimates41. The libration of the icy shell
may be influenced by ocean eddies and ocean currents and this
may serve as a way of indirectly observing ocean dynamics.
Finally, the study of Europa’s ocean may help to better under-
stand the ocean and ice dynamics of other icy moons/planets in
the solar system and beyond.

Methods
Model description and configuration. To investigate the dynamics of Europa’s
ocean, we used the state-of-the-art Massachusetts Institute of Technology ocean
GCM (MITgcm28,29). This model configuration used here employs the fully-
nonlinear momentum equations for the ocean in height (z)-spherical coordinates,
including the curvature terms, with a free surface. We use the non-hydrostatic
option (rather than the more commonly used primitive equations which replace
the vertical momentum equation with the hydrostatic approximation). The model
simulates temperature and salinity using advection-diffusion equations, and uses a
fully nonlinear equation of state relating them to the density field. The non-
hydrostatic version of the MITgcm permits the use of the full Coriolis force,
including the terms proportional to 2Ω cos ϕ that are often neglected when the
aspect ratio (depth over horizontal scale) is small. Europa’s aspect ratio is relatively
large, and this option is therefore very important for Europa’s ocean, as was
anticipated by20.

The MITgcm was also used to study diverse oceanic phenomena, as well as the
dynamics of other planets and moons, including Jupiter50,51, Pluto52,53, local
convection on Europa22, Triton53, and hot Jupiter planets54,55. The model was used
in the past to investigate the Snowball Earth events35,36,42,56, which share many
similarities with Europa’s ice-covered ocean.

Fig. 6 Meridional ocean heat transport and implications for ice thickness. a The oceanic meridional heat transport calculated using the 2d and 3d ocean
simulations in this work (solid lines). The heat transport is positive northward, so that the heat transport is poleward in both hemispheres. The green solid
line shows the meridional transport calculated from the difference between the geothermal heat flux and the diffusive heat flux through the ice (text). Also
shown (thin dash lines) are estimates of ocean heat transport using the slab ocean model of ref. 31, coupled to an ice flow model, for two oceanic eddy
mixing values, κ= 1, 0.1 m2 s−1. b Ice thickness (km) associated with the heat transport curves shown in a (dashed lines) showing almost uniform ice
thickness even for relatively small eddy mixing coefficient of κ= 1 m2 s−1.
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2d and 3d configurations. We used two configurations, 2d and 3d, correspond-
ingly. Both configurations extend almost globally in the meridional direction (70°S
to 70°N). The depth of the ocean is set to 100 km. The lateral resolution of the 2d
configuration is 1/12 of a degree (about 2.3 km in the meridional direction) and we
use 50 vertical levels with a 2 km uniform resolution. The 3d simulation spans 30°
in the zonal direction with 1/24 of a degree resolution, using 100 vertical levels with
varying vertical resolution, ranging from 25 m at the top of the ocean to 1164 m at
the bottom. These horizontal and vertical 3d resolutions were found sufficient to
resolve ocean eddy dynamics and convection processes. No-slip boundary condi-
tions were assigned at the bottom and top (interface with the ice) of the ocean. The
integration time steps were 7200 s and 400 s for the 2d and 3d configurations,
respectively. Both simulations were ran for a sufficiently long time until statistical
steady state was achieved.

Eddy coefficients, subgrid-scale representation. The model uses explicit eddy
diffusion and viscosity coefficients that represent subgrid-scale mixing processes
not resolved by the simulation. These are different from the eddy coefficients
calculated below (Supplementary Fig. 12) which quantify the resolved eddy
motions. The vertical explicit eddy viscosity and diffusion coefficients were set to
10−3 and 10−4 m2 s−1, respectively. The horizontal explicit eddy viscosity and
tracer (thermal and haline) diffusion coefficients representing subgrid scale tur-
bulent mixing are set to 50 and 5 m2 s−1, respectively, for the 2d configuration and
20 and 2 m2 s−1 respectively for the 3d configuration. The viscosity and diffusion
coefficients are much larger than the molecular ones and are chosen to guarantee
numerical stability. The eddy viscosity and diffusivity have different values, again a
common practice in ocean modeling that is meant to allow using the smallest
coefficients that lead to numerically stable results. The horizontal explicit eddy
mixing coefficients are larger than the vertical ones, reflecting the different time
scale of the subgrid scale turbulence represented by each.

These turbulent eddy coefficients can be formulated to be a function of the
larger scale stratification and shear, as represented in present-day ocean model by
the KPP parameterization, for example57. However, Europa’s ocean is too different
from Earth’s to allow us to use such a parameterization, and we therefore set these
coefficients to constant values. In addition, our non-hydrostatic simulations resolve
the vertical convection plumes explicitly, even if marginally. We also do not use the
Gent-McWilliams58 eddy parameterization that is commonly used in Earth’s ocean
simulations, because the large-slope isopycnals that develop in the simulations
violate the assumptions used to derive this parameterization.

Ice shell and bottom boundary condition. Europa’s icy shell is represented using
the MITgcm shelf-ice package29,30 that enables the calculation of the ocean-ice
freshwater and heat fluxes based on the surface ice temperature, ice thickness, and
ocean temperature and salinity30. The forcing ice surface temperature was taken
from ref. 34. Ice flow and dynamical ice thickness are not included in the shelf-ice
package, but, as demonstrated above based on ref. 31, the ice thickness can be
assumed uniform due to the efficient meridional heat flux of the ocean (Fig. 6). A
geothermal heating rate of 0.0496 W m−2 is specified at the ocean bottom; the
exact bottom heating is not known (estimated to be between 5–200 mW m−2) and
we use an intermediate estimate8,41,59 and performed sensitivity experiments to
this value as shown in Supplementary Figs. 1–5. The internal heating leading to the
geothermal heat flux is due to several sources: radiogenic heating of the metallic
core and silicate mantle estimated at about 6–8 mWm−260, and tidal heating of
Europa’s core59. Tidal heating of the icy shell is not included explicitly, and tidal
heating dissipation in the ocean is believed to be negligible41.

3-equation top boundary condition formulation. We use the 3 equations-
formulation of29,30 to calculate the freshwater and heat fluxes between the ice shell
and the ocean. The formulation represents an unresolved boundary layer just
under the ice where these exchanges occur. According to these equations, the heat
balance of the boundary layer is,

cpργTðT � T f Þ þ Lq ¼ ρIcp;Iκ
T f � Ts

h
; ð1Þ

where the cp, cp,I are the specific heat and water and ice, ρ, ρI are the density of ice
and ocean, γT is the turbulent exchange coefficient of temperature, T, Ts is the top
of the ocean and surface of the ice temperatures, κ is the diffusion constant through
the ice, h is the thickness of the ice, and L the latent heat constant of fusion. The
freezing temperature, Tf, depends both on the pressure at the bottom of the ice
(which is uniform in our case as the ice thickness is uniform) and on the boundary
layer salinity, Sb, which is not uniform and calculated as part of the solution to the
3-equation model. As a result, even when the ice thickness and the freezing tem-
perature are constant (or almost constant), the heat flux into the ice which appears
in these equations as the above ρIcp;Iκ

Ts�T f
h term, is not uniform in latitude as the

temperature of the ice surface, Ts, strongly varies by tens of degrees with latitude.
The upper boundary conditions for the temperature and salinity, that are

behind the three-equation model used there, are essentially flux boundary
conditions that take into account the effects of melting/freezing on both the salt
concentration and heat fluxes due to freezing/melting and heat diffusion through

the ice. The bottom boundary condition is again a flux boundary condition for
both, specifying the geothermal heat flux and a no diffusive bottom flux for salt.

Differences in modeling strategy from previous studies of Europa’s ocean.
Previous pioneering studies modeling Europa’s ocean23,25 were based on the
MagIC model used for core magnetohydrodynamics applications61, and is there-
fore different from the currently used ocean model which has been developed to
study ocean dynamics in particular. Among the differences: the MagIC model is
pseudo spectral, while the MITgcm used here is finite volume, they use isotropic
viscosity/diffusivity, while modern ocean studies use non-isotropic coefficients
(different in the vertical and horizontal directions in spherical coordinates,
representing different expected efficiency of mixing in the two directions). As
mentioned in the paper body, the top and bottom boundary conditions are of
prescribed temperature in the above studies, while we use a more self-consistent
formulation involved a flux condition at the bottom and a 3-equation model at the
bottom of the ice shelf. We explicitly represent the ice shelf, its melting, freezing
and heat conduction—all of which were ignored previously. These previous studies
ignored salinity effects which are included here, and these salinity effects are found
to dominate the density distribution as explained in the article. The previous
studies used a linear equation of state relating the density to the temperature, while
we use a full-complexity nonlinear equation of state relating density to tempera-
ture, salinity and pressure62. Finally, our resolution in both 2d and 3d is sig-
nificantly higher than previously used.

Sensitivity to mean salinity, bottom heating, and ice thickness. Estimates of
Europa’s ocean salinity vary widely, from the ocean being nearly fresh to highly
saline63. Importantly, the magnetometer on the Europa Clipper may be able to
estimate the mean ocean salinity46,47. The mean salinity affects the freezing tem-
perature of ice and the ocean dynamics, as density variations are found in this work
to be driven mostly by salinity gradients rather than temperature gradients. We
have used a moderate salinity value of 50 g/kg (ppt) as our default value. Given the
uncertainty in this mean salinity value, we summarize in Supplementary Figs. 1–5 a
set of 2d sensitivity tests that include mean salinity of 10−6 ppt, 5 ppt, 10 ppt, and
25 ppt. We also test the sensitivity of our results to the ice thickness, noting that the
ice thickness should be in equilibrium with the geothermal bottom heat flux: as the
thickness is changed, the diffusive heat flux through the ice changes, and a steady
state requires the globally integrated heat flux through the ice to be equal to the
integrated bottom heat flux. We used ice thickness values of 5 km (which is in
equilibrium with an ocean bottom heat flux of 100 mWm−2) and 15 km (corre-
sponding to ocean bottom heat flux of 33 mWm−2).

In all the simulations, we find that the coldest water is in the upper ocean,
outside the tangent cylinder, as in our default simulation analyzed in the paper
itself (Supplementary Figs. 1–5). The salinity is maximal outside the tangent
cylinder (around the equator), except for the freshwater case (Supplementary Fig.
2a). The density is maximal outside the tangent cylinder for all simulation except
the two lowest mean salinities (Supplementary Fig. 3a, b) for which the anomaly of
sea water leads to denser water at the bottom due to the bottom heating there. The
top to bottom temperature difference is robustly at around 0.01 °C, even when the
bottom heat flux is changed from our default value. In all simulations the flow is
westward except the bottom equatorial region for which superrotation is observed
as discussed in the paper. The Taylor columns structure is clearly visible in the
meridional velocity and is similar in all simulations, consistent with the results
presented in the main text. Moreover, the structure of the temperature, salinity, and
density fields is similar to the structure of those presented in the main text (Fig. 1).
We conclude that the sensitivity simulations indicate the robustness of the results
of the default experiment analyzed in the paper.

The dominant ocean momentum balance. In order to explore the momentum
balance of Europa’s ocean, we use the output of the model that uses the full set of
equations as explained above, but consider only those terms that are not negligible.
We therefore consider the following equations, assuming zonal symmetry, and
neglecting the small curvature terms. The momentum equations are then

ut þ
1
a
vuϕ þ wuz � 2Ω sinðϕÞv þ 2Ω cosðϕÞw ¼ νh

a2 cosðϕÞ ðcosðϕÞuϕÞϕ þ νvuzz

vt þ
1
a
vvϕ þ wvz þ 2Ω sinðϕÞu ¼ � 1

aρ0
pϕ þ

νh
a2 cosðϕÞ ðcosðϕÞvϕÞϕ þ νvvzz

wt þ
1
a
vwϕ þ wwz � 2Ω cosðϕÞu ¼ � 1

ρ0
pnhz þ

νh
a2 cosðϕÞ ðcosðϕÞwϕÞϕ þ νvwzz

phdz ¼ �gρ

p ¼ phd þ pnh;

ð2Þ

where ϕ, z, t indicate the latitude, depth, and time, u, v, w are the zonal, meridional,
and vertical velocities, phd,nh is the hydrostatic/nonhydrostatic pressure, ρ is the
density, a is the radius of Europa, Ω is the rotation frequency, νh;v are horizontal
and vertical viscosity coefficients, and g is the gravity acceleration. The continuity
equation assuming again zonal symmetry is,

1
a cosðϕÞ ðv cosðϕÞÞϕ þ wz ¼ 0: ð3Þ
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The different terms in the momentum and continuity equations are shown in
Supplementary Figs. 14–16. The Coriolis terms dominate the zonal horizontal
momentum equation, followed by the horizontal viscosity term. In the meridional
momentum equation, the balance is geostrophic: the horizontal Coriolis term
balances the pressure gradient term, and the horizontal viscosity term is smaller yet
not completely negligible.

While the model simulations shown in this work use a fully nonlinear equation
of state62 relating density to temperature, salinity and pressure, we note that a
linearized equation can be written as ρ= ρ0(1− α(T− T0)+ β(S− S0)) where α, β
are the expansion coefficients mentioned in the main text. Because the temperature
and salinity variations are very small, this linearized approximation is very
accurate.

We now wish to explain the meridional symmetry of the velocity parallel to the
axis of rotation, and the meridional anti-symmetry of the velocity perpendicular to
the axis of rotation, as seen in Fig. 1b, c. The dominant terms in the zonal
momentum equation are the Coriolis terms (Supplementary Fig. 15a, b) and the
balance between them yields,

w cosðϕÞ � v sinðϕÞ: ð4Þ
This is more easily understood by writing the geostrophic approximation in
cylindrical coordinates,

2Ωvr � � 1
rρ

∂p
∂θ

; ð5Þ

where now vr is the velocity perpendicular to the axis of rotation, written in terms
of the spherical coordinate velocity field as vr ¼ w cos ϕ� v sin ϕ and θ is the
longitude. The 2d model configuration assumes zonal symmetry (no variations in
θ), so that the last equation implies vr ≈ 0, exactly equivalent to (4) in spherical
coordinates.

The simple relation (4), written as w � v tanðϕÞ, does not depend on any
parameters and reflects the symmetry properties of v, w: The symmetry of w is
opposite of the symmetry of v since tanðϕÞ is anti-symmetric about the equator.
Finally, the velocity parallel to the axis of rotation can be expressed in terms of the
meridional and vertical velocities v, w as vz ¼ w sinϕþ v cos ϕ and since
w cos ϕ � v sin ϕ, vz ¼ v=cos ϕ, implying that vz is symmetric as v.

The spacing between the Taylor columns. Based on Supplementary Figs. 14–16,
the dominant terms in the zonal and meridional momentum equations near the
top of the ocean, where we find viscosity to be non-negligible (2) are,

�2Ω sinðϕÞv ¼ νh
a2 cosðϕÞ ðcosðϕÞuϕÞϕ

2Ω sinðϕÞu ¼ � 1
aρ0

pϕ þ νh
a2 cosðϕÞ ðcosðϕÞvϕÞϕ

: ð6Þ

The term 2Ω cosðϕÞw in the first equation is small in the upper 10 km or so of the
ocean due to the no-normal flow conditions (Supplementary Fig. 15b). The visc-
osity term is generally smaller than the Coriolis term, especially in the interior
(Supplementary Fig. 16a, b) in which geostrophy holds, 2Ω sinðϕÞ�u ¼ � 1

aρ0
pϕ ,

where �u denotes the geostrophic zonal velocity. Then, the meridional momen-
tum of Eqs. (6) can be written as,

2Ω sinðϕÞðu� �uÞ ¼ νh
a2 cosðϕÞ ðcosðϕÞvϕÞϕ: ð7Þ

Assuming that the meridional gradient of the geostrophic term is small, we can
approximate uϕ � ðu� �uÞϕ . This heuristic argument is supported by the smoother
interior structure of the zonal velocity seen in Fig. 2a. Eq. (6) can now be written as,

�2Ω sinðϕÞv ¼ νh
a2 cosðϕÞ ðcosðϕÞ~uϕÞϕ

2Ω sinðϕÞ~u ¼ νh
a2 cosðϕÞ ðcosðϕÞvϕÞϕ;

ð8Þ

where ~u ¼ u� �u. Using a complex variable α ¼ ~uþ iv the above equations can be
written in terms of a single differential equation that holds near the top of the
ocean where viscosity is non-negligible,

i2Ω sinðϕÞα ¼ νh
a2 cosðϕÞ ðcosðϕÞαϕÞϕ � νh

a2
αϕϕ; ð9Þ

or

αϕϕ � ik2ϕα ¼ 0; k2ϕ ¼ 2Ωa2

νh
sinðϕÞ: ð10Þ

Given that the wave number k2ϕ is a slowly varying function of latitude (relative to
the meridional scale of the Taylor columns), it can now be used to estimate the
spacing between the Taylor columns. The corresponding wavelength in spherical
coordinates is λ= 2π/kϕ. The distance of a given point, at a latitude ϕ, along the
ocean surface from the axis of rotation is given by a cos ϕ. The distance between
two adjacent columns in the direction perpendicular to the axis of rotation, is
therefore,

dðϕÞ ¼ a½cosðϕ� λ=2Þ � cosðϕþ λ=2Þ� ¼ 2a sinðϕÞ sinðλ=2Þ � aλ sinðϕÞ: ð11Þ

Or, more explicitly

dðϕÞ ¼
ffiffiffi
2

p
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
νh
Ω

sinðϕÞ
r

: ð12Þ

This approximation reproduces the functional behavior shown in Fig. 3a, although
a factor that seems to be about π is missing to be consistent with the numerical fit
to the simulated distances. The above arguments are admittedly heuristic at best,
yet suggest that eddy viscosity may indeed be at the heart of the process that sets
the Taylor column spacing.

Following ref. 20, we considered explaining the spacing between the Taylor
columns through the Rhines scale, Lρ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2U=β

p
. However, this scale does not seem

to match the simulated spacing (more clearly shown by upar, uper, Fig. 2b, c, e). At the
equator β= 2.6 × 10−11 m−1 s−1 and for a typical velocity of U ~ 0.02 m s−1 the
Rhines scale is Lρ ≈ 40 km, larger than the Taylor column spacing at the equator
(between 10 and 20 km). For larger latitudes the Rhines scale becomes larger due to
the division by β which is proportional to the cosine of latitude. In contrast, the
spacing we observe seems proportional to

ffiffiffiffiffiffiffiffiffi
sinϕ

p
(ϕ is the latitude, Fig. 3), consistent

with our revised explanation, and not to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= cosϕ

p
as predicted by the Rhines scale.

The scaling of ref. 64 (their equation 23, based on their equation 22) in the case
of rotating planet relates the Taylor column height (D) to its horizontal scale (L) as

L=D � νh
2ΩD2

� �1=3
so that L � Dνh

2Ω

� �1=3
. One can see that this cannot apply in our

case for two reasons. First, there is a jump by a factor of two in the Taylor column
height in our case across the tangent cylinder, but no jump is seen in the Taylor
column spacing. Second, the Taylor column height in our Europa simulations first
increases with latitude from the equator to the tangent cylinder and then decreases
with latitude for higher latitudes. Their scaling would predict that the horizontal
scale is therefore not monotonous in latitude (i.e., the spacing between the Taylor
columns increases from the equator towards the tangent cylinder and then
decreases towards the higher latitudes), in contrast to our numerical findings
(Fig. 3) and to our own scaling arguments (given above) of monotonically
increasing Taylor spacing from the equator towards the high latitudes.

Estimating eddy coefficients. We estimate an horizontal eddy mixing coefficient,
κh, that effectively represents the effects of ocean macro-turbulence, using time
series of the zonal velocity at multiple grid points65,66. We use the auto-correlation
function, R(τ), and the variance of the zonal velocity temporal anomaly as follows:
κh ¼ u02L

R1
0 RðτÞdτ, where uL is the Lagrangian zonal velocity, the overbar indi-

cates mean over time while the prime indicates the temporal anomaly around this
mean. When using the Eulerian velocity field, it is necessary to multiply κh by a
constant γ which we choose to be γ= 436,66. The estimated eddy parameterized
viscosity coefficient is larger or equal to the estimated diffusion coefficient36,66.

We find that the estimated diffusion coefficient depends on latitude, where for
latitudes larger than 40° the diffusion coefficient is smaller than 40 m2 s−1 while of
latitudes smaller than 40° it can reach a value larger than 1000 m2 s−1, depending
on the latitude. The diffusion coefficient is also larger near the ocean bottom. We
also estimated the diffusion/viscosity coefficient using an alternative approach
based on the deviations of the zonal velocity from the zonal mean, and by
estimating a characteristic length scale through the auto-correlation function in the
zonal direction and multiplying it by the (zonal) standard deviation of the zonal
velocity. We find diffusion/viscosity coefficients that are fairly similar to those
found in the first method, of about 300 m2 s−1, again stronger at latitudes smaller
than 40° and largest near the ocean bottom. Thus, following the above, a rough
lower bound for the global mean eddy mixing coefficient is about 200 m2 s−1. Since
the viscosity coefficient is usually larger than the diffusion coefficient, the above
estimate for the viscosity coefficient of 300 m2 s−1 seems reasonable.

Surprisingly, these values are only an order of magnitude smaller than those
estimated for Earth’s ocean (e.g., ~1000–5000 m2 s−1 in the tropical ocean67) and
of the same order as estimated for an Earth Snowball ocean36, indicating that in
spite of the lack of wind forcing and a direct solar forcing of the ocean, ocean
eddies can develop from internal instabilities and are playing a dominant role in
Europa’s ocean dynamics and heat transport.

Scaling estimates of the role of rotation in convection dynamics. Previous
studies68 have suggested based on scaling arguments that rotation should affect the
convection regime and therefore the top-to-bottom temperature difference. These
scaling arguments assume a single component fluid (i.e., only temperature affecting
the density), yet in our simulations the density variations are dominated by the
salinity, while the temperature is close to the freezing temperature and therefore
has only a small effect on the density. While the standard scaling is therefore not
applicable in our case, we still calculate the modified and conventional non-
dimensional Rayleigh and Nusselt numbers based on the coefficients used in our
Europa simulations and find that the conventional nondimensional numbers are
much larger (by orders of magnitudes) than the modified numbers, indicating that
rotation is not expected to play a role in the convection process. Specifically, the
Prandtle number is, Pr= νv/κv (νv is the vertical viscosity coefficient and κv is the
vertical diffusion coefficient). The Ekman number is E= νv/(ΩD2) (Ω is the
rotation frequency and D icy shell thickness). The thermal Ekman number is
Ek= κv/(ΩD2)= E/Pr. The modified Rayleigh number in the presence of rotation
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is Ra*= (αΔTg)/(Ω2D), while the conventional Rayleigh number is Ra= Ra*/
(Ek E). Similarly, the conventional Nusselt number is Nu= qD/(ρcpκvΔT) where q
is the heat flux, while the modified Nusselt number in the presence of rotation is
Nu*= (Nu− 1)Ek. Calculating these nondimensional numbers for values corre-
sponding to our Europa simulations, we find, Ω= 2 × 10−5 s−1, κv= 1 × 10−4 m2 s−1,
νv= 1 × 10−3 m2 s−1, D= 105 m, Pr= 10, g= 1.314 m s−2, q= 0.05 Wm−2,
αΔT=Δρ/ρ= 2 × 10−6, E= 5 × 10−9, Ek= 5 × 10−10, Ra*= (2 × 10−6)/
(4 × 10−10 × 105)= 0.05, Ra= 0.05/(5 × 10−10 × 5 × 10−9)= 2 × 1016, Nu= 0.05 × 105/
(103 × 4 × 103 × 10−4 × 0.01)= 1250, Nu*= (Nu− 1)Ek= 6 × 10−7. Thus, the con-
ventional Rayleigh and Nusselt numbers are much larger than the modified ones,
indicating that the rotation is not expected to play a major role in the convection
process. It is possible to define a Nusselt number that depends on density variations and
not temperature. It is Nu= q/(gκvΔρ), which yields Nu= 0.05/
(10−4 × 2 × 10−4)= 2.5 × 106, so that again the rotation is not expected to be a major
factor, even when taking salinity changes into account.

Data availability
The datasets generated during and/or analysed during the current study are available
from the corresponding author on reasonable request. The model’s setup files are
available in the OSF repository, http://OSF.IO/SVXBQ, https://doi.org/10.17605/OSF.IO/
SVXBQ.

Code availability
The reported results were generated using the MITgcm code which can be downloaded
from https://github.com/MITgcm/MITgcm or https://doi.org/10.5281/zenodo.1409237.
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Supplementary Figures

Supplementary Figure 1: Sensitivity tests–temperature. 2d latitude-depth snapshots of temper-

ature, T , for mean salinity of a 10−6 ppt, b 5 ppt, c 10 ppt, d 25 ppt, and ice thickness of e 5 km

(corresponding to ocean bottom heat flux of 100 mW m2), and f 15 km (corresponding to ocean

bottom heat flux of 33 mW m2). Note that in panel a, with the vanishing mean salinity, the source

of the bottom dense water is the bottom heating combined with the water anomaly at this range of

temperatures, which leads to a density increase with heating.
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Supplementary Figure 2: Sensitivity tests–salinity. Same as Supplementary Fig. 1 for salinity,
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Supplementary Figure 3: Sensitivity tests–density. Same as Supplementary Fig. 1 for density, ρ.
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Supplementary Figure 4: Sensitivity tests–zonal velocity. Same as Supplementary Fig. 1 for

zonal velocity, u.
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Supplementary Figure 5: Sensitivity tests–meridional velocity. Same as Supplementary Fig. 1

for meridional velocity, v.
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between the Taylor columns as a function of the distance from the axis of rotation (in km, blue as-

terisks). The results are shown for a snapshot at a single time, and the spacing between the columns

is calculated for each longitude grid point where then the data was binned using 60 km interval;

the std is shown by the vertical bars. The orange line represents the predicted spacing with an eddy

viscosity coefficient of νh = 300 m2s−1 which fits the numerical values. This eddy coefficient is

15 times larger than the explicit viscosity coefficient used in the numerical simulation (green line),

suggesting that the eddy viscosity coefficient due to the explicitly resolved eddy motions in the 3d

simulation is 15 times larger than the explicit one.
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Supplementary Figure 8: Structure of 3d Taylor columns–longitude-latitude sections.

Longitude-latitude plots of the meridional velocity, v, (in cm s−1) at different depth of a z = −13.4

km, b z = −29.4, c z = −82 km, and d z = −96.8 km. The vertical dashed lines indicate the

zonal sections plotted in Supplementary Fig. 9 while the horizontal dashed lines indicate the zonal

sections plotted in Supplementary Fig. 10. The dotted curved line indicates a line parallel to the

axis of rotation.
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Supplementary Figure 9: Structure of 3d Taylor columns–latitude-depth sections. Longitude-

depths plots of the meridional velocity, v, (in cm s−1) at different longitudes of a 1.1◦, b 4.4◦, c 7.7◦,

and d 11.1◦. The vertical dashed lines indicate the meridional sections plotted in Supplementary

Fig. 10 while the horizontal dashed lines indicate the depth sections plotted in Supplementary Fig.

8. The dotted curved line indicates a line parallel to the axis of rotation.
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Supplementary Figure 10: Structure of 3d Taylor columns–longitude-depth sections.

Longitude-depth plots of the meridional velocity, v, (in cm s−1) at different latitudes of a -24.6◦,

b -20.9◦, c -18.1◦, and d -12.5◦. The vertical dashed lines indicate the zonal sections plotted

in Supplementary Fig. 9 while the horizontal dashed lines indicate the depth sections plotted in

Supplementary Fig. 8. The dotted curved line indicates a line parallel to the axis of rotation.
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Supplementary Figure 11: Structure of 3d Taylor columns–longitude-latitude section of vor-

ticity. Same as Supplementary Fig. 8 for vorticity (in s−1).
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Supplementary Figure 12: Estimating the eddy coefficients. The estimate is based on the 3d

simulation using the a temporal auto-correlation function and b spatial auto-correlation function.

The zonal mean at the top (z = −9.6 km, blue), middle (z = −51.1 km, orange), and bottom (z =

−108.2 km, green) of the ocean is plotted versus latitude where the estimated diffusion coefficient,

κh, is significantly smaller at the high latitudes. The estimated eddy viscosity coefficient is equal

to or larger than the eddy diffusion coefficient.
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Supplementary Figure 13: Zonal velocity, u, in 3d simulation. Shown in a spherical (longitude-

latitude) projection at the a bottom (z = −108.2 km), b middle (z = −51.1 km), and c top

(z = −8.8 km) of the ocean. The grid line spacing is 10◦ in the zonal direction and 20◦ in the

meridional direction. The figure depicts a “Jupiter-like” structure of alternating zonal jets as was

previously predicted1.
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Supplementary Figure 14: Time and advection terms in the momentum equations. Snap-

shots of the: a time derivative of the zonal velocity, ut, b time derivative of the zonal velocity,

vt, c meridional advection of the zonal velocity, 1
a
vuφ, d meridional advection of the meridional

velocity, 1
a
vvφ, e vertical advection of the zonal velocity, 1

a
wuz, and f vertical advection of the

moridional velocity, 1
a
wvz. φ, z, t are the meridional, vertical, and time coordinates, u, v, w are the

zonal, meridional, and meridional velocities, and a is the radius of Europa.
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Supplementary Figure 15: Coriolis and pressure terms in the momentum equations. Snap-

shots of the: a Coriolis term, −2Ω sin(φ)v, b co-Coriolis term, 2Ω cos(φ)w, c Coriolis term,

2Ω sin(φ)u, d meridional pressure gradient, − 1
aρ0
pφ, e co-Coriolis term, 2Ω cos(φ)u, and f ver-

tical (non-hydrostatic) pressure gradient term, 1
ρ0
pnh,z. Panels e and f depict the most dominant

terms in the vertical momentum equation. φ, z are the meridional and vertical coordinates, u, v, w

are the zonal, meridional, and meridional velocities, p, pnh are the total and non-hydrostatic pres-

sures, a is the radius of Europa, Ω is the rotation rate of Europa, and ρ0 is the reference density of

Europa’s ocean.
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Supplementary Figure 16: Viscosity terms in the momentum equations and terms in

the continuity equation. Snapshots of the: a meridional viscosity of the zonal velocity,

νh
a2 cos(φ)

(cos(φ)uφ)φ, b meridional viscosity of the meridional velocity, νh
a2 cos(φ)

(cos(φ)vφ)φ, c

vertical viscosity of the zonal velocity, νvuzz, d vertical viscosity of the meridional veloc-

ity, νvvzz. Panels e and f show terms in the continuity equation and justify our approxima-

tion 1
a cos(φ)

(v cos(φ))φ + wz = 0, that (v cos(φ))φ = vφ cos(φ) − v sin(φ) ≈ vφ cos(φ) since

vφ cos(φ) � v sin(φ). φ, z are the meridional and vertical coordinates, u, v, w are the zonal,

meridional, and vertical velocities, νh, νv are the horizontal and vertical viscosity coefficients, and

a is the radius of Europa. Based on Supplement Figs. 14–16, the most dominant terms in the zonal

momentum equation are the Coriolis terms (Supplementary Fig. 15a,b), the most dominant terms

in the meridional momentum equation are the Coriolis and the pressure gradient terms (Supple-

mentary Fig. 15c,d) which nearly balance each other. The next dominant terms in the zonal and

meridional momentum equations are the horizontal viscosity terms (Supplementary Fig. 16a,b).
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