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The discipline of seasonal climate prediction began as an exercise in simple statisti-
cal techniques. However, today the large government forecast centers almost exclu-
sively rely on complex fully coupled dynamical forecast systems for their
subseasonal to seasonal (S2S) predictions while statistical techniques are mostly
neglected and those techniques still in use have not been updated in decades. In this
Opinion Article, we argue that new statistical techniques mostly developed outside
the field of climate science, collectively referred to as machine learning, can be
adopted by climate forecasters to increase the accuracy of S2S predictions. We pre-
sent an example of where unsupervised learning demonstrates higher accuracy in a
seasonal prediction than the state-of-the-art dynamical systems. We also summarize
some relevant machine learning methods that are most applicable to climate predic-
tion. Finally, we show by comparing real-time dynamical model forecasts with
observations from winter 2017/2018 that dynamical model forecasts are almost
entirely insensitive to polar vortex (PV) variability and the impact on sensible
weather. Instead, statistical forecasts more accurately predicted the resultant sensi-
ble weather from a mid-winter PV disruption than the dynamical forecasts. The
important implication from the poor dynamical forecasts is that if Arctic change
influences mid-latitude weather through PV variability, then the ability of dynami-
cal models to demonstrate the existence of such a pathway is compromised. We
conclude by suggesting that S2S prediction will be most beneficial to the public by
incorporating mixed or a hybrid of dynamical forecasts and updated statistical tech-
niques such as machine learning.
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1 | INTRODUCTION

It is estimated that 2.7 trillion dollars of the U.S. economy alone is sensitive to the impacts of weather and climate (National
Oceanic and Atmospheric Administration, 2002). Improving our ability to forecast the weather and climate is of interest to all
sectors of the economy and government agencies from the local to the national level. In recent years, seasonal climate fore-
casts have become an important aspect of policy and decision-making, and are utilized in a broad range of socioeconomic
applications (Troccoli, 2010).
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Traditionally, statistical composites have been used to identify patterns of variability in the atmosphere, an approach on
which our understanding and prediction of climate states has been based (e.g., Barnston & Livezey, 1987; Wallace & Gutzler,
1981). However, today the most commonly employed tool in seasonal forecasting at the government supported operational
forecast centers is general circulation models or global climate models (GCMs). These highly complex dynamical models rep-
resent many of the major processes in the ocean–ice–land–atmosphere climate system.

Skillful seasonal prediction is based on the premise that either statistics such as persistence or multiannual trends or slowly
varying boundary forcings can be exploited for producing long-range forecasts that are more accurate than climatology.
Slowly varying boundary forcings include ocean temperatures, sea ice, soil moisture, and snow cover (Doblas-Reyes, Garcia-
Serrano, Lienert, Biescas, & Rodrigues, 2013).

Long range or statistical forecasts began in the 1950s when scientists first identified large scale atmospheric patterns and
recognized relationships between atmospheric variability and ocean temperature anomalies (Namias, 1953; National Acade-
mies of Sciences, Engineering, and Medicine, 2016). Seasonal forecasting began with using statistical or empirical forecast
techniques. In the 1980s, seasonal prediction was based on lag correlations with observed upper atmosphere geopotential
height anomalies (Barnston, Kumar, Goddard, & Hoerling, 2005; Wagner, 1989) or analogs (Barnston et al., 2005; Livezey &
Barnston, 1988). Analog techniques typically choose years with similar boundary forcings (e.g., same El Niño/Southern Oscil-
lation or ENSO phase) and use composites of those chosen years as the forecast. Forecasts at the large government centers are
issued as probabilities and not as deterministic forecasts (Livezey & Timofeyeva, 2008).

Statistical or empirical forecasts have traditionally identified a relationship between sensible weather, that is, surface tem-
perature and precipitation anomalies with sea surface temperature (SST) anomalies. Most often those relationships are limited
to the tropical oceans in general and to the ENSO region in particular, although some attempts have been made to include
SSTs from the extratropics as well (Barnett, 1981; Barnston et al., 2005; Barnston & Smith, 1996).

Statistical methods have often relied on linear regression or variations such as canonical correlation analysis (CCA). These
methods relate variations in predictor fields to variations in predictand fields (Barnston & Smith, 1996). CCA optimizes the
linear combination of predictor data to explain the greatest variance in the predictand array. In CCA, both predictors and the
predictands are multidimensional arrays of variables (Barnett & Preisendorfer, 1987).

Starting in the 1980s, seasonal forecasting began to involve dynamical models (National Academies of Sciences, Engi-
neering, and Medicine, 2016; Reeves & Gemmill, 2004) and since the 1990s the seasonal predictions at government forecast
centers have transitioned away from statistical techniques and instead focused their efforts and resources on atmosphere–ocean
coupled dynamical models (Barnston, Tippett, L'Heureux, Li, & DeWitt, 2012). There are two types of atmosphere–ocean
coupling employed at government forecast centers—tier 1 and tier 2. In tier 1 coupled model systems, both the atmosphere
and ocean models are fully dynamical models coupled to each other. In tier 2 coupled model systems, a fully dynamical atmo-
sphere model is forced with prescribed SSTs. Model skill for tier 1 coupled systems has been shown to be better than tier
2 (Doblas-Reyes et al., 2013; Kug, Kang, & Choi, 2008).

Initially, tier 1 coupled dynamical forecasts involved an atmosphere model coupled to the Tropical Pacific (Delecluse
et al., 1998; Doblas-Reyes et al., 2013). When resources became available, the atmosphere models were coupled to global
oceans (Kirtman, Shukla, Huang, Zhu, & Schneider, 1997; Latif, Collins, Pohlmann, & Kennlyside, 1998). However, other
boundary forcings such as snow cover, sea ice, and soil moisture were prescribed from climatology (National Academies of
Sciences, Engineering, and Medicine, 2016). In today's most advanced dynamical prediction systems, the atmosphere is
coupled to dynamical models of the global oceans including sea ice, the land surface including soil moisture and snow cover,
although the ocean component remains the most developed (Doblas-Reyes et al., 2013; National Academies of Sciences,
Engineering, and Medicine, 2016). Today almost all national and international operational weather centers use coupled
dynamical systems to produce seasonal forecasts (National Academies of Sciences, Engineering, and Medicine, 2016).

Despite the notable recent improvement in dynamical seasonal prediction models, most of the inherent skill in these
models is derived from the accurate prediction of coupled atmospheric–oceanic phenomena—predominantly related to ENSO
(Barnston et al., 1994; Troccoli, 2010; van Oldenborgh, Balmaseda, Ferranti, Stockdale, & Anderson, 2005a, 2005b). Under-
standing and identifying the global impacts of ENSO was a critical advance in climate prediction on the seasonal time scale.
Although important, ENSO explains only a portion of the climate variability and ENSO-based forecasts have been found to
produce mixed results at best in the atmospheric prediction of mid- and high-latitude regions far removed from the tropical
Pacific Ocean, for example, the North Atlantic sector (Barnston et al., 1999; Cohen & Fletcher, 2007; Spencer & Slingo,
2003). Furthermore, ENSO is weak in boreal summer months and hence does not provide skillful prediction for Northern
Hemisphere summers, especially Eurasia. Given that ENSO variability offers only limited atmospheric predictive skill away
from the tropics, it has provided a natural constraint on model skill in the extratropics. In the light of limited extratropical pre-
dictive skill associated with ENSO, a question remains—what are the prospects for skill improvement in the extratropical lati-
tudes where a large fraction of climate variability still remains unpredictable?
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Studies of the comparable skill between ENSO seasonal forecasts made by dynamical and statistical models found that, in
general, dynamical models outperformed statistical models (Barnston et al., 2012). This is expected given that the focus of
effort and resources has been on dynamical forecast systems while statistical models have been mostly neglected. And while
dynamical models are constantly improved and updated, statistical models have basically remained unchanged from the 1990s
and even the 1980s (Barnston et al., 2012). An influential National Academies of Science report recommended improvements
on subseasonal to seasonal (S2S) predictions that were exclusively directed at dynamical prediction systems including data
assimilation, parameterization and multimodel approaches, while statistical models were ignored. The report recommended
that “To summarize, investment in research aimed at physical understanding and reducing (dynamical) model errors is seen by
this committee as a top priority for improving the skill of S2S predictions.” (National Academies of Sciences, Engineering,
and Medicine, 2016)

In this Perspective, we argue that statistical methods still have an important place in S2S forecasting. Although develop-
ment of new statistical techniques has not been a focus of the climate community, new statistical techniques have been devel-
oped and utilized in other disciplines to manipulate large datasets. We argue that these new statistical techniques, often
referred to collectively as “machine learning,” improve on traditional statistical techniques with higher forecast accuracy.
Recent work shows that these new statistical techniques are often more accurate than the latest generation of dynamical
coupled atmosphere–ocean models on S2S timescales. We present two examples where newly developed statistical techniques
demonstrate higher skill in hindcasts than both traditional CCA and dynamical models.

In addition, statistical forecasts have the advantage of utilizing continuously acquired knowledge obtained from data analy-
sis of climate variability, which can readily be applied (Doblas-Reyes et al., 2013). In testing the utility of a boundary forcing
such as sea ice or snow cover in improving forecast skill, using a statistical model is much easier and faster to employ and
implement than a dynamical model. Since statistical models are computationally more expedient than GCMs, they can be used
to efficiently search for “windows of predictability (i.e., the ability to predict),” that is, regions, states or timescales that are
linked to low frequency processes with better predictive skill. And although dynamical models incorporate boundaries such as
ocean variability, snow cover, sea ice, soil moisture and even the stratosphere, model errors could mask potential skill from
these possible forcings.

We further argue that even traditional statistical models can be used to uncover weaknesses and guide improvements in
dynamical model simulations. Observational analysis has supported that Arctic variability influences mid-latitude weather
while most modeling studies have supported mostly no relationship or that only a weak relationship exists (Cohen, Screen,
et al., 2014; Overland et al., 2015; Vihma, 2014). Additionally, modeling studies have been used to criticize the observational
analysis (Cohen, Screen, et al., 2014). We show, however, that statistical model forecasts using Arctic predictors outperformed
dynamical models in predicting winter 2017/2018 surface temperature anomalies and exposing serious shortcomings of
dynamical models and an inherent insensitivity to Arctic forcings.

2 | DATASETS

In this study, we used several precursor fields in autumn (September, October, November [SON]), including monthly sea ice
concentration (SIC) from the Met Office Hadley Centre at 2.5! latitude X 2.5! longitude (Rayner et al., 2003) and the domain
for the SIC is 60!–90!N latitude and 0!W–180!E longitude and for the time period of 1965–2015. We further include monthly
snow cover extent (SCE) from the Rutgers Snow Lab with data provided by the National Oceanographic and Atmospheric
Administration (NOAA; Robinson, Estilow, & Program, 2012) using the area between 20!–60!N latitude and 0!–180!E longi-
tude. In addition, we include monthly SST from the Met Office Hadley Centre at 1! × 1! (Rayner et al., 2003) over three dif-
ferent regions: the North Atlantic (10!–70!N latitude and −110!W–20!E longitude), the Mediterranean (25!–50!N and 6!W–
45!E) and the Pacific region (30!S–30!N and 150!E–70!W). In the Atlantic region SST, we masked portions corresponding
to the Pacific Ocean, Mediterranean as well as Hudson Bay. Similarly, we masked the Atlantic region in the selected Pacific
Ocean precursor region. Finally, we included as atmospheric precursors the geopotential height at 500 hPa over 20!–80!N
and 10!E–180!E and sea level pressure (SLP) over 40!–80!N and 0!–360! from the National Centers for Environmental Pre-
diction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis available four times daily at a global resolution
at 2.5! × 2.5! resolution (Kalnay et al., 1996). We averaged daily values to create both monthly and seasonal averages. All
regions are selected by examining the significance of precursor composites as calculated by a bootstrap method.

For the winter European temperature forecast we used monthly averaged temperature anomalies on a 0.5! × 0.5! grid pro-
vided by the NOAA (Fan & van den Dool, 2008). We used the same area as for the precipitation set (25!–75!N latitude and
20!W–45!E longitude). In addition, we included a greater and shifted SST area for the North Atlantic region (5!S–50!N and
90!–6!W) to account for the North Atlantic Oscillation (NAO) pattern, and excluded the Mediterranean region for the temper-
ature anomaly forecast. For Northern Hemisphere surface temperature data we used the NCEP/NCAR reanalysis available four
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times daily at a global resolution of ~1.9! (Kalnay et al., 1996). We averaged daily values to create both monthly and seasonal
averages.

3 | FORECAST METHODS

In the paper we compare the hindcast skill of three forecast methodologies. The first method is CCA, which is the traditional
statistical method employed by forecast centers for long range weather or climate prediction. We also use a new method of sta-
tistical prediction based on hierarchical clustering analysis developed by Totz, Tziperman, Coumou, Pfeiffer, and Cohen
(2017). The advantage of the clustering-based forecasting method over index-based regression models (e.g., Cohen &
Fletcher, 2007) is that it accounts not only for the amplitude of the predictors but also for the geographical distribution using
clustering techniques. Its advantage over CCA, which is based on principal component analysis is that, unlike principal com-
ponents, the clusters do not need to be orthogonal and therefore represent variability patterns more faithfully. Further details
on the hierarchical clustering analysis are provided in Supporting Information File S1. A complete description of how hierar-
chical clustering techniques can be used for forecasting is described in Totz et al. (2017).

In addition, we calculated the ensemble model mean of monthly hindcast data from nine models, which participate in the North
American Multi-Model Ensemble (NMME). The NMME system includes coupled models from a number of United States and
Canadian modeling centers in an ensemble of opportunity supporting seasonal forecasting experiments (Kirtman et al., 2014). The
models used in the NMME are: CMC1-CanCM3, CMC2-CanCM4, NCAR-CESM1, NCEP-CFSv2, COLA-RSMAS-CCSM3,
COLA-RSMAS-CCSM4, NASA-GMAO, IRI-ECHAMP4p5-DirectCoupled, IRI-ECHAMP4p5-AnomalyCoupled (Kirtman et al.,
2014). The NMME project is managed by NOAA.

We also present a real-time monthly and seasonal forecast based on multilinear regression (Cohen & Fletcher, 2007). The
linear regression model is not novel of course but does use mostly Arctic predictors for the winter forecast. The major predic-
tors for the winter are predicted winter ENSO (Niño 3.4 index), September Arctic SIC, October Eurasian SCE and October
SLP anomaly in northwestern Asia. No detrending is applied to the data in producing the forecast. Three of the four predictors
are high latitude variables with the only tropical predictor being ENSO. Cohen and Fletcher (2007) demonstrated improved
hindcast temperature skill over dynamical model hindcast skill using linear regression and Arctic predictors. However, the var-
iance of the model is damped relative to the observations. In those regions where the model has higher skill such as the eastern
United States and northern Eurasia, the model variance is 70–80% of the observed values. This model is run operationally
prior to each winter and the forecast is posted to the National Science Foundation website (https://www.nsf.gov/news/special_
reports/autumnwinter/predicts.jsp). Subsequent studies have supported the use of SIC and SCE as predictors for wintertime
temperature anomalies (Furtado, Cohen, Butler, Riddle, & Kumar, 2015; García-Serrano et al., 2016; Gastineau, García-Ser-
rano, & Frankignoul, 2017). Since the model utilizes October data, a preliminary forecast is usually generated the end of
October with the forecast updated the first week of November. The forecast for winter (December to February) 2017/2018
was created November 8, 2017.

We show the winter temperature anomaly forecast for the Northern Hemisphere from winter 2017/2018. The statisti-
cal forecast is compared to the NMME suite of models. In addition, we also compare to the real-time forecasts from an
international suite of models including the CFSv2 (climate forecast system version 2), the European Centre for
Medium-range Weather Forecasting (ECMWF) model (Stockdale et al., 2011), the UK Met Office Hadley Center Uni-
fied Model (Walters et al., 2017), and the MeteoFrance model (Voldoire et al., 2013). These four models are referred to
as the International Multi-Model Ensemble (IMME). In the present work, we evaluated NMME and IMME forecasts
from November for the December, January and February period, and from December for the January, February and
March period.

4 | ALTERNATIVE STATISTICAL LEARNING APPROACHES

In this Perspective article, we bring examples of statistical techniques applied to S2S prediction using clustering analysis and
multilinear regression. However, there are other examples of new techniques of supervised learning often referred to collec-
tively as “machine learning” that may be applied and possibly provide improved forecast skill to operational S2S predictions.
These techniques are briefly described in File S1. In the following section, we present hindcast skills from an unsupervised
learning technique known as hierarchical clustering.
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5 | EUROPEAN WINTER PRECIPITATION HINDCASTS

In a recent paper (Totz et al., 2017), we compared hindcast skill of winter (December–January–February) precipitation for the
European and Mediterranean regions for CCA, hierarchical clustering and from the NMME dynamical models. In Totz
et al. (2017), the cross validated correlation of the cluster-based hindcasts with observations for the years 1967–2016 were
shown. Also shown were the cross-validated correlations of the CCA-based hindcasts with observations for the years
1967–2016. In addition, the cross-validated correlations were shown for hindcasts for the years 1982–2010 from the NMME
dynamical models. Finally, to make a direct comparison with the NMME, the cross-validated correlation of the cluster-based
hindcasts with observations for the years 1982–2010 were shown as well.

The hierarchical clustering used four fall (three-month average of September, October, and November) predictors for pre-
dicting winter precipitation in the European and Mediterranean regions: SCE across Eurasia, SIC in the Arctic and SST in the
North Atlantic and Mediterranean regions. The conclusion of that study was that the forecasts based on hierarchical clustering
had higher skill than both the more traditional CCA statistical model and the NMME suite of dynamical models. Here we
include a similar figure of forecast skill slightly modified from the techniques presented in Totz et al. (2017) (see Figure 1).
The hierarchical clustering exhibits improved skill in representing the overall pattern of precipitation anomalies and in the skill
score of individual locations throughout the region.

6 | WINTER SURFACE TEMPERATURE HINDCASTS

Totz et al. (2017) only applied hierarchical clustering to precipitation forecasts. We performed a similar analysis for tempera-
ture forecasts again for the European sector. We used hierarchical clustering and the Ward method to identify patterns of win-
ter temperature variability and found six dominant clusters (Figure 2). The first cluster shows east–west temperature
variability, whereas Clusters 2 and 5 exhibit homogenous warm and cold temperature patterns, respectively. Clusters 3 and
4 exhibit north–south temperature variability that is the classic signature of the NAO. The last cluster exhibits positive temper-
ature anomalies over northern Europe and negative temperature anomalies in southern Europe. We then matched the six clus-
ters with seven fall predictors for predicting winter temperature in the European and Mediterranean regions: SCE across
Eurasia, SIC in the Arctic, SST in the North Atlantic region, Mediterranean region and Pacific region as well as geopotential

FIGURE 1 Precipitation winter (December, January, and February) forecast skill: (a) cross-validated correlation of the cluster-based hindcasts with
observations for the years 1967–2016. (b) Same as (a) but for the hindcast skill using canonical correlation analysis. (c) Same as (a) but for the years
1982–2010. (d) Correlation of the North American Multi-Model Ensemble (NMME) hindcasts for the years 1982–2010 with observations. Significant values
(p < .05) according to the two-sided Student’s t test are shown in hatches. The cluster-based forecast performs better than the NMME models according to the
cross-validated correlations. (Reprinted with permission from Totz et al. (2017). Copyright 2017 American Geophysical Union)
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height over Eurasia and SLP over the mid- to high-latitudes of the Northern Hemisphere. We implement a few improvements
relative to Totz et al. (2017) as follows. First, we remove the mean of each precursor using all data except for the predicted
year. Next, we normalize each precursor by its standard deviation. Finally, we combine different precursors into a single vec-
tor. In addition, we define a threshold for the calculation of the singular value decomposition-based pseudo-inverse used to
calculate the prediction coefficients such that singular values that are smaller than 1% of the largest singular value are set
to zero.

All hindcasts were cross-validated, that is, the precursors for the year hindcasted were not included in building the regres-
sion coefficients used for the temperature hindcast of that year. We calculated the mean cross-validated skill using all possible
configurations of the seven precursors: using all possible seven single precursors, using all possible pairs of precursors chosen
out of the possible seven, etc. There is a total of 127 models based on these different precursor choices. Out of these, 16 show
a skill higher than 0.1, 12 a skill higher than 0.15, and 12 higher than 0.2. Note that the NMME skill is 0.02. Thus the
clustering-based forecast has an improved forecast skill that is robust to model details. We find that the mean skill has the
highest value (0.21) using the three predictors: Atlantic SST, Pacific SST, and geopotential height over Europe. These precur-
sors were also used to compare the spatial skill over Europe with CCA and NMME (Figure 3). Our results once again demon-
strate that forecasts based on hierarchical clustering had higher skill than both the more traditional CCA statistical model and
the NMME suite of dynamical models. The hierarchical clustering exhibits improved skill in representing the overall pattern
of surface temperature anomalies and in the skill score of individual locations throughout the region.

We are currently applying hierarchical clustering to temperature forecasts and across North America also in winter. Results
are not available at the time of submission of this manuscript but we are preparing analysis for a future publication.

7 | NORTHERN HEMISPHERE WINTER SURFACE TEMPERATURE FORECAST—
WINTER 2018

Government operational forecast centers almost exclusively rely on dynamical coupled forecast systems in generating and dis-
seminating seasonal forecast products with some notable exceptions (e.g., the Indian Meteorological Department uses statisti-
cal methods for monsoon forecasts). In contrast, AER produces an operational seasonal forecast using a statistical model
(Cohen & Fletcher, 2007).

In Figure 4 we show two dynamical, December to February 18, 2017, forecasts from the NMME suite of dynamical
models and the IMME suite of dynamical models to compare with the AER seasonal forecast model (the Northern Hemisphere
winter forecast was posted on November 27, 2017: https://www.aer.com/siteassets/ao-archives/ao-update-27-nov-17.pdf). In
Figure 4 we also show the January to March 2018 forecasts from the NMME suite of dynamical models, the IMME suite of
dynamical models and the AER seasonal forecast model.

All the dynamical models predict above normal, to even well above normal, temperatures across the Eurasian continent.
The forecasts across the United States were for normal to above normal temperatures but the dynamical models did predict a

FIGURE 2 Clusters of temperature winter (December, January, and February) anomalies for the European region, ordered by their frequency: Cluster (a) has
a frequency of 32%, (b) a frequency of 20%, (c) a frequency of 18%, (d) a frequency of 14%, (e) a frequency of 8%, and (f) a frequency of 8%
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more regional area of below normal temperatures in southeastern Alaska and northwestern Canada. The cold temperature fore-
casts in Alaska, Canada, and the Pacific Northwest are likely related to the predicted La Niña for winter 2017/2018. Correla-
tions of ENSO with surface temperatures show a positive correlation in western North America (Figure 5), that is, La Niña
favors cold temperatures in southeast Alaska, western Canada, the Pacific northwest and east towards the Canadian Plains.

In contrast to the dynamical model forecasts, the statistical model forecast predicted normal to below normal temperatures
for northern Asia, East Asia, and northern Europe. And in North America, the model predicted normal to below normal tem-
peratures for western Canada into the upper midwest of the United States, the Great Lakes and most of the eastern United
States. The model also predicted above normal temperatures for the Mediterranean region, the Middle East, southern Asia, the
North American Arctic and the southwestern United States. The statistical model based on Arctic predictors correctly pre-
dicted cold across large parts of Asia, including east Asia, western Europe, central Canada and the upper midwest of the
United States. The predictors that were the biggest contributors to the cold forecast across northern Eurasia were October SLP
anomalies and September SIC. The biggest contributors to the cold forecast in the eastern United States were October SLP
anomalies and October SCE and in the western United States it was the predicted La Niña. These are regions that were not
predicted to be cold across the suite of dynamical models. Cold temperatures were more widespread across the Northern
Hemisphere mid-latitudes in the latter half of winter consistent with previous studies, which argued that cold temperatures in
the era of Arctic amplification have become more dependent on polar vortex (PV) disruptions that typically occur in mid- to
late-winter (Cohen, Barlow, & Saito, 2009; Cohen, Pfeiffer, & Francis, 2018). In addition to the more accurate cold tempera-
ture forecast across the continents, the statistical model predicted more amplified warming across the Arctic and closer to the
observed compared to the dynamical model forecasts.

The cold forecast by the statistical model but absent in the dynamical models suggests the more accurate cold forecast
based on the statistical model is related to Arctic variability and is missing from the dynamical models. The more accurate
winter forecast using Arctic variables is supportive of a recent study that showed Northern Hemispheric atmospheric trends
are more consistent with Arctic trends than with tropical trends (Cohen, 2016). In this regard, the statistical model can be
used to inform or guide improvements in the dynamical models. This argument of the limited ability of dynamical models
to simulate Arctic or high latitude processes and coupling with the atmosphere is discussed in greater detail on the subsea-
sonal scale.

FIGURE 3 Temperature winter (December, January, and February) forecast skill: (a) cross-validated correlation of the cluster-based hindcasts with
observations for the years 1967–2016. (b) Cross-validated correlation of the canonical correlation analysis hindcasts with observations for the years
1967–2016. (c) Same (a) but for the years 1982–2010. (d) Correlation of the North American Multi-Model Ensemble (NMME) hindcasts for the years
1982–2010 with observations. Significant values (p < .05) according to the two-sided Student’s t test are shown in hatches. The cluster-based forecast
performs better than the NMME models according to the cross-validated correlations
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8 | POLAR VORTEX DISRUPTION FEBRUARY 2018

In addition to the overall winter seasonal forecast in winter 2017/2018, much attention was given to a significant PV dis-
ruption that resulted in a PV split and widespread severe winter weather across the Northern Hemisphere starting in mid-
February including record cold and disruptive snowfalls both in Europe and the United States (https://mashable.
com/2018/02/15/polar-vortex-split-stratospheric-warming-snow-cold-europe-us/#nMlfNYJ2qmqn). There was also some cel-
ebration in the climate community on how well the event was predicted in advance. On February 12, an ongoing PV dis-
ruption officially achieved major mid-winter warming (MMW; defined as a reversal of the zonal wind from westerly to
easterly at 60!N and 10 hPa) status. The PV split into two pieces and was one of, or possibly the most extreme, PV dis-
ruptions observed in the month of February in the satellite era (since 1979) as defined by the magnitude of the easterly
wind at 60!N and 10 hPa and the anomalously warm temperatures in the polar stratosphere (averaged between 60–90!N
and 10 hPa).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

NMME Ts Forecast for Dec-Feb 2018 NMME Ts Forecast for Jan-Mar 2018

C3S Ts Forecast for Dec-Feb 2018 C3S Ts Forecast for Jan-Mar 2018

Observed Ts for Dec-Feb 2018 Observed Ts for Jan-Mar 2018

AER Forecast of Ts for Dec-Feb 2018 AER Forecast of Ts for Jan-Mar 2018

0° 60°E 120°E 180° 120°W 60°W

0° 60°E 120°E 180° 120°W 60°W

0° 60°E 120°E 180° 120°W 60°W

0° 60°E 120°E 180° 120°W 60°W 0° 60°E 120°E 180° 120°W 60°W

0° 60°E 120°E 180° 120°W 60°W

0° 60°E 120°E 180° 120°W 60°W

0° 60°E 120°E 180° 120°W 60°W

–4.00 –3.00 –2.00 –1.00 –0.50 0.50 1.00 2.00 3.00 4.00–0.25 0.25

Temperature anomaly (K)

FIGURE 4 Predicted December, January, and February 2017/18 surface temperature anomalies from (a) North American Multi-Model Ensemble (NMME)
suite of models, (b) International Multi-Model Ensemble (IMME) suite of models both initialized on November 1, 2017, (c) the observed surface temperature
anomalies for December, January, and February 2017/18 and (d) same as (a) but for the AER statistical model initialized on November 8, 2017. Predicted
January, February, and March 2018 surface temperature anomalies from the (e) NMME suite of models initialized on December 1, 2017, (f) IMME suite of
models both initialized on November 1, 2017, (g) the observed surface temperature anomalies for January, February, and March 2018 and (h) same as (e) but
for the AER statistical model initialized on December 1, 2017. Smoothing was applied to the statistical model and observed surface temperature anomalies
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It has been known for some time that following MMWs, the Northern Hemisphere atmospheric circulation is altered up to
2 months including a shifted storm track, storm frequency and temperature anomalies (Baldwin & Dunkerton, 2001; Kolstad,
Breiteig, & Scaife, 2010). It has also been shown that following PV disruptions, the Arctic Oscillation is predominantly in the
negative phase (Baldwin & Dunkerton, 2001), which favors increased snowfall across Europe and the northeastern United
States (Cohen, Ye, & Jones, 2015). Following the MMW during the second week of February 2018, temperatures turned much
colder across Europe along with disruptive snowfalls that continued through late March. In North America, initially tempera-
tures turned colder and storminess increased across the western portion of the continent but with time the cold air and stormi-
ness transitioned to the eastern United States. The northeastern United States experienced four nor'easters in relative quick
succession, each with heavy snowfall reported (50–100+ cm) during the first 3 weeks of March.

Long lead forecasts of PV disruptions can benefit regional and local municipalities and businesses with advanced warning
to prepare for possible inclement winter weather. A forecast based on statistical techniques predicted a significant PV disrup-
tion nearly a month in advance. In a weekly blog postdated January 15, 2018, the first author wrote “Our PV forecast model
predicts that the PV disruption will peak the second week of February.” Based on the expected PV disruption, the first author
further wrote “This anticipated stratospheric disruption is likely to differ from the stratospheric PV disruption in late December
where the resultant below normal temperatures were focused across North America while much of Eurasia remained relatively
mild….I expect the focus of the resultant cold temperatures to be across northern Eurasia, especially Siberia. Temperatures
would likely average below normal across much of Siberia and likely elsewhere across northern Eurasia.” (The full blog is
posted here: https://www.aer.com/siteassets/ao-archives/ao-update-15-jan-18.pdf)

In contrast, dynamical predictions of the PV disruption only came two or more weeks later. A New York Times Op-Ed
celebrated as an achievement, the forecast in early February of the PV disruption by dynamical models (“Both the sudden
stratospheric warming and the Arctic warming were forecast with outstanding accuracy” from Hot Times in the Arctic March
14, 2018). Support for the outstanding forecasts was a discussion from February 3, 2018 (https://www.nymetroweather.
com/2018/02/03/sudden-stratospheric-warming-increasingly-likely-mean/). A NOAA blog also argues that the numerical
weather prediction models began to simulate the MMW in the late January and early February time frame (Butler, 2018). But
the PV would split just a week later and achieve MMW status less than 10 days later. In addition, the greatest poleward heat
flux into the polar stratosphere ever observed occurred that week and was well-predicted by the models making a PV disrup-
tion all but inevitable just a few days or a week later. Given the fewer degrees of freedom in the stratosphere, the lack of
topography and diabatic heating sources and the large wavelengths of the atmospheric circulation, it is questionable whether a
correct forecast of an extreme stratospheric event only 1 week to 10 days in advance should be celebrated as an outstanding
achievement.

Based on Arctic variability the expectation of a significant PV disruption was noted even months earlier. The first author
in a blog dated November 20, 2017 predicted a significant PV disruption in the late winter (the full blog is posted here:
https://www.aer.com/siteassets/ao-archives/ao-update-20-nov-17.pdf). This prediction was based on below normal November
Arctic SIC, above normal Eurasian October SCE, an easterly quasi-biennial oscillation (QBO) and a slightly negative snow
advance index (Cohen & Jones, 2011a). The forecast for the winter surface temperature anomalies were included as well. The
reasoning was partially based on two recent studies demonstrating that above normal Eurasian SCE coupled with an easterly

FIGURE 5 Correlation of Niño 3.4 index with surface temperatures across the Northern Hemisphere (contouring). Correlation of 90, 95 and 99% are
represented by light, dark and darkest shading, respectively. Red shading represents positive correlations and blue shading represents negative correlations
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QBO favors PV disruptions later in the winter (Peings, Douville, Colin, Martin, & Magnusdottir, 2017; Tyrrell, Karpechko, &
Räisänen, 2018).

The correct forecast of a significant PV disruption in late winter issued both in the fall and in mid-January was based on
Arctic or high latitude variability and applied to statistical forecasts. The expectation of a significant PV disruption in
November was based on Arctic sea ice and snow cover anomalies. However, the forecast in mid-January of a significant PV
disruption the second week of February was mostly based on SLP anomalies across the high latitudes and surface tempera-
tures anomalies across northern Asia. It has been previously shown that a tripole pattern in SLP anomalies with positive SLP
anomalies across northwestern Eurasia, centered near the Urals, and negative SLP anomalies both upstream and downstream
in the North Atlantic and the North Pacific, respectively, is favorable for disrupting the PV (Cohen, Furtado, et al., 2014;
Cohen & Jones, 2011b). Comparison of January 2018 SLP anomalies and the SLP tripole pattern (Cohen, Furtado, et al.,
2014) favorable for PV disruptions shows a strong similarity (Figure 6). Furthermore, a statistical model using SLP anomalies
to predict the strength of the PV predicted a weakening of the PV that peaks the second week of February, a month in
advance. Further support for a significant PV disruption were the cold temperatures across northern Asia during January.
Kretschmer et al. (2018) showed that cold temperatures across northern Asia exist prior to significant PV disruptions. This is
an example of using statistical techniques and Arctic variability provided a longer lead time to predict a significant PV disrup-
tion than dynamical model forecasts.

Besides Arctic variability, tropical variability has been proposed as a forcing/predictor of PV behavior (Butler & Polvani,
2011). In addition to phases of ENSO possibly forcing PV disruptions, the Madden-Julian Oscillation (MJO) has been pro-
posed as a possible forcing/predictor of PV behavior. Specifically, observational analysis showed that there is an increased fre-
quency to PV disruptions between 25 and 36 days following MJO Phase 3 and there is an increased frequency to PV
disruptions between 1 and 12 days following MJO Phase 7 (Garfinkel, Feldstein, Waugh, Yoo, & Lee, 2012). Consistent with
this study, the MJO was in Phase 3 in mid-January and in Phase 7 in early February. Therefore, it is possible that not only did
Arctic/high latitude variability contribute to the PV disruption the second week of February but so did tropical convection.
Statistical or empirical techniques using high latitude and tropical variability would have provided up to a month lead forecast
of a PV disruption in early to mid-February.

Of course no one lives in the stratosphere and a successful forecast of stratospheric variability is only of importance if it
results in an improved forecast of the sensible weather. For society the importance of the PV disruption is that it initiated an
increase in severe winter weather, including cold temperatures and disruptive winter storms across the Northern Hemisphere
including Europe and the United States for the following 3 months. It has been shown that for PV disruptions of the magni-
tude observed in February 2018, the temperature response is below normal temperatures widespread across northern Eurasia
including Europe but with the largest negative temperature anomalies focused in Siberia (Kretschmer et al., 2018). We show
in Figure 7 the monthly temperature anomaly forecasts from the suite of dynamical models for the 2 months when temperature

(a) (b)

3 14

12

10

8

6

4

2

–2

–4

–6

–8

–10

–12

–14

0

2.5

2

1.5

0.5

–0.5

–1

–1.5

–2

–2.5

–3

0

1

Regression of Nov SLPa onto the Oct. Eurasian SCE Index
(Contours) and the Dec 100 hpa [v* T*] Index (Shading)

Observed SLP Anomaly Jan 2018

[h
P
a]

[h
P
a]

FIGURE 6 (a) Regression of November sea level pressure (SLP) anomalies (hPa) onto October monthly mean Eurasian snow cover extent (contouring) and
onto December meridional heat flux anomalies at 100 hPa, averaged between 40!N and 80!N (shading). This figure is the same as fig. 4 from Cohen,
Furtado, et al. (2014). (b) Observed mean SLP (contours) and SLP anomalies (shading) for January 2018
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anomalies responded to the PV disruption—February and March. Both the American suite of dynamical models (NMME) and
the international suite of models (IMME) predict overall above normal temperatures across all of Eurasia and the United States
with the only cold predicted in western Canada, which as discussed with Figure 5 is likely associated with the observed winter
La Niña.

We also include the observed temperature anomalies from February to March 2018. In contrast to the model forecasts, the
observations show widespread cold temperatures for both months across northern Eurasia including Europe. The dynamical
models are initialized with observations a month in advance, therefore, it is unlikely that the models were correctly predicting
a PV disruption in early February for the February forecast initialized on January 1. However, for the March forecast initial-
ized on February 1, the models should have correctly simulated a significant PV disruption as discussed above. Yet there is no
temperature response to the PV disruption reflected in the March dynamical forecasts, which is nearly identical to the February
anomaly temperature forecasts, in sign and in pattern. This is consistent with previous model analysis demonstrating that the
circulation anomalies associated with PV disruptions fail to propagate from the stratosphere into the troposphere as seen in the
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FIGURE 7 Predicted February 2018 surface temperature anomalies from (a) North American Multi-Model Ensemble (NMME) suite of models,
(b) International Multi-Model Ensemble (IMME) suite of models both initialized on January 1, 2018, (c) the observed surface temperature anomalies for
February 2018, and (d) same as (a) but for the AER statistical model initialized on November 8, 2017. Predicted March 2018 surface temperature anomalies
from (e) NMME suite of models initialized on February 1, 2018, (f) IMME suite of models initialized on February 1, 2018, (g) the observed surface
temperature anomalies for March 2018, and (h) same as (e) but for the AER statistical model initialized on December 1, 2017. Smoothing was applied to the
statistical model and observed surface temperature anomalies
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observations (Furtado et al., 2015). It does appear from comparing dynamical model temperature anomaly forecasts with the
observed temperature anomalies, that it is almost irrelevant to the models whether a PV disruption occurs or not. Or, in other
words, the dynamical model's tropospheric response is nearly insensitive to PV disruptions and by extension, if Arctic vari-
ability influences mid-latitude weather through altering PV behavior, then the models are insensitive to Arctic variability. This
lack of sensitivity to Arctic variability needs to be considered as a serious shortcoming of the dynamical models that limits the
capability of dynamical models accurately predicting Northern Hemisphere winter temperature variability.

We also include statistical forecasts for the months of February and March generated in the fall. The forecasts include no
information about the PV disruption in early February but do include the Arctic variables September Arctic SIC and October
Eurasian SCE. Previous studies link both below normal Arctic SIC and above normal October Eurasian SCE to a PV disrup-
tion in mid- to late-winter followed by widespread cold temperatures across the Northern Hemisphere continental mid-
latitudes (Furtado, Cohen, & Tziperman, 2016; García-Serrano et al., 2016; Gastineau et al., 2017). This expectation of a PV
disruption late in the winter was published on the AO blog and on the National Science Foundation website (https://www.nsf.
gov/news/special_reports/autumnwinter/predicts.jsp). Although the statistical model forecasts are not perfect, the model did
correctly predict below normal temperatures across northern Eurasia for both March and especially February, and supports the
idea that the below normal temperatures across northern Eurasia are related to Arctic variability.

Finally, from observational analysis it can be concluded that Arctic variability contributed to the PV disruption of February
2018 or that MJO variability contributed to the PV disruption of February 2018. From the dynamical model forecasts it can be
concluded that both Arctic and tropical variability are not significant contributors to mid-latitude variability but one cannot
conclude that tropical variability is a significant contributor to mid-latitude variability while Arctic variability is not. This has
important implications for the argument that dynamical models support the influence of tropical forcing but not Arctic forcing
on mid-latitude weather variability.

9 | CONCLUSION

Over the past two decades, most of the effort and the resources at government-sponsored forecast centers have been dedicated
to atmosphere–ocean coupled dynamical models. Current statistical techniques have not been updated since the 1990s and
even the 1980s. An influential National Academy of Sciences report on S2S prediction recommended that new resources be
dedicated to improving dynamical models but ignored statistical models, contributing to the migration away from statistical
models and towards dynamical models. As a consequence, statistical techniques and models are currently mostly ignored at
the government-sponsored forecast centers.

We argue that the lack of attention, resources and implementation of statistical techniques is a mistake and deprives the
public of immediate and relatively inexpensive improvements to S2S prediction. As we describe above, new statistical tech-
niques, often labeled as machine learning, have been developed that are far more powerful at mining data and recognizing pat-
terns than traditional techniques that can be applied to delivering to the public more skillful forecasts.

As we demonstrated above using seasonal hindcasts, new statistical techniques can provide more skillful forecasts of both
precipitation and surface temperature than the current state-of-the-art coupled dynamical systems. The statistical model that
we used employed hierarchical clustering and included fall Arctic boundary forcings as predictors. We showed this for Europe
and hope to demonstrate shortly for North America as well. We also discussed other novel machine learning techniques devel-
oped in other disciplines that may be appropriate to apply to the S2S prediction problem.

Besides demonstrating improved skill for hindcasts, we showed that statistical techniques provided a more accurate winter
temperature forecast for winter 2017/2018, better representing the observed “warm Arctic/cold continents” (Cohen, Jones,
Furtado, & Tziperman, 2013) pattern than the dynamical models. In addition, statistical or empirical analysis and models can
be exploited to guide improvements in dynamical model development. As we discussed above, an extreme PV disruption
developed in early February 2018 and achieved MMW status on February 12. Following the PV disruption, cold temperatures
and disruptive snowfalls became widespread across northern Eurasia including Europe and across the United States for the
next 2 months. The increase in severe winter weather is consistent with observational analysis of the atmospheric response to
PV disruptions (Kretschmer et al., 2018).

In contrast to observed temperature anomalies, the dynamical models predicted a relatively mild winter for all months from
December to March, both across Eurasia and much of North America. The lone region predicted to experience a cold winter
was northwestern North America and is likely related to the predicted and verified La Niña. Little change is seen in the
dynamical forecasts between the seasonal mean and individual months. As we showed, there is little change in the hemi-
spheric temperature anomaly dynamical model forecast between February and March temperature anomalies despite that the
dynamics of the PV disruption were included in the initialization of the PV disruption for the March forecast initialized in
early February but was likely absent in the February forecast initialized in early January. Below normal temperatures became
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widespread across the hemisphere following the PV disruption both in February and especially March. Below normal tempera-
tures were already present across northern Asia at the end of January and into early February. Dynamical model forecasts for
March were initialized with both the cold temperatures in Asia and the beginnings of the PV disruption. Yet despite the initial
conditions, the dynamical models predicted universal warmth across Eurasia for the month of March. This required both incor-
rectly advecting warm temperatures from the Arctic or the subtropics across the continent, which negated and reversed the
cold temperatures already present, and neglecting the atmospheric circulation response to an extreme PV disruption. The pos-
sible incorrect advection of the warmth generated in the Arctic from sea ice loss too far south across the continents is consis-
tent with a previous study showing that Arctic warming related to sea ice loss extends further south in the models relative to
the observations (Cohen et al., 2013).

Therefore, in winter 2017/2018 the dynamical models predicted a similar temperature anomaly pattern on both climate
and synoptic timescales. Climate timescales are dominated by boundary forcings and natural variability. Synoptic timescales
are dominated by initial conditions. Yet the dynamical models failed to predict the observed warm Arctic cold continents pat-
tern on longer climate leads in the fall and on shorter synoptic scales in early February for the February and March tempera-
ture forecasts. So whether the dynamical models were initialized with the beginnings of the PV disruption or not, they
struggled to predict the temperature response to the PV disruption until mid-February (Butler, 2018), when the circulation
anomalies associated with the stratospheric PV disruption descended to the troposphere (Figure S1). The consistency between
the dynamical model forecasts across timescales does not support that differences between observed and predicted tempera-
tures can be attributed to only natural variability. The dynamical models only correctly predicted the warm Arctic cold conti-
nents pattern once they were initialized with a weakened PV in the upper troposphere.

In contrast, the observed temperature anomalies following the PV disruption closely follow the temperature response to
such events derived from one of the new statistical techniques discussed above, hierarchical clustering. Also, a statistical
model forced with Arctic variability better predicted the late winter hemisphere-wide cold than the dynamical models. In this
regard, statistical models can help guide model developers to improve the physical processes in the coupled dynamical
models, for example, high latitude processes that involve the PV.

Statistical predictions in general and machine learning techniques in particular are likely to improve subseasonal climate
forecasts where there are repeatable patterns in the atmosphere and where there are fairly consistent sequences of events. We
provided an example where statistical predictions can help improve temperature predictions following a PV disruption relative
to forecasts that are derived solely from dynamical systems. For many PV disruptions there is an identifiable tropospheric
wave pattern followed by a weakening of the PV and then cold air outbreaks across the Northern Hemisphere continents but
most favored across northern Eurasia. As demonstrated above, dynamical models struggle with simulating this sequence of
events. It seems reasonable that weather predictions associated with blocking events and/or periods of amplified known tele-
connection patterns would also benefit from statistical techniques and machine learning.

Seasonal prediction had humble beginnings when simple and easy-to-employ statistical techniques such as persistence or
composites were used to generate forecasts. During the 1980s, more sophisticated statistical techniques such as CCA were
incorporated into seasonal prediction. Then, beginning in the 1990s, forecasts from dynamical models of increasing complex-
ity were introduced into the operational production of S2S forecasts while inclusion of statistical techniques was phased out.
We argue that currently the pendulum has swung to the other extreme where S2S forecasts are almost exclusively derived
from the coupled dynamical systems while new techniques broadly referred to as “machine learning” that can both improve
forecast skill and improve coupled dynamical systems are being ignored. The introduction of new statistical techniques into
the operational forecast centers would benefit the public and ultimately the public is best served by hybrid forecasts utilizing
both state-of-the-art dynamical models and updated statistical techniques.
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Supplementary-information for the paper:
“S2S Reboot: An Argument for Greater

Inclusion of Machine Learning in Subseasonal
to Seasonal (S2S) Forecasts”

Judah Cohen, Dim Coumou Jessica Hwang, Lester Mackey,
Paulo Orenstein, Sonja Totz and Eli Tziperman

1 Cluster-based prediction

1.1 Introduction

The supplemental information contains a description of the clustering-based
prediction approach, which is an improved version of that presented in S.
Totz, E. Tziperman, D. Coumou, K. Pfei↵er, and J. Cohen, “Winter precipi-
tation forecast in the european and mediterranean regions using cluster anal-
ysis.” Geophys. Res. Lett., 44 (doi:10.1002/2017GL075674):12,418–12,426,
2017. The corresponding code is available at
https://www.seas.harvard.edu/climate/eli/Downloads/Clustering-based-prediction/
European-temperature-2018b/

1.2 Cluster-based prediction methodology

Given the time series of the quantity to be predicted (predictand, e.g.,
anomaly winter (DJF) precipitation) and precursors (predictors, e.g., au-
tumn (SON) sea ice cover and snow cover extent), we calculate the clusters
of the predictand, and then use them to construct the prediction as described
below. In order to obtain a cross-validated forecast, we choose one year to
be predicted and then use all other years in order to build the prediction
model. This is repeated for all years and the skill presented below is the
average over all of these prediction calculations. For each predicted year, we
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first remove the mean of the precipitation using data from all years except
for the predicted year.

Consider a forecast of precipitation anomaly time series at several loca-
tions, given by the predictand vector prcp(t). These precipitation data will
be predicted using given precursors, e.g., time series of snow cover extent
anomalies at several spatial locations given by the time-dependent vector
sce(t), and time series of sea ice extent at several spatial locations, sic(t).

We assume that there are Nclusters significant precipitation clusters. We
use bold upper case variable names to denote clusters and composites, and
lower case bold variable names to denote time series data. The predic-
tion procedure requires the winter (DJF) precipitation clusters PRCPi,
i = 1, . . . , Nclusters and the corresponding precursor composites (e.g., sea
ice cover and snow cover extent anomalies from the autumn SON mean),
COMPOSITEi. The clusters are calculated using hierarchical clustering
of the winter precipitation anomaly data, while the composites for a given
cluster i are calculated by averaging the predictors over all times in which
the precipitation anomaly is assigned to its cluster i.

We also need a time series of the autumn-mean (averaged over SON)
precursor anomaly (predictors) precursor

SON
(t), for each spatial location.

The time t denotes the year, where the precursors are evaluated during the
fall (SON) and the precipitation of that year refers to the following DJF. For
example, if the precursors are sea ice and snow cover, the vector of precur-
sors (predictors) time series, and the vector of composites are calculated as
follows.

First, we remove the mean of each precursor using all precursors data
except the predicted year. Next, we normalize each precursor by the standard
deviation. Finally, we combine di↵erent precursors into a single vector,

sic
0
SON

(t) = sicSON(t)� sicSON

dsicSON(t) = sic
0
SON

(t)/�sic

precursor
SON

(t) = (dsicSON(t), dsceSON(t))
T

The variable sicSON is the time mean of the sea ice concentration using all
times except the predicted year. The variable �sic is the standard deviation
over all times and all grid points.

Then, we find the composites of the di↵erent autumn predictors by av-
eraging the normalized predictors (dsce(t),dsic(t)) over all autumn seasons
(SON) for which the following winter precipitation anomaly is assigned to a
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given cluster. The predictor’s composites of the same cluster are combined
into one composite

COMPOSITE1,2 = (SIC1,2,SCE1,2)
T

To obtain the prediction for the precipitation, we first find the projection of
the current state of the predictors (snow cover and sea ice) on the Nclusters

predictor composites corresponding to the precipitation clusters.
Each predictor composite is associated with a precipitation cluster and

provides information about the amplitude and spatial structure of winter
precipitation expected given the autumn predictor composite. This allows
us to calculate the expected precipitation pattern due to the projection of
the current state of predictors on each cluster. Finally, we sum the contri-
butions to the precipitation due to all clusters, to obtain the predicted total
precipitation anomaly.

Mathematically, this proceeds as follows. To calculate the projection of
precursor

SON
(t) on the composite COMPOSITEi, we expand the current

precursor state in terms of the precursor composites, to find the expansion
coe�cients, noting that the composites are not necessarily orthogonal. The
expansion takes the form,

precursor
SON

(t) ⇡
NclustersX

i=1

ai(t) COMPOSITEi.

The expansion may only be approximate because the composites are not
necessarily a complete set of vectors. To find the expansion coe�cients ai(t),
multiply by precursor composite COMPOSITEj, remembering that they
are not necessarily orthogonal,

precursor
SON

(t) ·COMPOSITEj =
NclustersX

i=1

ai(t) COMPOSITEi ·COMPOSITEj.

Next, we write this as a matrix equation for the unknown vector a(t) of
coe�cients ai(t). Define a matrix, Bij = COMPOSITEi ·COMPOSITEj,
and the right-hand side �j(t) = precursor

SON
(t) · COMPOSITEj. This

leads to the linear equations,

B a(t) = �(t),

that may be solved for the coe�cients ai(t) at every time step (year t) in
the data. Given that the matrix B may be ill conditioned, there may be
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many solutions for a(t). We choose the one with the smallest norm, using
the SVD-based pseudo inverse such that singular values that are smaller than
1% of the largest singular value are set to zero (using python’s pinv-function
with the threshold set to 0.01).

The final expression for the predicted precipitation anomaly is obtained
by summing the contribution of all clusters, each multiplied by the projection
of the current state of precursors, a(i),

prcp(t) =
NclustersX

i=1

ai(t) PRCPi. (1)
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2 Alternative Statistical Learning Approaches

kNN

Given the vector of features (e.g., lagged measurements, model forecasts, tem-
poral characteristics, and geographic characteristics) associated with a target
date and forecast region, a k-nearest neighbor (kNN) method would search
for the historical dates and regions (“neighbors”) with features most similar
to the target. The predicted weather pattern would then be a weighted av-
erage of the realized weather patterns associated with all neighbors. Such
kNN approaches are especially popular in recommender systems (Bobadilla
et al., 2013), where the algorithm is used to recommend items similar to
items previously enjoyed by a customer or to recommend items enjoyed by
customers similar to target customer. See Chapter 13 of Hastie et al. (2001)
for more details.

Random forests

A decision tree is a prediction method that hierarchically partitions fore-
casting targets into homogeneous groups based on associated features (e.g.,
lagged measurements, location, and model forecasts) and forecasts the aver-
age historical weather pattern in each group. A random forest is an ensemble
method that aggregates many di↵erent trees by averaging their predictions.
To make the individual trees more diverse, the method uses only a ran-
domly selected subset of features to create each partition. Random forests
(Breiman, 2001) and the closely related Bayesian additive regression tree
method (Chipman et al., 2010) have led to state-of-the-art performance in
a wide variety of prediction tasks including predicting disease progression in
Lou Gehrig’s disease patients (Kü↵ner et al., 2015) and identifying breast le-
sions at high risk of cancer (Bahl et al., 2017). For more details and examples,
see Chapter 8 of James et al. (2013).

Boosted decision trees

Boosting (Freund & Schapire, 1997) is a learning method which sequen-
tially combines lower-accuracy prediction rules, like decision trees, into a
final higher accuracy ensemble. For boosted decision trees, we train a se-
quence of decision trees sequentially, each to correct the errors of the last:
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start by growing a tree to predict a target variable (e.g., future temperature
on a given location), build a second tree to predict the mistakes made by the
first tree, and then keep building trees to predict on the errors of the previous
one. The aim is to improve prediction performance with the addition of each
new tree. Boosting has delivered state-of-the-art performance for a variety of
prediction tasks including Higgs Boson classification in high-energy physics
and insurance claim classification (Chen & Guestrin, 2016). More details
can be found in Chapter 8 of James et al. (2013).

Gaussian processes

An extremely popular model in spatial statistics, Gaussian process regression,
views the response variable (temperature, precipitation, etc.) as a smooth
spatial surface. The smoothness of the surface is controlled by the covariance
function of the Gaussian process, and spatial trends in the response variable
are controlled by the mean function. The mean function can depend on
additional features such as lagged measurements or other model forecasts.
The result is a regression model that takes into account spatial dependencies.
Gaussian processes have been used to forecast wind speed (Chen et al., 2014)
and predict forest biomass (Banerjee et al., 2008). For an overview of the
methodology, see Rasmussen & Williams (2006).

Neural networks

Neural networks are a highly flexible model class for relating a collection of
inputs (e.g., lagged measurements or model forecasts at a set of locations)
to a collection of outputs (e.g., temperature measurements at a set of lo-
cations). The inputs undergo a series of nonlinear transformations in the
neural network’s hidden layers; as the neural network is trained, the weights
associated with these nonlinear transformations are learned in order to min-
imize prediction error. Neural networks, particularly deep networks with
many hidden layers, have dramatically improved performance on a variety
of learning tasks, including image recognition and machine translation (see,
e.g., Deng & Yu (2014)).
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Causal e↵ect networks

Causal discovery algorithms allow for interpretation of causal links between
variables by determining whether we can say that, statistically, x provides
more information about future values of y than past values of y alone. The
causal e↵ect network (CEN) aims to detect causal relationships amongst a set
of time-series by iteratively testing the partial correlations conditioning on
combinations of other time-series at di↵erent lags Kretschmer et al. (2016).
Thus, causal links in the CEN are those for which the linear relationship
cannot be explained by the (combined) influence of other included indices or
by auto-correlation. CEN is related to Granger-causality but allows for much
stronger causal statements beyond, for example, the bi-variate only concept
Kretschmer et al. (2016).

Classically, one of the major limitations of statistical forecast models has
been overfitting, which results in very high correlations to R-squared values
on training data but the forecast fails on independent test data. Recent
studies have introduced causal discovery algorithms to identify the causal
precursors and remove those that arise from spurious correlations. This is
an e↵ective way to avoid overfitting problems and has resulted in robust
statistical forecasts of polar vortex (PV) strength (Kretschmer et al., 2017)
and Indian summer monsoon rainfall (Di Capua & Coumou, 2016).
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Supplementary Figure 1. Daily polar cap (area averaged 60-90°N) geopotential height 
anomalies (PCHs) from November 1, 2017 – March 31, 2018 from the surface through the mid-
stratosphere.  Stratospheric polar vortex disruption in early February (characterized by transition 
of PCHs from negative to positive) descends into the troposphere in mid-February.  
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