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Non-normal growth of Kelvin–Helmholtz eddies in a sea breeze
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The generalized stability of a sea-breeze front is analyzed using a two-dimensional model.
The objective is to understand the mechanisms leading to the shedding of eddies behind
the sea-breeze front, as seen in observations, laboratory experiments and numerical
models. Regions with Ri < 1/4 are not always associated with instability in this spatially
inhomogeneous flow and significant transient growth is found in the absence of normal-
mode instability, for both Ri ≤ 1/4 and Ri > 1/4. The energy source for optimal growth
is the vertical shear of the mean horizontal wind, the vertical shear in the upper part
of the front and the horizontal shear in the lower part. The growth begins with vertical
advection by the perturbation velocity of the mean flow momentum located in the upper
part of the front. Perturbations eventually propagate away from the localized shear area
and a feedback mechanism is needed for this growth to be sustained. This feedback occurs
through temperature anomalies in the upper part of the front inducing pressure-gradient
anomalies in the lower part. These gradients lead to a growing vertical wind component and
this vertical wind component then enters the upper part of the front, which reinforces the
extraction of energy, thereby closing the feedback loop and leading to both normal-mode
instability and, in the stable regime, large non-normal growth. We find that both the
instability and the non-normal growth are vulnerable to parameter changes that weaken
this feedback loop.
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1. Introduction

Sea-breeze dynamics have been extensively studied using
observations as well as analytical and numerical models (e.g.
Atkinson, 1981). The sea-breeze frontal region is strongly
turbulent and is characterized by extensive mixing between cool
and humid sea air and dry and warm land air. This frontal
region is an example of a density current (also known as a gravity
current), other examples of which include cold gust fronts in
thunderstorm outflows and ocean overflows. Density currents
have been extensively studied in the laboratory (Simpson, 1969,
1972; Simpson and Linden, 1989; Britter and Simpson, 1978,
1981; Britter and Linden, 1980; Linden and Simpson, 1986).
Several eddies are typically seen behind the leading edge of density
currents, in both observations (Lapworth, 2000; Plant and Keith,
2007) and numerical simulations (Sha et al., 1991; Buckley and
Kurzeja, 1997a, 1997b) These eddies have usually been identified
with billows due to Kelvin–Helmholtz (K–H) instability.

Xue et al. (1997) showed in numerical simulations that, in the
presence of strong shear at the density-current interface, K–H like
billows are shedding periodically at the back edge of the elevated
head of the advancing density current. As these billows move
backward, they lead to an entrainment of lighter air from above

into the denser air below (see figure 6(a) of Xue et al., 1997),
producing a mixed transition layer that is roughly half the depth of
the head of the advancing gravity current (figure 6(b) of Xue et al.,
1997). Such billows are characteristic of numerically simulated
density currents in high-resolution models (Droegemeier and
Wilhelmson, 1987; Xu et al., 1996) as well as in laboratory
experiments (Benjamin, 1968; Britter and Simpson, 1978).

The horizontal wavelength of the fastest growing perturbation
in a shear layer of thickness h has been shown to range from
4.4h (Drazin, 1958) to 7.5h (Miles and Howard, 1964), which has
been argued to be consistent with K–H instability (Droegemeier
and Wilhelmson, 1987; Mueller and Carbone, 1987; Sha et al.,
1991). Similar length-scales were also observed in thunderstorms
(Droegemeier and Wilhelmson, 1987) and in laboratory gravity-
current experiments (Xue et al., 1997; Maxworthy et al., 2002).
However, in these studies no explicit stability analysis was
performed and the inference of a K–H instability was based
on satisfying the necessary condition for instability, i.e. that the
Richardson number,
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is less than the critical value, Ri < 1/4. On the other hand,
both observations (Lapworth, 2000) and simulations (Sha et al.,
1991; Xue et al., 1997) reveal that disturbances resembling
Kelvin–Helmholtz eddies arise and grow in regions where
1/4 < Ri < 1, larger than the critical value associated with the
necessary condition for K–H instability.

Farrell and Ioannou (1993) examined the generalized stability
and transient non-normal growth as a function of Ri for
background states with constant shear and stratification. They
found substantial growth of perturbations in shear flows even
for Ri = O(1) and that for such transient growth no special
significance is attached to Ri = 0.25.

The purpose of this article is to examine normal and non-
normal growth of eddies behind the leading edge of a sea-breeze
front. We show that these eddies develop in stable as well as
in unstable flows and that non-normal growth can explain
observations of turbulent flow with Ri > 0.25. We also show
that flows are often stable even when Ri < 0.25. Finally, we
discuss the instability mechanism of a sea-breeze front and show
that it must be different from the classical K–H instability in
some major aspects.

We use a nonlinear model to find the basic state of the sea-
breeze front, but our stability analysis is linear. While we show
that many observed features can be explained within this linear
framework, it is known that nonlinearities can be important
to many aspects of the sea-breeze circulation. Nonlinearity
influences the evolution of frontal structure and its inland
propagation, which were studied numerically by Estoque (1961),
Pearson (1973), Physick (1976) and Neumann and Mahrer (1971)
and analytically by Feliks (1988, 2000).

In the following sections we describe the model equations
(section 2), analyze the growth mechanism in the unstable case
(section 3) then discuss non-normal growth in the stable regime
(section 4) and conclude in section 5.

2. Model equations

We study the generalized stability of a propagating front in the
(x, z) plane, where x is the cross-coast direction and z is the
vertical. The front and perturbations are assumed homogeneous
in the along-coast (y) direction. This simplification is consistent
with the typical observed cross-coastal length-scale being about
50 km, while the scale in the along-coast direction is often larger by
an order of magnitude. We first use a nonlinear time-dependent
model to calculate the base state of the sea breeze and then
proceed to linearize and simplify these equations for the stability
analysis. The nonlinear Boussinesq incompressible hydrostatic
approximation model equations are
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The pressure is calculated from the hydrostatic equation. The
wind components in the (x, y, z) directions are u, v and w.
The diffusion coefficients in the horizontal and vertical are
Kh = 5 × 102 m2 s−1 and Kv = 1 m2 s−1, respectively. We choose
constant diffusion coefficients in order to simplify the analysis.
There are many formulations of the vertical diffusion coefficient

as a function of height z. Since the fit of the results with
these formulations to observations is controversial (Jeričević
and Večenaj, 2009), we used the simplest constant-coefficient
approximation and we study the sensitivity of the mechanism to
the value of this coefficient; see the additional discussion in the
appendix. The Coriolis parameter is f = 14.585 × 10−5 sin(32◦)
and g = 9.81 m s−2 is the acceleration of gravity. Reference values
of the potential temperature and density are θm = 300 K and
ρm = 1.3 kg m−3, respectively. The lower boundary condition
parametrizes a constant-stress surface layer (below our first model
level, see appendix) in which the stress is given by a surface drag
law with drag coefficient CD = 10−3 over water and CD = 10−2

over land, so that
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where uh and vh are the components of the surface velocity at
the top of the first grid box, z = h. We specify w = 0 at z =0.
The upper boundary is taken to be at a height of 5440 m and is
assumed to be a rigid lid (where w = 0 as well), with u and v
set there to specified values representing a uniform geostrophic
wind ug and vg. The potential temperature at the upper boundary
is held constant at θ = 318.4 K and p is determined there from
the prescribed wind using geostrophic balance. The sea-surface
temperature is assumed constant, while the ground temperature
is prescribed to vary periodically to simulate a diurnal cycle:

θ(x, t) =
{

300 K + θ0 sin(ωt) x > 0 (land),

300 K x < 0 (sea),
(4)

where ω = 2π/24h and t = 0 is the time at which the prescribed
land and sea temperatures in Eq. (4) are equal (approximately the
time of sunrise; see the discussion in the appendix). The model
extends in the x direction for 50 km over the sea and 50 km over
land and x = 0 is the coast location. At the seaward and landward
side boundaries, the normal derivatives of u, v and θ are set to zero.
Convective adjustment is applied during the model integration
when the vertical gradient of the potential temperature falls below
10−2 K km−1 and therefore maintains the atmosphere in a weakly
stable state. Numerical details are summarized in the appendix.

In the first experiment considered below, the geostrophic
velocities prescribed on the upper boundary are ug = −1.9 m s−1,
vg = 0 and the amplitude of the diurnal cycle in land temperature
is set to θ0 = 4.5 K. We integrated the model for 200 days until it
approached a nearly periodic diurnal solution. Some very weak,
seemingly chaotic, variability due to model nonlinearity remains,
possibly due to an interaction with inertial oscillations as shown
by Feliks (2004). We averaged the state at t = 8 h over the last 40
days to eliminate this variability and used this average as our base
state. Figure 1 shows the circulation, averaged over the last 40
days, at times during the day when the front is most developed,
showing that the circulations over sea and land are reasonably
realistic and similar to those reported in previous studies (e.g.
Estoque, 1961; Pearson, 1973; Physick, 1976; Neumann and
Mahrer, 1971; Sha et al., 1991). The front propagates inland at
an almost constant speed of c = 1 km h−1 and its shape is not
significantly changed while propagating. To simplify the study of
the generalized stability of the front, we therefore assume that (i)
the front keeps its spatial structure while propagating and (ii) the
front propagates at a constant speed and we examine the evolution
of perturbations to the propagating front in a coordinate frame
moving at that same speed.

We choose the mean state for our experiment 1 below to be
the nonlinear solution at t = 8 h (i.e. 8 h after the ocean and
land temperatures are equal, or about 8 h past sunrise). Now let
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Figure 1. The mean sea-breeze circulation for experiment 1 (analysis of normal-mode instability and non-normal growth). The times during the day at which the
front is most prominent are shown. Both axes (x, z) are in km, contours are of potential temperature, the contour interval is 1 K and arrows represent the (u, w) wind
velocities. Note that the computational domain extends from −50 to 50 km and only part of it is plotted here, to allow focusing on the front structure.

θ = θ̄ + θ ′, where θ̄ is the mean state potential temperature and
θ ′ is the perturbation potential temperature; similarly, introduce
small perturbations to the other fields. When written in the
moving coordinate frame, where x is replaced by x − ct and ū by
ū − c, under the above two simplified assumptions the horizontal
advection terms take the form (ū + c)∂A′/∂x, where A′ stands for
u′, v′ or θ ′. With the model equations linearized about (ū, v̄, θ̄),
the perturbation equations are
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We linearize the lower boundary condition (3) to find
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ū2
h + v̄2

hu′
h,

Kv
∂v′

∂z

∣∣∣∣
h

= CD(ū2
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The perturbation vertical velocity, w′, and potential temperature,
θ ′, vanish at the upper and lower boundaries. At the side
boundaries the normal derivatives of u′, v′ and θ ′ are set to
zero, as in the fully nonlinear model (see the appendix for more
details).

We denote the domain average, the integral over the volume
divided by the (x, z) domain area, by 〈〉; [] denotes an integral
with respect to z divided by the domain height; and {}xw

xe
denotes

the difference of the enclosed term between the horizontal
boundaries (i.e. the net flux into the domain through the
vertical side boundaries) divided by domain length. Further,

define α = g
(
θm∂θ̄/∂z

)−1
and the kinetic, potential and total

domain-averaged energies (J m−2) are
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The derivations of the kinetic and potential energy equations are
given in the appendix. The rate of transfer between kinetic and
potential energy is given by〈

w′θ ′ g
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and the total energy equation for our set of equations is the sum
of kinetic and potential energy equations (A2) and (A3), given by
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2.1. Optimal initial conditions and linear stability

Using finite differencing, the linearized equations for u′, v′ and θ ′
(Eq. (3)) may be written in vector form as

BPn+1 = BPn = BnP0, (10)

where P is the state vector of anomalies on the model’s 2D grid:

P = [u′
1, u′

2 . . . u′
k, v′

1, v′
2 . . . v′

k, θ ′
1, θ ′

2 . . . θ ′
k], (11)

where k is the total number of grid points and B is the 3k×3k
propagator (matrix) of the finite-difference linearized model.

Write the total energy integrated over the domain (Eq. (7)) as

〈ET〉 = P(τ )TXP(τ ),
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Figure 2. Total energy growth factor as a function of optimization time τ . The
results of experiment 2, in which the propagator is stable, and experiment 1, in
which the propagator is unstable, are shown. Also shown is the initial total energy
of the optimal initial conditions (ET(0), set to one) times an exponential growth
factor ET(0) exp(2τ/T), where T is the growth time-scale obtained from the most
unstable eigenvalue of the propagator B of experiment 1. The growth due to
normal-mode instability is seen to be much slower than the non-normal growth.

where the matrix X is known as the energy-norm kernel. Optimal
initial conditions are those that maximize the state vector norm
P(τ )TXP(τ ) at a time τ = n�t, where �t = 1 s is the model
time step, subject to a constraint on the initial conditions
P(0)TYP(0) = 1. Y may, in principle, be a different norm kernel
constraining the amplitude of the optimal initial condition. The
optimal initial conditions in the non-normal growth problem are
the solution of the eigenproblem (Farrell, 1988, 1989; Farrell and
Ioannou, 1996)

Y−1BnTXBne = λe (12)

with the largest eigenvalue λ. Unstable normal modes are
eigenvectors of B itself, whose eigenvalues are larger than one
in absolute value. The unstable mode is almost perpendicular to
the optimal initial condition e found in the non-normal growth
problem. One can also analyze the propagator using singular-
value decomposition (SVD: Farrell and Ioannou, 1996), revealing
additional interesting properties of the non-normal dynamics.

3. Analysis of unstable normal-mode growth mechanism and
comparison with classical K–H instability

We find that the nonlinear solution at t = 8 h may be stable or
unstable depending on the value of the specified geostrophic
velocity at the top of the domain, ug. Similarly, the basic
state may also allow for non-normal growth, depending on
the value of ug. We wish to explain the mechanism by which this
occurs. We consider first the regime for ug ≤ −1 m s−1, which
is characterized by a sharp front structure that always allows for
non-normal growth and may be either stable or unstable for
different values of ug ≤ −1. For this parameter regime, we first
explore the normal-mode instability mechanism and show that
it is qualitatively different from the classical K–H mechanism.
This mechanism is also responsible for non-normal growth in the
parameter regime in which the model is modally stable, which is
analyzed in the following subsection. We then show that even in
the unstable regime the non-normal amplification dominates the
growth.

Setting ug to −1.9 m s−1 (experiment 1 in Table 1), the
eigenvalue with largest absolute value of the propagator B
(Eq. (10)) is

λ = |λ|eiφ = λr + iλi = 1.000028 + 0.0000985 i.

This complex eigenvalue implies an oscillatory behaviour and
translates into an exponential growth time of about �t/ ln |λ| =

Figure 3. Kinetic energy growth factor; curves are as in Figure 2. The dashed
line denotes the initial kinetic energy of the optimal initial conditions (for
which ET(t = 0, τ ) is equal to one) times an exponential growth factor
Ek(t = 0, τ ) exp(2τ/T).

9.9 h and an oscillation period 2π�t/φ = 17 h (�t = 1 s is
the model time step). If normal-mode instability is the main
contributor to the growth, we expect the energy growth factor to
be e2 after 9.9 h. The norm used in the experiments of this section
is the total energy norm (ET) based on Eq. (7). Energy growth
factors for the total, kinetic and potential energies are defined as

growth factor{T,k,p} = 〈E{T,k,p}(t)〉/〈ET(0)〉,

where the initial perturbation is the one leading to optimal
growth at t = τ and τ is referred to as the optimization time.
Figures 2 and 3 show that the growth factor is larger than the
normal-mode growth predicts by two orders of magnitude even
after two and half hours, implying that energy growth is due
to non-normal dynamics even in the unstable regime. At later
times normal growth eventually dominates, of course, if the
mean state is unstable (Farrell and Ioannou, 1996). Still, the
integration starting from the optimal initial conditions maintains
its lead at later times over the one starting with the most unstable
eigenvector structure, although both have the same unit initial
amplitude as measured by the energy norm, P(0)TXP(0) = 1.

Figures 4 and 5 show the optimal initial perturbation for τ =1 h
and its evolution at selected times. The perturbation circulation is
composed of two eddy-like features. One is completely contained
within the lower 1500 m or so on the landward side. The second,
clockwise eddy, is found above the first eddy and a third eddy splits
from the seaward part of the second eddy (Figure 4(b)) and is
advected seaward (Figure 4(b)–(d)). This structure is reminiscent
of observations of shedding seaward-propagating K–H billows
behind fronts (Lapworth, 2000; Plant and Keith, 2007). At later
times, the new formed eddies reverse direction and continue to
grow via the same mechanism. Figure 6 shows the structure of
the most unstable normal mode. The structure of the eddies in
Figures 4 and 5 is very similar to a linear combination of the
real and imaginary parts of this most unstable mode and they
are the dominant feature in the model evolution (Figure 4) for
t > 0.5 h.

In the classical K–H normal-mode instability, a perturbation of
harmonic form in x is assumed to exist in a shear flow with stable
or neutral stratification in which the shear is unbounded in the
shear-parallel (x) direction. The mode energy then grows via the
shear production term −〈u′w′∂ ū/∂z〉 (Eq. (9)) but the structure
of the mode is constrained by the stratification, such that for
Ri > 0.25 the mode is necessarily stable while for Ri < 0.25 the
mode may be unstable. Interestingly, the unstable and growing
eddies in our model are partially or completely contained in
regions with Ri > 0.25 (cf. the unstable mode in Figure 6).
Consistently, detailed analysis shows that the extraction of kinetic

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 2147–2157 (2014)
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Figure 4. The evolution of the optimal perturbation of experiment 1 at selected times. Grey areas indicate Ri > 0.25, arrows denote u′, w′. The absolute value of the
perturbation is not meaningful, as it reflects the linearized dynamics.
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Figure 5. Contours showing the evolution of potential temperature for the optimal perturbation of experiment 1 at selected times. Solid contours are positive and
dashed contours are negative. The contour interval is 0.0075 in (a) and 0.015 in (b)–(d).

and potential energy from the mean occurs in regions with
Ri > 0.25.

3.1. The instability mechanism

Consider now the instability mechanism for the unstable growth
in our case, using the regions in the (x, z) plane outlined by
the white rectangles in Figure 7. Region A, where we find the
perturbation growth to be substantial (not only where Ri < 0.25),
is finite in spatial extent and the perturbations eventually exit it.
In order to create sustained growth and therefore an instability,
a mechanism that feeds these perturbations back to the locally
unstable part of region A is required. We first describe this
mechanism qualitatively and then demonstrate it in more detail
using the model results.

This feedback loop is closed and augmented by the growth
of perturbations in region B, which is contained within the
boundary layer. The amplification of u′ in the seaward part of
region B is mainly due to the pressure gradient, ∂p′/∂x. This
boundary-layer pressure gradient, in turn, is determined by θ ′ in
A via the hydrostatic equation. In the landward part of region B,
amplification of u′ is mainly due to horizontal shear of the mean
flow term −u′∂ ū/∂x. The amplified u′ in B results in an increase

in the horizontal derivative of u′ near the landward side of B,
which then leads to a growing w′ at the top of B and also in the
lower part of A. The growing w′ in A causes further growth of
u′ and θ ′ there via the energetic term discussed above associated
with the vertical shear. Thus, anomalies in region A enhance
perturbations in B and vice versa and this closes the feedback loop
that enables indefinite normal-mode instability to occur.

To summarize the instability feedback loop: perturbations in
region A grow by extracting energy from the mean vertical shear
and stratification; region A affects region B by determining its
pressure gradient via θ ′ in A; region B affects A by inducing
a growing w′ that feeds back into A, completing the feedback
loop.

The deciphering of the above mechanism is complicated
because the terms leading to growth in regions A and B are
not necessarily the locally and instantaneously dominant terms in
the momentum and energy equations. We note that the dynamics
cannot be diagnosed unambiguously to identify local growth
mechanisms by examining the terms in the energy equation,
whether expressed in terms of perturbation fluxes or in terms
of flux divergence. This is because energy can transfer from a
source region to another region by a variety of mechanisms
including pressure forces and wave momentum fluxes. In order
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Figure 6. The structure of the unstable mode. Panels (a) and (b) show the real part, while (c) and (d) show the imaginary part. Grey areas in (b) and (d) indicate
Ri > 0.25, arrows denote u′, w′. Contours of potential temperature are shown in (a) and (c); the contour interval is 0.15.
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Figure 7. A schematic of the growth mechanism involving interaction between
a K–H like growth mechanism in the upper part (rectangle A) and the feedback
via the lower part (B). Above the thick black contour line Ri > 1/4 and below it
Ri < 1/4. While this schematic provides the essential part of the feedback loop
leading to non-normal growth and to normal-mode instability, some additional
terms are found to contribute significantly to the instability mechanism. These
are ∂p′/∂x in the upper part (A) and w′∂ ū/∂z and u′∂ ū/∂x in the lower part of
the sea-breeze front (B).

to get around this difficulty in interpretation and demonstrate
the above picture of the instability feedback loop, we performed
a set of experiments as described in Table 1, in which we turn
off different terms in the linearized equations and observe the
stability consequences. We multiply a given term by a weight γ
and gradually vary this weight between 1 and 0 and follow the
change of the largest unstable eigenvalue of the propagator B
(Eq. (10)) as the term being examined is gradually decreased.
Table 1, experiments 3–8, shows the different terms analyzed
this way and Figure 8 shows the results of this analysis for one
of the experiments. The most unstable eigenvalue (λ) of the
propagator B for γ = 1 is calculated and is then tracked and
plotted as γ gradually goes to zero. This eigenvalue represents
a specific physical mode (the structure of which is given by
the corresponding eigenvector) and therefore a specific growth
mechanism. If this specific mode is stabilized as γ is reduced
(as is indeed the case in this example), this indicates that term
multiplied by γ is indeed critical to the growth mechanism.
Note that, as the once-largest eigenvalue changes with γ and is
tracked in the analysis, it does not necessarily remain the largest
eigenvalue any more. Using this analysis, we identify which terms
are essential to the instability. These essential terms are indicated
in Figure 7 and their contribution to the growth is further
discussed in section 4.

The instability analyzed here is distinct from the classical
K–H instability in several ways. Firstly, crucial energy for the
growing perturbations comes from the terms u′u′∂ ū/∂x and
θ ′u′∂θ̄/∂x in Eq. (9), which represent the extraction of kinetic
and potential energy from the horizontal gradients within the
front (see the analysis in section 4) rather than only from
the vertical gradient as in the K–H case. Secondly and more
importantly, our domain is finite and perturbations are advected
out of the unstable region and therefore would not grow
exponentially in time without the feedback loop discussed above.
This feedback loop may be said to allow ‘absolute instability’, i.e.
the perturbations grow in time at every fixed point in the domain,
as opposed to ‘convective instability’, where even though the
overall norm of the perturbation grows in time, perturbations
decay locally at every fixed point in the unbounded domain.
In other words, the growing perturbation is transported, or
convected, towards infinity (Briggs, 1964; Merkine, 1977; Farrell,
1982).
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Experiment 5

Figure 8. Example of determining the importance of specific terms in the
momentum equation to the growth mechanism. In this example the term ∂p′/∂x
is multiplied by a factor γ , which is varied between 1 and 0 in steps of 0.025.
Circles (◦) indicate a stable model regime and crosses (×) mark an unstable one.

Table 1. List of experiments and corresponding model parameters. A and B
denote the rectangles shown in Figure 7.

# ug (m s−1) Description Results

1 −1.9 Unstable
1a–f [−3.5, 1] sensitivity to ug Stable or unstable
2 −2. Stable non-normal growth
3 −1.9 u′ ∂ ū

∂x = 0 in B Oscillatory mode stabilized, stable
solution

4 −1.9 w′ ∂ ū
∂z = 0 in B Oscillatory mode stabilized, stable

solution

5 −1.9 ∂p′
∂x = 0 in B Oscillatory mode stabilize stable

solution
6 −1.9 w′ ∂ ū

∂z = 0 in A Oscillatory mode stabilized, stable
solution

7 −1.9 ∂p′
∂x = 0 in A Oscillatory mode stabilize, unstable

solution

8 −1.9 w̄ ∂θ ′
∂z = 0 in A Oscillatory mode stabilized, stable

solution
9 0.5 Stable solution
10 −2 Kv = 5 m2 s−1 Stable non-normal growth

4. Analysis of stable non-normal perturbation growth

Consider next the generalized stability of the front in the
parameter regime where the eigenvalues of B are all smaller
than 1 in absolute value, indicating that the specified background
mean flow is stable to small perturbations. In this case, while
all initial perturbations eventually decay, transient growth in the
energy of initial perturbations can arise from the non-normality
of the propagator (Farrell and Ioannou, 1996). As before, we take
the background fields for this analysis from an average over the
last 40 days of a 200 day integration of the nonlinear model at
t = 8 h, but this time with the geostrophic velocity at the top
of the domain set to ug = −2 m s−1 (experiment 2 in Table 1).
The mean circulation for experiment 2 is quite similar to the
circulation in experiment 1 (Figure 1). This specification leads
to a stable propagator B (Eq. (10)). The energy growth factors
for optimal perturbations in 〈ET〉, 〈Ep〉 and 〈Ek〉 (Figures 2 and
3) reach their maximum as functions of the optimization time
for τ = 0.4 h. The energy growth of optimal perturbations in
the stable case is significantly larger than that of the unstable
mode in the first 2 h. We will see that in the stable case the
growth mechanism of optimal initial perturbations is similar to
the normal-mode instability mechanism discussed above, except
during the first few minutes. The growth occurring over the first
few minutes is made possible because the optimal is able to take
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Figure 10. The optimal perturbation of experiment 2 at t = 1 h. Grey areas
in (a) indicate Ri > 0.25, arrows denote u′, w′. Contours in (b) are potential
temperature. Solid contours are positive and dashed contours are negative.

advantage of physical mechanisms not available to the normal-
mode instability. The energy growth (Figure 9) is impressively
large, with the maximum total energy growth factor being 360.
The maximum kinetic energy growth factor is 17 (note the factor
of 10 applied to it in the figure), with the majority of the growth
due to potential energy. The kinetic energy growth is of special
interest because it is associated with the eddies shed behind
the propagating front, which are seen in both observations and
numerical experiments. Figure 10 shows the evolution at t = 1 h.
The initial perturbation and its evolution in time are very similar
to those of experiment 1 (Figures 4 and 5), indicating a similar
growth mechanism. The eddies shed behind the front are more
prominent in this experiment compared with the similar eddies
in experiment 1. These eddies resemble the seaward-propagating
K–H billows behind fronts in observations (Lapworth, 2000;
Plant and Keith, 2007).

The fact that the non-normal growth mechanism differs from
the normal-mode instability mechanism during the initial interval
is best seen via the tendency terms in the energy equation (Eq.
(9)) and Figure 12, where these terms are normalized by 〈ET(t)〉
and this normalization is indicated by (∗). During the initial
15 min. the dominant terms affecting the normalized potential
energy 〈Ep〉∗ (Eq. (A3)) are −〈αθ ′u′∂θ̄/∂x〉∗ (solid line) and
〈θ ′2ū∂α/∂x〉∗ (line denoted by + symbols). The first term reflects
the formation of perturbation buoyancy by the advection of mean
horizontal stratification by perturbation velocity around the front
(Figure 11(a)). The second term reflects the propagation of
perturbation buoyancy from its initial location within the stable
boundary layer over the ocean to the weakly unstable area near the
front, where α is much larger, leading to a large potential energy
growth as shown in Figure 5(a) in the unstable case. Neither of
these processes is available to modal K–H instability, which relies

solely on vertical shear for its growth. The mechanism due to the
second term is not exploited by the normal mode, which grows
almost entirely away from the stable boundary layer over the
ocean. After the first 15 min, the first-term mechanism continues
to be important, while the second-term mechanism contribution
to growth rapidly decreases.

Kinetic energy growth (Eq. (A2)) during the first 10 min
(Figures 9 and 12(b)) is dominated by −〈u′u′∂ ū/∂x〉∗ and
−〈u′w′∂ ū/∂z〉∗. The first term represents energy extraction
associated with the mean strain rate in x, ∂ ū/∂x, which is not
available to the classical normal mode K–H instability in purely
vertical shear. The second term reflects the familiar extraction of
kinetic energy from the mean vertical shear.

Beyond the first 15 min or so, the stable non-normal growth
mechanism approaches the normal-mode instability mechanism
discussed in the previous section. The spatial structure of these
terms is shown in Figure 11(b) and (c) at t = 1 h. The term
−〈u′u′∂ ū/∂x〉∗ is significant within box B (Figure 7) at the
edge of the front where the horizontal gradient of ū is largest.
The extraction of kinetic energy by the term −〈u′w′∂ ū/∂z〉∗ is
significant in box B, where the sea breeze has strong vertical shear,
and in box A, where the return current has strong vertical shear.

In order better to understand normal versus non-normal
growth, we use several diagnostics. One is to plot the normalized
total energy rate of change (dE/dt)/E as a function of time. For
exponential growth or decay (normal modes) this quantity is a
constant in time, yet it is non-constant for non-normal growth.
Another diagnostic compares the rate of growth of a model
variable with the known rate of growth of the fastest growing
(or slowest decaying in the stable case) normal mode. Using
these diagnostics, we find that the dynamics of optimal initial
conditions are non-normal for the first 1.5 h in both stable and
unstable regimes, while subsequently the dynamics approach the
normal mode rate of growth or decay.

Non-normal perturbation growth exploits a greater variety of
mechanisms than normal-mode growth. This is consistent with
the above results in our model. In the case of normal-mode
growth, the initial conditions must be such that they grow/decay
exponentially in time. In the case of non-normal growth, the
initial conditions may start out growing using one mechanism
(e.g. the first 15 min of growth in Figure 12) and then switch to a
different one, possibly similar to the normal growth mechanism,
exactly as happens in our analysis. Thanks to this freedom to start
with a different mechanism, the total non-normal growth may be
much larger than the normal growth for initial perturbations of
the same overall magnitude.

In the classical picture, Ri < 0.25 is a necessary condition for
instability. Interestingly, the instabilities in our model are partially
or completely contained in an area in which Ri > 0.25 (e.g. note
the significant perturbation wind arrows in the shaded areas of
Figure 6(b)). Similarly, in our stable case, the domain contains
a region in which Ri < 0.25. This is an example of the known
result that stability cannot be deduced from Ri alone (Farrell and
Ioannou, 1993).

The alternating direction of eddies and pressure gradient within
the boundary layer behind the front represents an oscillation with
a period of about 2 h. This is qualitatively consistent with the
observations of Donn et al. (1956), who found large-amplitude
oscillations with periods of 25–40 min in the surface pressure
after the passage of the sea-breeze front, although the period is
longer in our simulations. The eddies span the moist boundary
layer and the drier air above it and therefore mix the two air
masses, as was observed by Xue et al. (1997), Lapworth (2000)
and others.

4.1. The role of the geostrophic wind in the instability process

It is clear from previous studies that the synoptic-scale geostrophic
wind over the region of the sea-breeze front influences the stability
of sea-breeze fronts and the development of K–H eddies, but the
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∂z 〉∗. (c) −〈u′u′ ∂ ū
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mechanism is still not understood (Plant and Keith, 2007). In this
section we study front stability as a function of the geostrophic
wind, keeping other parameter values as in experiment 1 above.
We perform several calculations (experiments 1a–f, Table 1) with
ug varying between −3.5 and 1 m s−1. In these experiments we
take the background fields to be an average over the last 10 days
of a 30 day integration of the nonlinear model at t = 8 h. The
propagator allows for significant non-normal growth and may be
either stable or unstable in the normal-mode sense for ug ≤ −1,
but shows no non-normal growth and is consistently stable for
ug ≥ −1 m s−1. Incidentally, the most unstable case is obtained
for ug = −2.9 m s−1. The eigenvalue with the largest absolute
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Figure 13. The sea-breeze circulation, with the geostrophic wind at the top of
the domain set to ug = 50, at the time during the day at which the front is most
prominent. Note that the computational domain extends from −50 to 50 km and
only part of it is plotted here, to allow us to concentrate on the front structure.
Compare this with Figure 1(c) to see the effect of the geostrophic velocity on the
front structure.

value of the propagator B (Eq. (10)) is

λ = |λ|eiφ = λr + iλi = 1.000126 + 0.000173 i.

This complex eigenvalue implies an oscillatory behaviour and
translates into an exponential growth time of about 2.2 h and an
oscillation period of 10.1 h. The stable case with the largest energy
growth is obtained for ug = −2.85 m s−1, very close to ug of the
most unstable case. The maximum total energy growth factor in
this case is 620 and the maximum factor of kinetic energy growth
is 43. The oscillation period is 2 h.

There are two main points to notice in this context. First,
changing the geostrophic wind leads to substantial changes in
the front structure (compare Figures 1(c) and 13). This, in turn,
changes the propagation of perturbations, which influences the
establishment of the absolute instability, resulting in transition
from stable to unstable regimes.

The stability behaviour as a function of ug can be explained as
follows. When ug ≥ −1 m s−1, and especially when it is positive,
the mean flow (Figure 13) advecting the anomalies is modified.
Specifically, the growing θ ′ anomalies that develop at the sea-
breeze front within the boundary layer (region B in Figure 7) are
advected in this case inland instead of upward into region A as
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they are in experiment 1 (Figure 1). Similarly, the u′ anomalies
are advected inland and do not lead to a large w′ in region A.
The anomalies in A are therefore not amplified and this breaks
the feedback loop described in section 3 and stabilizes the flow
(experiment 5, Table 1).

These experiments demonstrate that the transition from an
infinite domain to a finite one makes the normal-mode K–H
instability vulnerable. In a finite domain, the feedback loop
between regions A and B is critical to the existence of instability
and small parameter changes that affect this loop can lead to the
stabilization of the flow.

4.2. Sensitivity to the vertical eddy coefficient

In our analysis above, the vertical eddy coefficient (for both heat
and momentum) was Kv = 1 m2 s−1, while in some cases one
might expect it to be significantly larger in a turbulent front
scenario. In order to examine the sensitivity to this value, we
performed experiment 10, using the same parameters as in our
standard stable experiment 2 except for an increase of Kv by a
factor of 5 to Kv = 5 m2 s−1. The general evolution looks very
similar to that of experiment 2 but, with the strong damping
due to the larger dissipation, the maximum of the total energy
growth factor is reduced by a factor of 5 and that of the kinetic
energy by a factor of 2 (Figure 14). The same figure also shows
the kinetic energy growth obtained in our standard unstable
experiment 1 where ug = −1.9 m s−1; the maximum growth of
the kinetic energy in the first hour is smaller in this standard
unstable experiment than in both cases with ug = −2 m s−1,
where Kv = 1 and 5 m2 s−1. This indicates that our result showing
that the non-normal stable growth can be larger than the unstable
growth is not sensitive to the vertical eddy coefficient.

5. Conclusions

We examined the generalized stability of a sea-breeze front in both
stable and unstable regimes. Our objectives were to understand
the mechanism of normal-mode instability, which exists in part
of the parameter regime, and the mechanism of transient non-
normal growth, which is found for many other model parameter
values, and also to study the role of the geostrophic wind above
the front region.

By calculating stability explicitly using the eigenvalues of the
linearized model dynamics, we showed that areas of Ri < 0.25
do not imply that the dynamics are necessarily unstable. We
further showed that even when the model is stable there exists
a large amplification of initial conditions, via the mechanism of
non-normal transient growth (Farrell and Ioannou, 1993, 1996).
This amplification leads to the shedding of eddies behind the

sea-breeze front, as seen in observations, laboratory experiments
and numerical models of the sea breeze and other gravity-current
fronts.

The amplification mechanism relies on a feedback loop that is
required for normal-mode instability because of the finite extent
of the sea-breeze domain. This amplification mechanism is more
readily analyzed in the unstable regime, where we explore it in
detail. The regime may be shifted from stable to unstable by
adjusting a geostrophic wind specified at the top of our domain.
The instability may be understood by dividing the sea-breeze front
area into the two rectangular areas marked in Figure 7, covering
its lower part (including the sea breeze within boundary layer) and
upper part (the return current). Anomalies in the upper part grow
by advection of the mean flow momentum and stratification by
the vertical flow of the perturbation. However, because anomalies
propagate away from the finite area with vertical shear in this case,
they would decay in the absence of some additional feedback.

This additional feedback required for modal instability is found
to act through the lower part of the sea-breeze front. Temperature
anomalies in the upper part induce pressure gradients in the lower
part. These lead to growth of both the horizontal wind and the
vertical wind. The vertical wind component then enters the upper
area and re-excites the growth there, closing the feedback loop
and leading to both normal-mode instability and non-normal
growth in the stable regime.

We find that this instability mechanism is robust, yet vulnerable
to some parameter changes that weaken this feedback loop. We
emphasize that stability cannot be deduced merely using the
Richardson number criterion and that strong transient growth of
perturbations may be achieved even in the absence of normal-
mode instability. Our standard experiment is based on an assumed
constant-stress surface layer, following standard assumptions and
observations. We also examined the evolution with an alternative
no-slip boundary condition at the lower boundary. Finally, we
considered sensitivity to the vertical eddy coefficient in range
Kv = 1–5 m2 s−1. The results again show robustness of our
findings to all of these model changes.

When the model is put in a parameter regime that is stable to
small perturbations, it may still display very dramatic transient
amplification of both potential and kinetic energy of initial
perturbations via non-normal growth. Specifically, the non-
normal growth and propagation of eddies that we find to occur
above the boundary layer, when the model is stable and in regions
with Ri > 0.25 (e.g. Figure 4), is consistent with observations
(Lapworth, 2000) and numerical simulations (Sha et al., 1991;
Xue et al., 1997). A ratio of 4.4–7.5 between the horizontal
wavelength of the growing perturbation and the thickness h of
the shear layer is often used as evidence of K–H instability when
Ri < 0.25 (Droegemeier and Wilhelmson, 1987; Mueller and
Carbone, 1987; Sha et al., 1991). In our analysis, the height range
of the return flow is about 0.5 km, part of this flow is found in
the region where Ri < 0.25 and the diameter of the developing
eddies is 2–3 km, as in figure 7 of Sha et al. (1991), implying a
wavelength about eight times the depth of the shear layer. Yet our
flow is stable, as verified by the eigenvalues of the propagator,
indicating that this criterion for deducing the existence of K–H
instability may not be universally valid and should be used with
care.

Based on our analysis, we suggest that K–H instability may not
necessarily be occurring in observations, numerical models and
laboratory experiments of sea breezes and other spatially confined
gravity currents that show the amplification of initial anomalies.
The classical K–H mode instability assumes the unstable domain
to be infinite in extent, so that the distinction between absolute
and convective instability does not arise (Briggs, 1964; Merkine,
1977; Farrell, 1982). However, this is not the case for the sea-
breeze front. For instability in such a limited domain, an absolute
instability is required; this requires additional feedbacks, as we
find here, implying a normal-mode growth mechanism that
may be substantially different from that of the classical K–H
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normal-mode instability. Transient growth in a stable parameter
regime, on the other hand, quite generally leads to a dramatic
amplification of initial perturbations.

This study is based on the assumption of along-coast symmetry.
Observed fronts are, of course, never completely symmetric, and
it would be interesting and important to extend this work to
study the effects of along-axis asymmetry. It would also be
interesting to examine the role of some additional parameters
such as the amplitude of the ground surface temperature θ0,
the turbulent Prandtl number (ratio between momentum eddy
diffusivity and heat-transfer eddy diffusivity), turbulent eddy
diffusivity and heat-transfer eddy diffusivity, which depend on
stratification.
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Appendix: The numerical model

The numerical algorithm of the model used here is described
in Feliks (2004) and Feliks et al. (2010). Horizontal advection
terms are approximated in the nonlinear model by the four-point
upwind scheme and in the linear model by centre differencing.
The equations are applied to a staggered grid contained within a
vertical plane extending in the x coordinate perpendicular to the
sea-surface temperature front. The horizontal grid interval was
taken as dx = 0.5 km and 200 grid points were utilized, covering a
domain size of 100 km. 38 vertical levels are used at heights of 0,
2.5, 5, 10, 20, 40, 80, 160, 240, 320, 400, 480, 560, 640, 720, 800,
880, 960, 1040, 1120, 1200, 1360, 1680, 1840, 2000, 2160, 2320,
2480, 2640, 2880, 2960, 3120, 3380, 3520, 3840, 4160, 4480, 4800
and 5120 m. The time step for the nonlinear model is �t = 20 s.

The value of the vertical diffusivity Kv used in the model is
appropriate to neutral and stable conditions. In unstable cases,
found mainly ahead of the sea-breeze front during the daytime,
the values of Kv can be larger by two orders of magnitudes.
Therefore, vertical diffusion with the values we are using for
Kv cannot adjust the atmospheric column in real time and we
parametrize the adjustment to account for this. The convective
adjustment is done as follows: in each column we find the height
zi where, below zi, the potential temperature is, after adjustment,
determined by

θ(zi) = θ(z = 0) + 10−2z (A1)

(where z is given in km) and, above zi, ∂θ/∂z ≥ 10−2. To find
the height zi we begin in the lowest level: we first check if
∂θ/∂z < 10−2, then we substitute θ at this level according to
Eq. (A1) and proceed to the next upper level with the same
procedure; if ∂θ/∂z ≥ 10−2 then zi is the height of the current
level. The potential energy and the energy-norm kernel X are
relevant only when the stratification is positive. Thus, when the
atmosphere has neutral stratification, we used a very weak stable
state. We checked the sensitivity of the solution to the value of the
minimum stratification and found that decreasing the minimum
stratification by an order of magnitude barely changed the results.

Our lower boundary condition given in the main text is a
specified surface drag, corresponding to a constant-stress surface
layer within the lowermost model grid box. Within this first grid
box, Kv is therefore implicitly a function of z. Above the surface
layer, Kv and Kh are constant in order to simplify the analysis.
The main normal and non-normal growth mechanisms explored
in this article should be well described by this approximation.

In this model, as in many numerical and analytical models
of the sea breeze, the specified ground temperature includes
only the first Fourier component in time (e.g. Estoque, 1961;

Sha et al., 1991; Feliks, 2004). Adding the second Fourier
component leads to a more accurate timing of the land
warming relative to sunrise time, yet does not change the
evolution of the sea breeze significantly, since the amplitude
of the second component is about 0.25 times that of the first
component.

The model linearized about the steady secondary circulation
is integrated in a partial domain with 35 grid points in the
horizontal direction and 34 vertical levels, at the same heights as
in the nonlinear model, between 0 and 3520 m. The time step
in the linearized model is �t = 1 s, while all other numerical
and physical parameters were the same as in the fully nonlinear
model. While the nonlinear model uses �t = 20 s, the smaller
time step of the linear model allows the accurate calculation of the
eigenvalues of the propagator corresponding to all time-scales.

The domain-averaged kinetic energy equation is obtained by
multiplying the u′ equation (Eq. (5)) by u′ and the v′ equation
by v′, integrating the sum over the domain and dividing by the
domain area. Utilizing the boundary conditions, we find

∂〈Ek〉
∂t

=1

2

∂

∂t
(〈u′2〉 + 〈v′2〉) = −

〈
u′2 ∂ ū

∂x

〉
−

〈
u′w′ ∂ ū

∂z

〉

−
〈
v′u′ ∂ v̄

∂x

〉
−

〈
v′w′ ∂ v̄

∂z

〉
+

〈
w′θ ′ g

θm

〉

− Kh

(〈(
u′

x

)2
〉
+

〈(
v′

x

)2
〉)

− Kv

(〈(
u′

z

)2
〉
+

〈(
v′

z

)2
〉)

+
{[

1

ρm
u′p′ + ūu′2 + ūv′2 + ūαθ ′2

]}xe

xw

. (A2)

The domain-averaged available potential energy equation is
obtained by multiplying the θ ′ equation (Eq. (5)) by αθ ′ with

α = g

(
θm

∂θ̄

∂z

)−1

,

integrating over the domain and dividing by the domain area.
Using the boundary conditions, we find

∂〈EP〉
∂t

=1

2

∂

∂t
〈αθ ′2〉 = −〈αθ ′u′ ∂θ̄

∂x
〉 − 〈w′θ ′ g

θm
〉

+ 1

2
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∂θ ′2

∂x

)
∂α

∂x

〉

+ 1

2

〈(
θ ′2w̄ + Kv

∂θ ′2

∂z

)
∂α

∂z

〉

− Kh

〈
α

(
θ ′

x
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〉
− Kv

〈
α

(
θ ′
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〉

+ {[
ūαθ ′2]}xe

xw
. (A3)

References

Atkinson B. 1981. Meso-Scale Atmospheric Circulations. Academic Press: New
York, NY.

Benjamin T. 1968. Gravity currents and related phenomena. J. Fluid Mech. 31:
209–248.

Briggs RJ. 1964. Electron-Stream Interaction with Plasmas. Cambridge
University Press: Cambridge, UK.

Britter R, Linden P. 1980. The motion of the front of a gravity current travelling
down an incline. J. Fluid Mech. 99: 531–543.

Britter R, Simpson J. 1978. Experiments on the dynamics of a gravity current
head. J. Fluid Mech. 88: 223–240.

Britter R, Simpson J. 1981. A note on the structure of the head of an intrusive
gravity current. J. Fluid Mech. 112: 459–466.

Buckley RL, Kurzeja RJ. 1997a. An observational and numerical study of the
nocturnal sea breeze. part i: Structure and circulation. J. Appl. Meteorol. 36:
1577–1598.

Buckley RL, Kurzeja RJ. 1997b. An observational and numerical study of the
nocturnal sea breeze. part ii: Chemical transport. J. Appl. Meteorol. 36:
1599–1619.

c© 2013 Royal Meteorological Society Q. J. R. Meteorol. Soc. 140: 2147–2157 (2014)



Non-normal Growth of Kelvin–Helmholtz Eddies 2157

Donn W, Milic P, Brilliant R. 1956. Gravity waves and the tropical sea breeze.
J. Meteorol. 13: 356–361.

Drazin P. 1958. The stability of a shear layer in an unbounded heterogeneous
inviscid fluid. J. Fluid Mech. 4: 214–224.

Droegemeier K, Wilhelmson R. 1987. Numerical-simulation of thunderstorm
outflow dynamics. 1. Outflow sensitivity experiments and turbulence
dynamics. J. Atmos. Sci. 44: 1180–1210.

Estoque M. 1961. A theoretical investigation of the sea breeze. Q. J. R. Meteorol.
Soc. 87: 136–146.

Farrell BF. 1982. Pulse asymptotics of the Charney baroclinic instability
problem. J. Atmos. Sci. 39: 507–517.

Farrell B. 1988. Optimal excitation of neutral Rossby waves. J. Atmos. Sci. 45:
163–172.

Farrell B. 1989. Optimal excitation of baroclinic waves. J. Atmos. Sci. 46:
1193–1206.

Farrell B, Ioannou P. 1993. Transient development of perturbations in stratified
shear-flow. J. Atmos. Sci. 50: 2201–2214.

Farrell BF, Ioannou PJ. 1996. Generalized stability theory part I: Autonomous
operators. J. Atmos. Sci. 53: 2025–2040.

Feliks Y. 1988. The sea-breeze front analytical model. J. Atmos. Sci. 45:
1030–1038.

Feliks Y. 2000. An analytical model of gravity currents in a stable atmosphere.
J. Fluid Mech. 420: 27–46.

Feliks Y. 2004. Nonlinear dynamics and chaos in the sea and land breeze. J.
Atmos. Sci. 61: 2169–2187.

Feliks Y, Tziperman E, Farrell B. 2010. Nonnormal frontal dynamics. J. Atmos.
Sci. 67: 1218–1231, doi: 10.1175/2009JAS3214.1.
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