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The nature of the flow below the cloud level on Jupiter and Saturn is still unknown.
Relating the flow on these planets to perturbations in their density field is key to
the analysis of the gravity measurements expected from both the Juno (Jupiter)
and Cassini (Saturn) spacecrafts during 2016–2018. Both missions will provide
latitude-dependent gravity fields, which in principle could be inverted to calculate the
vertical structure of the observed cloud-level zonal flow on these planets. Theories
to date connecting the gravity field and the flow structure have been limited to
potential theories under a barotropic assumption, or estimates based on thermal
wind balance that allow baroclinic wind structures to be analysed, but have made
simplifying assumptions that neglected several physical effects. These include the
effects of the deviations from spherical symmetry, the centrifugal force due to density
perturbations and self-gravitational effects of the density perturbations. Recent studies
attempted to include some of these neglected terms, but lacked an overall approach
that is able to include all effects in a self-consistent manner. The present study
introduces such a self-consistent perturbation approach to the thermal wind balance
that incorporates all physical effects, and applies it to several example wind structures,
both barotropic and baroclinic. The contribution of each term is analysed, and the
results are compared in the barotropic limit with those of potential theory. It is found
that the dominant balance involves the original simplified thermal wind approach. This
balance produces a good order-of-magnitude estimate of the gravitational moments,
and is able, therefore, to address the order one question of how deep the flows are
given measurements of gravitational moments. The additional terms are significantly
smaller yet can affect the gravitational moments to some degree. However, none
of these terms is dominant so any approximation attempting to improve over the
simplified thermal wind approach needs to include all other terms.
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1. Introduction
The observed cloud-level flow on Jupiter and Saturn is dominated by strong

east–west (zonal) flows. The depth to which these flows extend is unknown, and has
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been a topic of great debate over the past few decades (see the reviews by Vasavada
& Showman 2005 and Showman et al. 2016). One of the prime goals of the Juno
mission to Jupiter and the Cassini Grande Finale at Saturn is to estimate the depth of
these flows via precise gravitational measurements. If the flows are indeed deep, and
therefore perturb significant mass, then they can produce a gravity signal that will
be measurable (Hubbard 1999; Kaspi et al. 2010). Constraining the depth of these
flows will help explore the mechanisms driving the jets (e.g. Busse 1976; Williams
1978; Ingersoll & Pollard 1982; Cho & Polvani 1996; Showman, Gierasch & Lian
2006; Scott & Polvani 2007; Kaspi & Flierl 2007; Lian & Showman 2010; Liu &
Schneider 2010; Heimpel, Gastine & Wicht 2016), and give better constraints on
interior structure models (e.g. Guillot 2005; Militzer et al. 2008; Nettelmann et al.
2012; Helled & Guillot 2013).

Several studies over the past few decades have examined the effects of interior flow
on the gravitational moments. The gravity moment spectrum mostly results from the
planet’s oblate shape due to its rotation, and from the corresponding interior density
distribution. However, density perturbations due to atmospheric dynamics and internal
flows can affect the measured gravity moments especially if the flows extend deep
enough into the planets. Hubbard (1982) and Hubbard (1999) used potential theory to
calculate the gravity moments due to internal flows, by extending the observed cloud-
level winds along cylinders throughout the planet as suggested by Busse (1976). This
approach takes into account the oblateness of the planet, yet is only possible for the
barotropic case, meaning that the flow is constant along lines parallel to the axis of
rotation. This occurs if the baroclinicity vector ∇ρ ×∇p vanishes (e.g. if density is
a function of pressure only) at small Rossby number and negligible dissipation. More
recently, Hubbard introduced more accurate calculations, for the gravitational signature
of the flows (Hubbard 2012; Kong, Zhang & Schubert 2012; Hubbard 2013), using
concentric Maclaurin spheroids (CMS), but these are also only limited to the fully
barotropic case.

A different approach, assuming the large scale flow is dominated by the rotation
of the planet, used thermal wind (TW) balance to calculate the gravity moments due
to the wind field (Kaspi et al. 2010; Kaspi 2013; Kaspi et al. 2013; Liu, Schneider
& Kaspi 2013; Liu, Schneider & Fletcher 2014). The TW approach is not limited to
the barotropic case (it can account for any wind field), and in the barotropic limit has
been shown to be equivalent to the potential theory and CMS methods (Kaspi et al.
2016). In addition, this approach allows for the calculation of the odd gravitational
moments, which can emerge from north–south hemispherical asymmetries in the wind
structure (Kaspi 2013). However, this TW approach was originally limited to spherical
symmetry, resulting in an inability to calculate the effects of the planet oblateness
on the gravity signature of the winds. Cao & Stevenson (2016) added the effects of
oblateness on the background state density and gravity and concluded that it should
be considered when estimating the effects of the winds on the gravity moments using
TW. Similarly, Zhang, Kong & Schubert (2015) included another effect, of the gravity
anomalies due to density perturbations associated with the winds, and found an effect
on the second gravity moment J2, terming their approach the thermal-gravity wind
(TGW) method. However, while both of these recent studies found some effects of
the terms they added, their choice of added physics did not result from a systematic
and self-consistent approach.

The purpose of this study is to develop a full, self-consistent thermal wind (FTW)
perturbation approach for the treatment of the general TW balance on a fluid planet.
This will allow to calculate density anomalies and gravity moments due to prescribed
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winds, omitting the traditional sphericity assumptions which have been adopted from
dynamics on terrestrial planets. Our approach includes the effect of oblateness, as well
as that of gravity anomalies due to the dynamical density perturbations themselves.
We show these two effects to be but two of several different factors that should be
considered in a self-consistent calculation. Our approach is based on a systematic
perturbation expansion, which both allows us to consider all effects, and also points
the way to improving the estimated gravity moments using a higher-order perturbation
that can be considered by future studies.

By including all relevant terms in the general TW balance, we are able to evaluate
the relative contribution of different terms. We find that the simplified TW approach
captures most of the relation between the wind shear and density gradients. The
term added in TGW is found to be one of several smaller terms that all need to be
added together for consistency in order to improve the estimates of the simplified
TW balance. Furthermore, previous applications of the TW balance encountered an
unknown integration constant that was a function of radius only and could not be
solved for. We show that this integration constant may have an effect, although small,
on the gravity moments, and develop a method for calculating it.

The following section describes the perturbation approach, the resulting equations
and how they are solved. Next, in § 3, we first verify this approach by comparing it
with the results of the CMS method in the barotropic limit, and then compare our
results to the less complete approaches of simplified TW and TGW. We then also
apply the self-consistent solution to a case with baroclinic winds where CMS cannot
be used. We discuss the results and conclude in § 4.

2. Methods: perturbation expansion of the momentum equations
We begin by taking the standard form of the momentum equations on a planet

rotating at an angular velocity Ω ,

∂u
∂t
+ (u · ∇)u+ 2Ω × u+Ω ×Ω × r=− 1

ρ
∇p+∇Φ, (2.1)

where u is the three-dimensional wind vector, ρ is density, p is pressure, Ω is the
planetary rotation rate and Φ is the body force potential. The first term on the left-
hand side is the local acceleration of the flow, the second is the Eulerian advection,
the third is the Coriolis acceleration and the fourth is the centrifugal acceleration. On
the right-hand side appear the pressure gradient term and the body force (gravity in
this case, so that ∇Φ = −g). Note that by gravity we refer here to the force due
to the Newtonian potential, not to the modified gravity which is commonly used in
geostrophic studies and includes the centrifugal potential as well. Typical values for a
Jupiter-like planet are U=O(100) m s−1, Ω =O(10−4) s−1, a=O(7× 107) m, where
a is the planet radius. The resulting Rossby number (Ro) is therefore much smaller
than one (Ro ≡ U/Ωa ≈ 10−2), and the first two terms in (2.1) can be neglected so
that the resulting balance is

2Ω × (ρu)=−∇p− ρg− ρΩ ×Ω × r. (2.2)

Next, we denote the static solution (u= 0) as ρ0, p0, g0, and the perturbations due to
the non-zero wind (dynamical part of the solution) as ρ ′, p′, g′, such that

ρ = ρ0(r, θ)+ ρ ′(r, θ),
p= p0(r, θ)+ p′(r, θ),
g= g0(r, θ)+ g′(r, θ).

 (2.3)
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Note that both the static and the dynamic solutions are functions of latitude and radius,
and that the gravity is directly related to the density via a relation shown below.

The equation obtained by setting the small Rossby number to zero as a first
approximation is effectively static and does not include the velocity field,

0=−∇p0 − ρ0g0 − ρ0Ω ×Ω × r, (2.4)

and the dynamical perturbations therefore satisfy

2Ω × (ρ0u) = −∇p′ − ρ0g′ − ρ ′g0 − ρ ′Ω ×Ω × r. (2.5)

The solution procedure outlined here involves first finding the static solution and then
solving (2.5) for the dynamical perturbations to the density due to the effects of the
prescribed winds. Taking the curl of (2.5) yields a single equation in the azimuthal
direction

− 2Ωr∂z(ρ0u) = −rg(θ)0
∂ρ ′

∂r
− g(r)0

∂ρ ′

∂θ
+ r

∂ρ0

∂r
g′(θ)

− g′(r)
∂ρ0

∂θ
Ω2r

[
∂ρ ′

∂θ
cos2 θ + ∂ρ

′

∂r
r cos θ sin θ

]
, (2.6)

where the notation ∂z = cos θ(∂/∂r) − sin θ(∂/∂θ) denotes the derivative along the
direction of the axis of rotation (z), and gravity is expressed as function of the density
as

g(r, θ)= 2πG
[
∂

∂r
,
∂

r∂θ

] ∫∫ 〈
1

|r− r′|
〉
ρ(r′, θ ′)r′2 cos θ ′ dθ ′ dr′, (2.7)

where the gravity can be either g0 or g′, calculated from ρ0 or ρ ′, respectively, and
G = 6.67 × 10−11 m3 kg−1 s−2 is the gravitational constant. Note that (2.6), together
with (2.7), form an integro-differential equation whose solution requires the calculation
of integration constants as is done below and demonstrated in a simpler context in
appendix B.

The above equations for the perturbation density are the first-order perturbation
equations, which are solved in this study. It is important to note, though, that because
this is a self-consistent treatment of the density perturbations, it also allows improving
on the approximation by proceeding to the next orders. As a demonstration, we write
the second-order perturbation equations in appendix A.

2.1. The background static solution
The static density ρ0 and gravity g0 are taken from the solution of the CMS model
(Hubbard 2012, 2013). The model is based on a numerical method for solving the
equilibrium shape of a rotating planet, for which an analytic solution exists in the form
of a Maclaurin spheroid. The continuously varying density and pressure structures are
represented by a discrete set of layers, in which the density and pressure are constant.
This onion-like structure is then decomposed into a set of CMS, and a solution is
sought by requiring that the sum of the gravitational potential and the rotational
potential are constant on the surface of the planet (Hubbard 2012, 2013). Solutions
using this method give similar results to other methods (Wisdom & Hubbard 2016;
Kaspi et al. 2016). The static fields resulting from the CMS solution are shown in
figure 1. Both the density and gravity fields show a structure that is mostly radial.
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FIGURE 1. The static model solution, as function of radius and latitude, from the CMS
model for the density and gravity (a–c), and their deviation from the latitudinal mean
(d–f ).

While the density (figure 1a) ranges from zero to about 4000 kg m−3, its latitude-
dependent component (figure 1d) ranges only between −150 and 100 kg m−3.
Similarly, the radial gravity is also dominated by its radial component (figure 1b,e),
with the peak gravity being ∼32 m s−2 at about 0.7a. The latitudinal component
of the gravity is much weaker than the radial component (figure 1c, f ). Comparing
figure 1(c) and ( f ) shows that the latitudinal mean of the latitudinal component of
the gravity is zero, and has a much smaller magnitude than the radial component.
Note that in figure 1(c, f ) a positive value means gravity pointing northward.

2.2. Solving for the dynamic density perturbations
We solve (2.6) by writing the equations in matrix form (e.g. Zhang et al. 2015). The
two-dimensional problem (radius and latitude) is discretized in both directions, where
Nr and Nθ are the number of grid points in radius and latitude, respectively. Here
N=Nr×Nθ is the total number of grid points. Equation (2.6) is then written in matrix
form,

b= Aρ ′, (2.8)

where A is a N × N matrix with contributions from all terms in the right-hand side
of the equation, b is the known left-hand side of the equation, due to the prescribed
wind field, written as an N × 1 vector, and the unknown density perturbation ρ ′ is
written as an N× 1 vector. All partial derivatives are written in centre finite difference
form, aside from near the boundaries where the derivatives are evaluated between grid
points and weighted together with the adjacent derivative. Note that the gravity is fully
calculated in the matrix (2.8). It is done explicitly for each grid point.
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Solving (2.8) involves the inversion of the matrix A, which is not possible because
the matrix is singular and thus has a null space, which leads to a part of the solution
that cannot be determined from the equation. The physical source for the singularity
(and, hence, the existence of the null space) can be better understood in the simpler
case where (2.6) is reduced to the TW balance with a spherical base state, involving
only the left-hand side and the second term on the right-hand side. In that case, the
equation can be integrated in latitude, leaving an unknown integration constant that
is a function of radius alone (e.g. Kaspi et al. 2010). Had we solved that equation
numerically instead of integrating it, we would thus find a null space, corresponding
to the unknown integration constant, whose dimension is the number of the radial grid
points Nr. In the more general case solved here, while the base state is a function of
both radius and latitude, the null space still has a dimension equal to the number of
radial grid points Nr, similar to the unknown function of radius only, but which has
latitudinal dependence as well. We show in appendix B how the integration constant
is calculated analytically in the simpler case, and discuss in § 2.3 the solution in the
more general case. In order to solve for the non-null part of the solution, we use
singular value decomposition (Strang 2006) as follows. Let

A= UΣV T, (2.9)

where U and V are unitary matrixes, and Σ is a rectangular diagonal matrix (whose
dimensions are those of A and whose entries are all zeros except along the diagonal),
then the pseudo-inverse of A is given by

A† = VΣ†UT, (2.10)

where

Σ = diag(σ1, . . . , σN−Nr , 0, . . . , 0), (2.11)
Σ† = diag(σ−1

1 , . . . , σ−1
N−Nr

, 0, . . . , 0). (2.12)

The singular values, σi, are the square root of the eigenvalues of AAT or ATA. The
solution is now written as ρ ′ = ρ̂ ′ + δρ ′, such that ρ̂ ′ is the part obtained from the
pseudo-inverse,

ρ̂ ′ = A†b, (2.13)

and the additional component δρ ′ is in the null space of A, so that Aρ ′=A(ρ̂ ′+ δρ ′)=
Aρ̂ ′ = b. That is, denoting the eigenvectors of A by ei, such that Aei = λiei, then
the null space of the solution corresponds to any linear combination of eigenvectors
corresponding to the zero eigenvalues, which may be added to the solution ρ̂ ′ while
still satisfying Aρ ′ = b. We next discuss the calculation of the null space and its
contribution to the solution for ρ ′.

2.3. Calculating the null-space solution
As mentioned above, the number of null eigenvalues is always found to be Nn = Nr,
i.e. equal to the number of grid points in the radial direction, hinting to the possibility
that the modes are predominantly radially dependent. Indeed, looking at the zero
eigenvectors does show this characteristic (see the example in figure 2a). Nevertheless,
since the null eigenvectors do depend on latitude (figure 2b), and this dependence is
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FIGURE 2. An example of a null mode V: (a) the full null model; (b) the latitudinal
dependent part of the null mode (Va = V − V). Note that in most of the domain, the
structure of the mode depends on radius only, aside from the region close to the surface
where a large-scale latitude-dependent structure exists, but whose value is around half the
magnitude of the full structure.

concentrated close to the planet upper levels, it could have a substantial effect on the
gravity moments. The contribution of the null space to the density may be written as

δρ ′ =
N∑

i=N−Nr+1

ciei = Ec, (2.14)

where E is a N × Nn matrix whose columns are the Nn null eigenvectors, and c is
a Nn × 1 vector of the unknown amplitudes of the null eigenvectors. The null space
discussed above is now represented by the vector c, and as explained above it cannot
be determined using the TW balance alone, and we must therefore introduce additional
physics. This additional physics is the relation between the pressure and the density, as
well as a constraint on the total mass. We specifically use the polytropic relation (see
the further discussion below). A demonstration of a full analytical solution using the
polytropic equation is shown in appendix B for a simpler case, and here we present
the numerical procedure for solving the general problem for c. Note that the polytropic
relation is only used for the solution of the null space, but the rest of the solution is
independent of it.

The polytropic equation with index unity, p = Kρ2, linearized around the static
solution, gives

p′ =K2ρ0ρ
′, (2.15)

which may be used to define p̂′ as

p̂′ ≡Kn2ρρ̂ ′. (2.16)

Previously we took the curl of the momentum equation (2.5), to solve for ρ̂ ′(r, θ),
and it satisfies the original equation up to a gradient of some scalar function ψ . We
therefore may replace the pressure p̂′ with p̂′+ψ . Using this augmented function, the
perturbation momentum equation may be written as

2Ω × uρ0 =−∇(p̂′ +ψ)− ρ0ĝ′ − ρ̂ ′g0 − ρ̂ ′Ω ×Ω × r. (2.17)
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Next, taking the difference between the momentum equation for ρ ′ and for ρ̂ ′, we find

0=−∇(p′ − p̂′ −ψ)− ρ0δg′ − δρ ′g0 − δρ ′Ω ×Ω × r. (2.18)

The function ψ appears as a correction to the perturbation pressure, and we therefore
define the perturbation pressure to be

δp′ ≡ p′ − p̂′ −ψ. (2.19)

Taking the difference between the polytropic equation for ρ and ρ̂ ′, we have

δp′ =K2ρ0δρ
′, (2.20)

which leads to an equation for the unknown perturbation density,

0=−∇(Knρ0δρ
′)− ρ0δg′ − δρ ′g0 − δρ ′Ω ×Ω × r (2.21)

and, explicitly,

Fr : 0=−2K
∂

∂r
(ρ0δρ

′)− ρ0δg′(r) − δρ ′g(r)0 + δρ ′Ω2r cos2 θ, (2.22)

Fθ : 0=−2K
∂

r∂θ
(ρ0δρ

′)− ρ0δg′(θ) − δρ ′g(θ)0 − δρ ′Ω2r cos θ sin θ, (2.23)

where Fr and Fθ are the equations in the radial and latitudinal directions, respectively.
This represents the radial and latitudinal components of a vector equation, and we next
take the divergence to obtain a single equation,

0= 1
r2

∂

∂r
(r2Fr)+ 1

r sin θ
∂

∂θ
(sin θFθ), (2.24)

where everything but δρ ′ is known. Numerically, this equation can be written as a set
of linear equations,

Bδρ ′ = 0, (2.25)

where B is an N × N matrix, and the right-hand side is an N × 1 vector with zeros
in all entries. An additional constraint is that the total mass of the planet must not
change due to the existence of the wind, so that

∫
ρ ′d3r= 0 and, therefore,∫

δρ ′ d3r=−
∫
ρ̂ ′ d3r=−δM. (2.26)

The mass δM, due to the non-null space solution ρ̂ ′, is known from the solution to
(2.6). Adding this constraint to (2.24) results in augmenting the matrix B with an
additional row, to form a matrix B̃ whose size is now (N+ 1)×N and the right-hand
side, now denoted by m, is now a vector of length N + 1 with a non-zero value only
in the last entry, mN+1 = −δM. Using the definition for the null space part of the
solution (2.14) we obtain

B̃Ec=m. (2.27)
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This is a formally overdetermined problem, which is solved for c using least squares
(Strang 2006), allowing us to then calculate δρ ′. Note that even though B̃, E and m
are all complex, δρ ′ is found to be real, as expected.

The use of a polytropic relation between the pressure and density implies that
the baroclinic vector ∇p × ∇ρ vanishes, and therefore that the velocity field is
necessarily barotropic at small Rossby numbers. This is in line with most of the
cases discussed here that are indeed barotropic, aside from the last case that is
baroclinic and is analysed in § 3.2.1. Note that a different pressure–density relation
is also possible. Nonetheless, in all cases discussed here the contribution of the null
space solution to the overall solution is negligible. Our purpose here is to show how
adding information regarding the equation of state (in this case p(ρ)) can be used to
calculate the unknown integration constant arising in the TW formulation (e.g. Kaspi
et al. 2010; Zhang et al. 2015). However, in future application, one would need to
use a more realistic equation of state that allows for determining the null space for a
baroclinic wind field as well.

2.4. Prescribed winds
The wind profile used in this study is based on the measured cloud-tracking wind
during the Cassini flyby (Porco et al. 2003). Since we compare our results to the CMS
model solution as a reference for the full oblate solution, and the CMS wind profile
must be truncated for numerical convergence (see Kaspi et al. 2016 for details), we
use a 24th-degree expansion of its differential potential. Kaspi et al. (2016) shows a
comparison between the resulting gravity moments using the truncated and untruncated
wind profiles. The choice of the specific wind profile does not affect the results. In
order to do a proper comparison with the CMS model, which is limited to barotropic
winds, the wind profile is extended along cylinders parallel to the direction of the axis
of rotation. For the baroclinic case discussed in (§ 3.3), the wind profile is extended
toward the centre of the planet using an exponential decay function (e.g. as in Galanti
& Kaspi 2016a) with a decay scale height of 1000 km.

2.5. Calculating gravity moments
In all cases discussed in the following, in addition to examining the solution for the
density perturbations, we calculate the resulting gravitational moments given by

1Jn =− 2π

Man

∫ a

0
r′n+2 dr′

∫ 1

−1
Pn(µ

′)ρ ′(r′, µ′) dµ′, (2.28)

where M is the mass of the planet, Pn are the Legendre polynomials and µ= cos(θ).
Note that any part of ρ ′ that is a function of radius only does not contribute to the
gravity moments. For instance, using the latitudinal average of the density, ρ ′m(r) =
ρ ′(r, θ) in (2.28) will give

1Jn =− 2π

Man

∫ a

0
r′n+2ρ ′m(r

′) dr′
∫ 1

−1
Pn(µ

′) dµ′ = 0, (2.29)

which vanishes due to the Legendre polynomials having a zero latitudinal mean for
any value of n. Therefore, any solution for ρ ′ needs to be examined with respect to
its latitudinal-dependent part.
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FIGURE 3. The wind-induced gravitational moments solution of (2.28) when all terms are
included (blue), compared with the CMS solution (red). Also shown are the contribution
from δρ ′ (black dashed line) and the solid-body-induced gravitational moments (black).

3. Results for wind-induced density and gravity moments
We now consider the solution for the density field and gravitational moments in

several cases. First, we examine the case of barotropic winds where the results of
the perturbation approach can be compared with the CMS solution (§ 3.1). Second,
we compare our approach to earlier methods and approximations (§ 3.2). Finally, we
analyse an example of the more general case of baroclinic winds, where a CMS
solution is not possible (§ 3.3).

3.1. Verification of perturbation method via a comparison with CMS
Solving numerically (2.6), with all six terms on the right-hand side included and
adding the null-space solution, we obtain the anomalous density field ρ ′ = ρ̂ + δρ ′
from which we calculate the gravitational moments shown in figure 3 (blue line),
together with the reference CMS solution (red line). The perturbation analysis captures
most of the signal of the moments. The dashed line shows the contribution of the
null-mode solution δρ ′ that is much smaller than the total solution.

Next, consider each term in (2.6) as function of radius and latitude (figure 4),
where figure 4(a) shows the left-hand side, figure 4(b) the total of the right-hand side
and figure 4(c–h) show the individual contribution from the six different terms on
the right-hand side. The dominant term on the right-hand side balancing the left-hand
side is the second term (figure 4d), i.e. the TW term, whose magnitude is about
10 times larger than any of the other terms. In § 3.2, we examine less-complete
solutions each including only some of the terms in (2.6), including the simplified TW
approach of Kaspi et al. (2010) and the TGW approximation of Zhang et al. (2015).
It is already clear, though, that the TGW term (figure 4e) is of the same magnitude
as several others, so a self-consistent approximation can either neglect all terms, but
the most dominant one as done in Kaspi et al. (2010), or include all other terms
as well as done here in the FTW approach. The perturbation density solution, ρ ′, is
concentrated near the surface to a large degree (figure 5a,b), and therefore terms that
depend on its vertical derivative are also concentrated near the surface. Terms that
depend on gradients of the zeroth-order density are characterized by a larger-scale
structure (figure 4e, f ).
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FIGURE 4. Solution of (2.6) when all terms are kept: (a) left-hand side term; (b) total
right-hand side; (c–h) the six terms on the right-hand side. Note the different scales in
the different panels.

Figure 5(c,d) shows the solution to the null-space part of the density, δρ ′. It is
negative everywhere, in order to compensate for ρ̂ ′ which is generally positive so that
mass is conserved (§ 2.3). The null-space solution δρ ′ is smaller than the full solution
(figure 5a) by an order of magnitude. Furthermore, the latitude-dependent part of δρ ′
(figure 5d), which is the only part contributing to the gravity moments, is an order
of magnitude smaller than δρ ′ itself (figure 5a). This explains why the contribution
of δρ ′ to the gravitational moments (figure 3, dashed line) is at least two orders of
magnitude smaller than that of the non-null-space part of the solution. Overall, this
analysis shows that this perturbation approach gives, to leading order, results that are
very close to those of the CMS.

3.2. Analysis of solution and comparison with previous approximations
We now assess the contribution of each term on the right-hand side of the equation to
the density solution (figure 4), and to the gravitational moments in particular. Since the
equation is linear with respect to ρ ′ the analysis can be done by solving the equation
when different terms are excluded. Following is a discussion of the TW approximation
of (Kaspi et al. 2010), and of the TGW solution of Zhang et al. (2015).
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FIGURE 5. (a,b) The solution for ρ ′ (a) and the latitude-dependent part of the solution (b).
(c,d) The solution for δρ̂ ′ (c) and its latitude-dependent part (d). Unlike the eigenvectors
(figure 2), the solution for the null space is large scale in both radius and latitude. It
is negative everywhere (as a result of the need to compensate for δρ̂ ′, which is positive
everywhere). A large-scale latitude-dependent structure exists, with the highest values close
to the planet surface. All values are in kg m−3.

3.2.1. Spherically symmetric TW approximation
The simplest solution to (2.6), the TW approximation, is obtained when assuming

that the static solution is spherically symmetric (Kaspi et al. 2010), density and
gravity as in figure 1(a,c) satisfying ρ0 = ρm

0 , g(r)0 = g(r)m0 , and g(θ)0 = 0, and neglecting
the gravity anomaly g′, so that

ρ = ρ0(r)+ ρ ′(r, θ),
g= g(r)0 (r).

}
(3.1)

These assumptions reduce (2.6) to

2Ωr∂z(ρ0u)= g(r)0
∂ρ ′

∂θ
, (3.2)

where the centrifugal terms drop under the background sphericity assumptions (see
the discussion in § 4). The solution for the anomalous density can be simply found
by integrating the right-hand side of (3.2) so that

ρ ′(r, θ)=
∫ θ 2Ωr

g(r)0 (r)
∂z(ρ0(r)u(r, θ ′)) dθ ′ + ρ̃ ′(r), (3.3)
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FIGURE 6. The wind-induced gravitational moments from several limits of (2.28). (a) For
barotropic winds, showing the FTW solution (blue), standard TW (green) and the TGW
(grey). The CMS solution is shown in red for comparison. All solutions are quite similar,
indicating that the simple TW approximation produces essentially the correct solution
shown by the fuller approximations. (b) For a baroclinic case (with a wind-decay scale
of 1000 km). Shown are the FTW solution (blue), standard TW (green) and TGW (grey)
as well as a solution where the terms depending on ∂ρ1/∂r are included (see the text for
a discussion of the TW+ case).

where ρ̃ ′ is an unknown integration coefficient that does not contribute to the
gravitational moments (see (2.29)). Note that (3.2) is not the standard form of
the TW equation, e.g. Vallis (2006), since it includes ρ0 on the left-hand side, and
the right-hand side is not a purely baroclinic term; nonetheless, the two forms are
equivalent (see the details in Kaspi et al. 2016). Solving (3.3) and calculating the
gravity moments using (2.28) we can compare the solution with the CMS method
(figure 6a). The TW solution follows the full CMS solution with the ratio between
the calculated moments being 0.91, 1.44, 1.6, 1.53, 1.56, 0.88 for J2, J4, . . . , J12,
respectively. Note that in order to maintain the same framework, the equation was
solved numerically using the same methodology as in the full case. Solving the
equation using the method of Kaspi et al. (2010), which is much more efficient
numerically, gives the same results up to numerical roundoff.

A variation on this case (Cao & Stevenson 2016), is to allow the background density
ρ0, as well as the gravity in the radial direction, g(r)0 , to vary with latitude (figure 1b,d).
The gravity in the latitudinal direction is kept zero. The resulting equation is the same
as (3.3), but with the background fields being a function of both radius and latitude,

ρ ′(r, θ)=
∫ θ 2Ωr

g(r)0 (r, θ)
∂z(ρ0(r, θ)u(r, θ ′)) dθ ′ + ρ̃ ′(r). (3.4)

The solution to this approximation is very similar to the above simplified TW balance
(indistinguishable from the green line in figure 6), aside from some differences in the
higher gravity moments, especially J12 as was also found by Cao & Stevenson (2016).

3.2.2. The TGW approximation
Next, we examine the contribution of the anomalous gravity to the solution, termed

by Zhang et al. (2015) the TGW equation. They suggested that since the density
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perturbations ρ ′ result also in perturbations to the gravity field g′, these in turn affect
the solution, and therefore need to be included in the balance. As in Zhang et al.
(2015) we assume the background state to vary with radius only, so that

ρ = ρ0(r)+ ρ ′(r, θ), (3.5)
g= g(r)0 (r)+ g′(r, θ). (3.6)

These assumptions reduce (2.6) to

− 2Ωr∂z(ρ0u)=−g(r)0
∂ρ ′

∂θ
+ r

∂ρ0

∂r
g′(θ). (3.7)

This equation cannot be easily integrated in θ , and needs to be solved numerically
(Zhang et al. 2015). The resulting gravity moments are shown in figure 6(a) (grey),
together with the TW solution and the full perturbation method solution. The overall
effect of the term added in (3.7) relative to the simplified TW is small. It is mostly
apparent in J2 which increases by 54 %. The effect on higher moments, not calculated
by Zhang et al. (2015), is much smaller. The small effect of the additional term
in TGW approximation is already clear from the magnitude of the relevant term
figure 4(e) (repeating figure 4 with a radially dependent background state gives a
similar structure and magnitude to that shown in figure 4a,c,e). Note that solving
the equation with background fields that are both radially and latitudinally dependent
shows similar results in the gravity moments.

3.3. The perturbation method in the more general case of baroclinic winds
So far we have focused only on barotropic cases since the CMS solution, which we
used as our reference, may only be obtained for barotropic winds. The FTW can be
used also to analyse baroclinic winds, which are considered in this section. Using
the baroclinic winds described in § 2.4 (decay depth of wind is 1000 km), we repeat
the above calculations of the density field and gravity moments. The gravitational
moments for this case are shown in figure 4(b), and the individual terms in the FTW
equation are shown in figure 7.

The solution for the gravitational moments shows that the TW (Kaspi et al. 2010)
and TGW (Zhang et al. 2015) solutions are again remarkably similar, apart from
J2. The solutions for both of these approximations are similar to the fuller FTW
approximation, except for the moments J2, J6 and J8. In particular, the fuller solution
for J8 is an order of magnitude smaller than both cruder approximations, underlining
the importance of considering the additional physical effects included in this paper.
In this case, there is a significant difference between TW (green) and the similar
TGW (grey) on the one hand, and FTW (blue) on the other. The main reason for
this difference are the two terms involving ∂ρ ′/∂r. This is shown by the dash black
curve denoted TW+, where we have used the TW solution plus the terms shown in
figure 7(c,h), which both involve the radial derivative of the perturbation density. The
importance of these terms is a direct consequence of the structure of the perturbation
density solution, which tends to be strongly concentrated near the upper surface. This
surface enhancement is not surprising given that the wind forcing decays rapidly
away from the surface in this baroclinic case. This also implies that all terms in the
equation tend to be more concentrated near the surface than in the barotropic case
(compare figure 4 and figure 7). For this baroclinic case, the TGW term (figure 7e) is
negligible relative to most other terms considered here. Note also that the solution of
the null space (§ 2.3) relies on the barotropically based polytropic equation, therefore
some inconsistencies might arise due to that. This, however, should not affect much
the solutions since the null-space contribution to the solution is small.
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FIGURE 7. Solution of (2.6) for a baroclinic case (depth of winds is 1000 km) when all
terms are included: (a) left-hand side term; (b) total right-hand side; (c–h) the six terms
on the right-hand side. Values of ρ ′ are in kg m−3.

4. Discussion and conclusion
In the traditional approximation for terrestrial planets the centrifugal term is often

merged with gravity in the momentum equation, by choosing the vertical direction
to be that perpendicular to the planet’s geopotential surface and defining an effective
gravity. This is then traditionally followed by approximating the planet as a sphere,
so that the vertical direction coincides with the radial direction, and thus effectively
neglecting the horizontal component of the centrifugal term. It is important to note
that this centrifugal term is not smaller than the Coriolis term even for the Earth case,
but because of the nearly spherical shape of Earth, this approximation allows trading
a large dynamical component in the momentum balance with a small geometric error
(Vallis 2006, § 2.2). This approximation has proven to hold well for Earth and other
terrestrial planets. On the giant planets, the oblateness is not small (6.5 % and 9.8 %
on Jupiter and Saturn, respectively, compared with 0.3 % on Earth). Therefore, the
contribution of the centrifugal (fifth and sixth terms on the right-hand side of (2.6))
and self-gravitation terms (third and fourth terms on the right-hand side of (2.6)) can
potentially lead to significant contributions to the momentum balance, and therefore
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may alter thermal-wind balance as well. The goal of this study is to assess the
importance of these terms in a fluid planet.

By solving numerically the full second-order momentum equation in our perturbation
approach, which includes the original thermal-wind balance terms (left-hand side term
and second term on right-hand side in (2.6)), self-gravity terms, centrifugal terms,
and other non-spherical contributions (first term on right-hand side of (2.6)), we
have shown that the original TW balance is still the leading order. In the barotropic
limit, the TW results, with the various higher-order contributions, are systematically
compared with results from the oblate CMS model. In the context of recent studies
that argue that additional terms are important in the balance for calculating the
gravitational moments (Zhang et al. 2015; Cao & Stevenson 2016), we show that to
leading-order these terms are negligible, and have a small contribution to the gravity
moments. Consistently with Zhang et al. (2015), we find that the self-gravity term
(TGW) increases the value of J2, though it does not bring the TW J2 closer to the
CMS result. This terms has a negligible contribution to all higher harmonics, which
were not discussed in Zhang et al. (2015).

We conclude therefore that while more complete solutions are possible, as we
do in this study, the traditional thermal-wind gives a very good approximation to
the balance between the wind shear and the density gradients, and integrating it
gives a very good approximation to the gravity moments. In particular, taking into
account the accuracy of the Juno and Cassini measurements, this gives an excellent
approximation. Quantitatively, for the barotropic cases, its results differ by at most a
factor of 1.6 compared with the full solution. This difference is small considering the
other uncertainties of the interior flow. For the baroclinic case, where wind structures
decay rapidly near the surface, terms involving the radial derivative of the perturbation
density become more important for calculating the gravity moments.

The main advantage of using the TW model compared with FTW is numerical.
While the TW equation (3.3) allows for local calculation of the density from the wind,
the FTW equation (2.6) is an integro-differential equation that needs to be solved
globally. It is mostly complicated from the need to integrate the dynamical density (ρ ′)
globally to calculate the dynamical self-gravity (g′). The TW approximation allows
therefore using much higher resolution, which is necessary for resolving the high-order
moments. As a consequence of the simplicity of the TW model, more sophisticated
and numerically demanding methods can be applied in order to find the best-matching
wind field given the gravity measurements (Galanti & Kaspi 2016a; Galanti & Kaspi
2016b). The invertibility of the solution using the TW model is a major advantage
for the upcoming analysis of the Juno and Cassini data. Given the extremely small
contribution of the null space to the overall solution, we expect that the more complete
FTW model would also be invertible, still the computational challenge involved is
much greater.

In summary, deciphering the effect of the atmospheric and internal flows from the
measured gravity spectrum of Jupiter and Saturn provides a major challenge. The
methods suggested to date have been either limited to barotropic cases (e.g. Hubbard
1982, 1999, 2012; Kong et al. 2012; Hubbard et al. 2014), or approximations limited
to spherical symmetry or partial solutions (e.g. Kaspi et al. 2010; Zhang et al. 2015;
Cao & Stevenson 2016). Here, we have developed a self-consistent perturbation
approach to the TW balance that incorporates all physical effects, including the
effects of oblateness on the dynamics and the gravity perturbation induced by the flow
itself. The full self-consistent perturbation approach to the TW balance considered
here allows us to objectively examine the role of different physical processes, allows
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obtaining and even more accurate approximation by proceeding to higher-order
perturbation corrections (appendix B), and allows the interpretation of the expected
Juno and Cassini observations in a more complete way than was possible in previous
approaches, thus maximizing the benefits of these observations.
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Appendix A. Higher-order perturbation equations

We write here the perturbation equations to the second order to demonstrate how
the results of our approach can be made more accurate if needed. The momentum
equation (2.2) is

2Ω × (ρu)=−∇p− ρg− ρΩ ×Ω × r. (A 1)

Writing the density as ρ = ρ0 + ρ1 + ρ2, and substituting into the above equation,
treating ρ1 as an order ε correction and ρ2 as an order ε2 correction, we can separate
the different orders to find equations for each correction order. Note that in the
previous sections we denote ρ1 as ρ ′. We view, as defined earlier, the zeroth-order
balance as the balance without the effects of the winds, so that our zeroth-order
equation is

0=−∇p0 − ρog0 − ρ0Ω ×Ω × r. (A 2)

The winds enter at the first order, where the equation is

2Ω × (ρ0u)=−∇p1 − ρog1 − ρ1g0 − ρ1Ω ×Ω × r, (A 3)

and the second-order correction is then obtained by solving

2Ω × (ρ1u)+ ρ1g1 =−∇p2 − ρog2 − ρ2g0 − ρ2Ω ×Ω × r. (A 4)

In the second-order perturbation equation we moved all terms that are known from
previous orders to the left-hand side. This equation is again solved by taking
a curl and then taking care of the integration constant (null space solution) if
needed. Because the second-order equation is generally similar to the first-order
equation, its numerical solution follows the same approach and should not pose
significant additional difficulties. While this procedure should be formally done in
a non-dimensional form, we present here the dimensional equations for clarity. The
small parameter in this expansion when it is done in non-dimensional form is the
Rossby number Ro=U/(ΩL), where U is a scale for the velocity and L the horizontal
length scale of the relevant motions.
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Appendix B. Integration constant and null space
The objective of this appendix is to show how the integration constant encountered

in the TW approach (e.g. Kaspi et al. 2010; Zhang et al. 2015) can be calculated.
This is meant to aid the understanding of our approach to solving for the null space
of the more general solution considered in the main text. The main message of this
appendix is that the integration constant may be determined by adding the missing
physics of the polytropic equation, and by requiring the total mass of the density
perturbation to vanish. The momentum equation for the simple example is

0=−∇p− gρ +Ω2ρr cos θ r̂⊥. (B 1)

We treat the effects of rotation as a perturbation and the leading-order balance is then
hydrostatic, with the corresponding fields being a function of radius alone (ρ0=ρ0(r)),

0=−∇p0 − g0ρ0. (B 2)

The next order contains the deviations in density and gravity due to rotation,

0=−∇p1 − g1ρ0 − g0ρ1 +Ω2ρ0r cos θ r̂⊥. (B 3)

Taking the curl,

0=−g(θ)1 r
∂ρ0

∂r
+ g0

∂ρ1

∂θ
−Ω2r2 ∂ρ0

∂r
cos θ sin θ, (B 4)

substituting the expression for the gravity fields, and integrating over θ ,

− 1
2
Ω2r2 ∂ρ0

∂r
cos2 θ = g0ρ1 + 2πG

∂ρ0

∂r

∫∫
ρ1(r′, θ ′)r′2 cos(θ ′)
〈|r− r′|〉 dr′ dθ ′ +C(r), (B 5)

where C(r) is the unknown integration constant to be solved for, and the left-hand
side represents rotation effects due to the already known zeroth-order solution. In the
following, we solve for the perturbation density by expressing the density as a sum of
two terms. First, ρ̂1(r, θ), that solves the above equation with the integration constant
set to zero and, second, δρ1(r) that satisfies the same equation with a zero on the
left-hand side and with the integration constant. Together, ρ1= ρ̂1(r, θ)+ δρ1(r) solves
the full equation (B 5).

Given that we took the curl of the momentum equation, ρ̂1 which solves the above
equation without C(r) satisfies the original momentum equation up to a gradient of
some function which we may write as p̂1 + δp1,

0=−∇(p1 + δp1)+ ρ0ĝ1 + ρ̂1g0 + ρ0Ω
2r cos θ r̂⊥. (B 6)

Next, take the difference between the momentum equation for ρ1 and for ρ̂1, we find

0=−∇δp1 + ρ0δg1 + δρ1g0. (B 7)

The second and third terms in (B 7) are functions of radius r only. Therefore, we
expect the pressure term −∇δp1 to also be a function of the radius only. Furthermore,
assuming now that the polytropic relation holds for the perturbation pressure and
density, we have

δp1 =K2ρ0δρ1, (B 8)
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which leads to an equation for the unknown perturbation density,

0=−∇(K2ρ0δρ1)+ ρ0δg1 + δρ1g0. (B 9)

Substituting the expression for the gravity,

0=− ∂
∂r
(Kn2ρδρ1)+ ρ02πG

∂

∂r

∫∫ 〈
1

|r− r′|
〉
δρ1(r′)r′2 cos(θ ′) dr′ dθ ′ + δρ1g0,

(B 10)

and substituting the zeroth-order solutions for ρ0, p0 and g0 (Zhang et al. 2015, see
notation there), and after some more rearrangement and integration in ξ we obtain

0=−δρ1 + 1
2

∫∫ 〈
1

|ξ − ξ ′|
〉
δρ1(ξ

′)ξ ′2 cos(θ) dξ ′ dθ +D, (B 11)

where D is the constant of integration. Use the expansion for the average over
longitude (Zhang et al. 2015), and the fact that the integral over all Legendre
polynomials but the first vanish,

0=−δρ1(ξ)+
∫ π

0
f0(ξ , ξ

′)δρ1(ξ
′)ξ ′2 dξ ′ +D, (B 12)

where

f0(ξ , ξ
′)=


1
ξ

ξ ′ 6 ξ

1
ξ ′

ξ ′ > ξ.
(B 13)

A solution may be found by assuming a Frobenius-form solution,

δρ1(ξ)=
∞∑

m=0

amξ
m+r. (B 14)

Now find what is am. Write (B 12) explicitly

0=−
∞∑

m=0

amξ
m+r +

∞∑
m=0

∫ ξ

0

1
ξ

amξ
′m+rξ ′2 dξ ′ +

∞∑
m=0

∫ π

ξ

1
ξ ′

amξ
′m+rξ ′2 dξ ′ +D, (B 15)

and performing the integral and collecting powers, while also defining a−1= a−2= 0,

0=
∞∑

m=0

(
−am + 1

(m+ 1+ r)
am−2 − 1

m+ r
am−2

)
ξm+r +

∞∑
m=0

1
m+ 2+ r

amπm+2+r +D.

(B 16)

The coefficient of ξm+r should vanish for all m, giving us the recursion relation.
Multiplying by (m + r)(m + r + 1) and considering the m = 0 and m = 1 cases,
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we find that there are two possible solutions for the Frobenius power, r = 0 or
r=−1. The first leads to the recursion relation,

am =− 1
m(m+ 1)

am−2. (B 17)

We term this solution F1(ξ). The second solution, with r=−1, leads to

am =− 1
(m− 1)m

am−2, (B 18)

which is the recursion relation for cosine. Therefore,

δρ1 =C1F1 +C2
cos(ξ)
ξ

. (B 19)

The cos(ξ)/ξ solution is not physical because it diverges at ξ = 0 and we conclude
that C2 = 0. Considering the coefficients of ξ 0 in (B 16) we find a0 in terms of the
unknown integration constant D. We may then use D to satisfy the constraint that
volume integral over the total perturbation ρ1(ξ , θ)+ δρ1(ξ) should vanish, as done in
the manuscript for the fuller problem considered there.
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