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Abstract. Abrupt and irreversible winter Arctic sea ice loss may occur under anthropogenic warming due to
the disappearance of a sea ice equilibrium at a threshold value of CO2, commonly referred to as a tipping
point. Previous work has been unable to conclusively identify whether a tipping point in winter Arctic sea
ice exists because fully coupled climate models are too computationally expensive to run to equilibrium for
many CO2 values. Here, we explore the deviation of sea ice from its equilibrium state under realistic rates of
CO2 increase to demonstrate for the first time how a few time-dependent CO2 experiments can be used to predict
the existence and timing of sea ice tipping points without running the model to steady state. This study highlights
the inefficacy of using a single experiment with slow-changing CO2 to discover changes in the sea ice steady state
and provides a novel alternate method that can be developed for the identification of tipping points in realistic
climate models.

1 Introduction

The Arctic is warming at a rate at least twice as fast as
the global mean with profound consequences for its sea ice
cover. Sea ice is already exhibiting rapid retreat with warm-
ing, especially in the summertime (Comiso and Parkinson,
2004; Nghiem et al., 2007; Stroeve et al., 2008; Notz and
Stroeve, 2016; Stroeve and Notz, 2018), shortening the time
that socioeconomic and ecological systems have to adapt.
These concerns have motivated a large body of work ded-
icated to both observing present-day sea ice loss (Kwok
and Untersteiner, 2011; Stroeve et al., 2012; Lindsay and
Schweiger, 2015; Lavergne et al., 2019) and modeling sea
ice to understand whether its projected loss is modulated by
a threshold-like or “tipping point” behavior. Abrupt loss of
Arctic sea ice could be driven by local positive feedback
mechanisms (Curry et al., 1995; Abbot and Tziperman, 2008;
Abbot et al., 2009; Kay et al., 2012; Leibowicz et al., 2012;
Burt et al., 2016; Feldl et al., 2020; Hankel and Tziperman,
2021), remote feedback mechanisms that increase heat flux
from the midlatitudes (Holland et al., 2006; Park et al., 2015),
or by the natural threshold corresponding to the seawater

freezing point (Bathiany et al., 2016). If such an abrupt loss
is caused by irreversible processes (typically, strong positive
feedback mechanisms as opposed to the reversible mecha-
nism of a freezing point threshold of Bathiany et al., 2016),
it is referred to here as a tipping point. A tipping point in
the sense used here is a change in the number or stability
of steady-state solutions (Ghil and Childress, 1987; Strogatz,
1994) as a function of CO2 and is also known as a bifur-
cation. We note that some of the climate literature uses the
term tipping point in a more general sense of a relatively
rapid change (e.g., Lenton, 2012). While most studies have
concluded that there is no tipping point during the transition
from perennial to seasonal ice cover (i.e., during the loss of
summer sea ice), the existence of a tipping point during the
loss of winter sea ice (transition to year-round ice-free con-
ditions) continues to be debated in the literature (Eisenman,
2007, 2012; Eisenman and Wettlaufer, 2009; Notz, 2009).
Wagner and Eisenman (2015) showed that a winter tipping
point disappeared from a simple model of sea ice with no ac-
tive atmosphere when a longitudinal dimension was added.
On the other hand, other literature (e.g., Abbot and Tziper-
man, 2008; Hankel and Tziperman, 2021) has demonstrated
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the importance of atmospheric feedbacks, not included in the
model of Wagner and Eisenman (2015), in inducing win-
ter sea ice tipping point. Furthermore, three out of seven
fully complex global climate models (GCMs) that lost their
winter sea ice completely in the CMIP5 extended RCP8.5
scenario showed a very abrupt change in winter Arctic sea
ice resembling a tipping point (Hezel et al., 2014; Hankel
and Tziperman, 2021). However, given the projected rapid
changes to CO2 in the coming centuries and the slower re-
sponse of the climate system, we do not expect future sea ice
to be fully equilibrated to the CO2 forcing at a given time,
making the standard steady-state tipping point analysis chal-
lenging. Thus, our first goal is to understand abrupt winter
Arctic sea ice changes – which may or may not be due to
tipping points – under rapidly changing CO2 forcing, where
sea ice is not at equilibrium.

Tipping points imply a bistability (meaning that sea ice
can take on different values for the same CO2 concentration),
and hysteresis – an irreversible loss of sea ice even if CO2 is
later reduced. Bistability (and therefore tipping points) can
be tested for by running model simulations to steady state
at many different CO2 values, which is computationally in-
efficient in expensive, state-of-the-art GCMs. GCM studies,
therefore, tend to use a single experiment with very gradual
CO2 increases and decreases (Li et al., 2013) or even a faster
CO2 change (Ridley et al., 2012; Armour et al., 2011) and
look for hysteresis in sea ice that would imply the existence
of a tipping point. These studies implicitly assume that such
a run should approximate the behavior of the steady state at
different CO2 concentrations. However, Li et al. (2013) fur-
ther integrated two apparently bistable points and found that
they equilibrated to the same value of winter sea ice: there
was no “true” bistability at these two CO2 concentrations,
the sea ice was simply out of equilibrium with the CO2 forc-
ing. This calls into question the current use of time-changing
CO2 runs to study the bifurcation structure of sea ice.

In light of the difficulties in using climate model runs with
time-changing CO2 (hereafter “transient runs”), the first goal
of this work is to understand the relationship between these
transient runs and the steady-state value of sea ice in systems
with and without bifurcations (since the existence of a bifur-
cation in winter sea ice remains unknown), and the second
goal is to develop a new efficient method for the identifica-
tion of tipping points from transient runs. Theoretical work
in dynamical systems (Haberman, 1979; Mandel and Erneux,
1987; Baer et al., 1989; Tredicce et al., 2004) and studies
related to bistability in the Atlantic Meridional Overturning
Circulation (AMOC; Kim et al., 2021; An et al., 2021) have
examined systems with tipping points when the forcing pa-
rameter (CO2 in our case) changes in time at a finite rate.
They found that as the forcing parameter passes the bifurca-
tion point, the system continues to follow the old equilibrium
solution for some time before it rapidly transitions to the new
one. Specifically, Kim et al. (2021) and An et al. (2021) find
that the width of the hysteresis loop of AMOC is altered by

the rate of forcing changes – this phenomenon is referred to
as “rate-dependent hysteresis”. This rate dependence occurs
in their case in a system that also has bistability and hystere-
sis in the equilibrium state. This type of analysis has, to our
knowledge, not yet been applied in the context of winter sea
ice loss under time-changing CO2 concentrations nor com-
pared in systems with and without a bifurcation (that is, with
and without an equilibrium hysteresis).

In order to analyze how the hysteresis of sea ice under
time-changing forcing relates to the steady-state behavior
of sea ice, we run a simple physics-based model of sea ice
(Eisenman, 2007), configured in three different scenarios:
with a large CO2 range of bistability, a small range of bista-
bility, and no bistability in the equilibrium. These three sce-
narios span the range of possible behaviors of winter sea ice
in state-of-the-art climate models. Each case is run with dif-
ferent rates of CO2 increase (ramping rates). We use results
from this model and from an even simpler standard 1D dy-
namical system to demonstrate that the convergence of the
transient behavior (under time-changing forcing) to the equi-
librium behavior is very slow as a function of the ramping
rate of CO2. In other words, even climate model runs with
very slow-changing CO2 forcing may simulate sea ice that
is considerably out of equilibrium near the period of abrupt
sea ice loss. Finally, we propose a novel approach for un-
covering the underlying equilibrium behavior – and thus the
existence and location of tipping points – in comprehensive
models where it is computationally infeasible to simulate
steady-state conditions for many CO2 values. Such a method
is important given the model-dependent nature of winter sea
ice tipping points discussed above; uncovering the existence
of sea ice tipping points in GCMs, which are the most real-
istic representation of Arctic-wide sea ice behavior that we
have, is the next step toward understanding whether such tip-
ping points exist in the real climate system. Our goal has
some parallels to that of Gregory et al. (2004), who used
un-equilibrated GCM runs to deduce the equilibrium climate
sensitivity when fully equilibrated runs were computation-
ally infeasible.

As mentioned above, some GCMs exhibit an abrupt
change in winter sea ice that may be a tipping point, and oth-
ers do not (Hezel et al., 2014; Hankel and Tziperman, 2021).
The reasons likely involve numerous differences in parame-
ters and parameterizations. It is not obvious how to modify
parameters in a single GCM to display all of these different
behaviors. Therefore, we choose to use an idealized model of
sea ice where we can directly produce different bifurcation
behaviors to address our second goal and answer the ques-
tion: is it possible to identify the CO2 at which tipping points
occur without running the model to a steady state for many
CO2 values? Answering such a question in a simple model is
an obvious prerequisite to tackling the problem of identify-
ing climate bistability in noisy, high-dimensional GCMs. In
order to perform this analysis for each of the three scenarios
mentioned above, we modify the strength of the albedo feed-
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back via the choice of surface albedo parameters. The albedo
values used here to generate the three scenarios are not meant
to reflect realistic albedo values but rather allow us to repre-
sent in a single model the range of sea ice equilibria behav-
iors that may exist in different GCMs. We, therefore, follow
in the footsteps of previous studies (e.g., Eisenman, 2007)
that have also changed parameters outside of their physically
relevant regime in order to understand summer sea ice bi-
furcation behavior; here we follow the same approach to un-
derstand when a winter sea ice bifurcation can be detected
without running an expensive climate model to steady state.

2 Methods

2.1 Sea ice model

The sea ice model used follows Eisenman (2007) almost
exactly, and its key features are depicted schematically in
Fig. 1. The model contains four state variables: sea ice ef-
fective thickness (V , which is volume divided by the area of
the model grid box), sea ice area (A), sea ice surface tem-
perature (Ti), and mixed-layer temperature (Tml) for a single
box representing the entire Arctic. Subsequent versions of
this sea ice model have been used in Eisenman and Wett-
laufer (2009), Eisenman (2012), and Wagner and Eisenman
(2015). Those versions are derived from the model used here,
making a few further modest simplifications (using a hyper-
bolic tangent function for surface albedo, assuming the ice
surface temperature is in a steady state, combining all prog-
nostic variables into one, i.e., enthalpy) that do not affect the
qualitative behavior of the model (i.e., the nature of summer
and winter sea ice bifurcations). We choose to implement the
earlier model because it explicitly represents the key physi-
cal variables of ice volume, area, ocean temperature, and ice
temperature as prognostic variables – as opposed to combin-
ing them all into a single enthalpy – and thus provides more
transparency and interpretability. We, therefore, do not ex-
pect our results to change if we use any of the later model
versions.

In the model, the atmosphere is assumed to be in radiative
equilibrium with the surface, and the model is forced with
a seasonal cycle of insolation; of poleward atmospheric heat
transport from the midlatitudes; and of local optical thick-
ness of the atmosphere, which represents cloudiness. Sea ice
growth and loss are primarily determined by the heat budget
at the bottom of the ice and are therefore set by the balance
between ocean–ice heat exchanges and heat loss through the
ice to the atmosphere. When conditions for surface melting
are met (when the ice surface temperature is zero and net
fluxes on the ice are positive), all surface heating goes into
melting ice and the surface albedo of the ice is set to the melt
pond albedo. The ocean temperature is affected by shortwave
and longwave fluxes in the fraction of the box that is ice-free
and by ice–ocean heat exchanges. When the ocean temper-
ature reaches zero, all additional cooling goes into ice pro-

Figure 1. Schematic showing some of the key features of the Eisen-
man (2007) model. Its four prognostic variables are ice volume, ice
area, ice surface temperature, and ocean mixed-layer temperature.
The full model equations can be found in the Supplement.

duction, while the ocean temperature remains constant. The
full equations of the sea ice model can be found in the orig-
inal paper (Eisenman, 2007) and in the Supplement; here,
we highlight a few minor ways in which our implementation
differs. First, for simplicity, we do not model leads, which in
the original model were represented by capping the ice frac-
tion at 0.95 rather than 1. Second, we use an approximation
to the seasonal cycle of insolation (Hartmann, 2015) using a
latitude of 75◦ N. The atmospheric albedo is set to 0.425 to
produce the same magnitude of the seasonal cycle as in the
original model of Eisenman (2007).

2.2 Setup of simulations

In our transient-forcing scenarios (described below), we vary
CO2 in time which affects the prescribed near-surface atmo-
spheric midlatitude temperature (Tmidlat) and the atmospheric
optical depth (N ; see the Supplement). Specifically, we in-
crease the annual mean of Tmidlat by 3 ◦C per CO2 doubling
and N by a1N that corresponds to 3.7 Wm−2 per doubling.
All model parameters are as in Eisenman (2007) except as
mentioned below.

We configure the model in three different scenarios that
yield a wide CO2 range of bistability in winter sea ice (Sce-
nario 1), a small range of bistability in winter sea ice (Sce-
nario 2), and no bistability in winter sea ice (Scenario 3). We
do so by modifying the strength of the ice–albedo feedback
by changing the albedos of bare ice (αi), melt ponds (αmp),
and ocean (αo), as listed in Table S1 in the Supplement.

In each of the three scenarios, we tune the model (by ad-
justing the mean and amplitude of the atmospheric optical
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Figure 2. Hysteresis runs (time-changing forcing) and equilibrium runs (fixed forcing) for average March sea ice effective thickness (sea
ice volume divided by area of the grid cell; panels a, c, and d) and the simple ODE from Eq. 1 (b, d, and f). The first row corresponds to
Scenario 1 (wide bistability), the second row to Scenario 2 (narrow bistability), and the third to Scenario 3 (no bistability). Blue lines indicate
simulations with increasing forcing (CO2 or β), while red lines indicate simulations with decreasing forcing. Dashed and dotted black lines
indicate the steady-state values of sea ice or the ODE variable x. These two black lines are different when the two initial conditions evolve
to two different steady states. The legends indicate the different ramping rates (represented by darker colors for faster rates), which are in
units of years per CO2 doubling in the case of the sea ice model. The green arrows demonstrate the direction of evolving sea ice effective
thickness during the hysteresis experiments.

depth) to roughly match the observed seasonal cycle of ice
thickness under pre-industrial CO2 (∼ 2.5–3.7 m, Eisenman,
2007). We then run each scenario with multiple CO2 ramp-
ing rates (expressed in “years per doubling”) with an ini-
tial stabilization period (fixed pre-industrial CO2), a period
of exponentially increasing CO2 concentration (which corre-
sponds to linearly increasing radiative forcing), another pe-
riod of stabilization at the maximum CO2, a period of de-
creasing CO2, and a final period of stabilization at the min-
imum CO2 value (see Fig. S2 in the Supplement). Scenar-
ios 2 and 3 are ramped to higher final CO2 values than Sce-
nario 1 so that they lose all their sea ice. We also directly
calculate the steady-state behavior of the sea ice (as done in
the original study) by running many simulations with fixed
CO2 values until the seasonal cycle of all the variables stabi-
lizes. Because we expect multiple equilibria (which could be
ice-free, seasonal ice, or perennial ice) at some CO2 values
in Scenarios 1 and 2, we run these steady-state simulations
starting with both a cold (ice-covered) and a warm (ice-free)

initial condition in order to find these different steady states.
In the ice-free initial condition runs, the ice–albedo feedback
will still play an important role if the temperature cools suffi-
ciently for ice to develop. At CO2 values for which the sea ice
is bistable, the ice-free initial condition evolves to a perenni-
ally ice-free steady state, and the ice-covered initial condition
evolves to a seasonally ice-covered steady state (seen by the
dotted and dashed lines, respectively, in Fig. 2a and c).

2.3 Cubic ODE

The main points we are trying to make about the transient
versus equilibrium behavior of winter sea ice near a tipping
point are not unique to the problem of winter sea ice, and
in order to demonstrate this, we use the simplest mathemat-
ical model that can display tipping points, following other
studies that have also used such simple dynamical systems
(Ditlevsen and Johnsen, 2010; Bathiany et al., 2018; Ritchie
et al., 2021; Boers, 2021). The cubic ODE used, while much
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simpler than the sea ice model above, has some of the key
characteristics of the sea ice system (it is a non-autonomous
system due to the time-dependent forcing and has saddle–
node bifurcations), which allows for direct comparison be-
tween the two models. The ODE equation,

dx
dt
=−x3

+ δx+β(t), β(t)= β0+µt, (1)

contains a time-changing forcing parameter, β(t) mimicking
the effects of CO2 in the sea ice model. We consider this dif-
ferential equation in three scenarios, paralleling those used
with the sea ice model: in Scenario 1, δ = 5 leading to a wide
region of bistability; in Scenario 2, δ = 1 leading to a narrow
region of bistability; and finally, in Scenario 3, δ = 0 leading
to a mono-stable system. The different values of δ, therefore,
produce the same three scenarios that were achieved in the
sea ice model by modifying the strength of the ice–albedo
feedback. We mimic the hysteresis experiments of the sea
ice model with a sequence of ramping up and ramping down
(using different ramping rates, µ) with values of β ranging
from −10 to 10 to sweep the parameter space that contains
the bifurcations. We calculate the steady states with fixed val-
ues of β (µ= 0), starting with both a positive and a negative
initial condition of x to yield two stable solutions when these
exist.

We want to calculate the upper and lower CO2 values of
the hysteresis region in runs with time-changing (i.e., tran-
sient) CO2 forcing. We do so by calculating the CO2 value at
which the March sea ice area drops below a critical thresh-
old (50 % ice coverage; results are insensitive to the specific
value used) during increasing and decreasing CO2 integra-
tions: we denote these CO2 values COi

2 and COd
2, respec-

tively (see Fig. S9). The difference between COi
2 and COd

2
is referred to below as the “hysteresis width” of the rate-
dependent hysteresis whether an equilibrium hysteresis ex-
ists or not; this width approaches the width of bistability at
very slow ramping rates.

2.4 A new method for predicting the CO2 of the sea ice
tipping point

One of our main goals (see the Introduction) is to efficiently
estimate the equilibrium behavior of sea ice, including the
location of tipping points, without running the model to a
steady state for many CO2 values. This would show that
such estimation could be calculated for GCMs where tip-
ping points cannot be detected using steady-state runs due
to their computational cost. In order to estimate the values of
COi

2 and COd
2 that would have occurred for an infinitely slow

ramping rate (in other words, the range of CO2 for which
there is bistability) using only the transient runs, we fit a
polynomial of the form f (x)=mxc+ b to COi

2 and COd
2 as

functions of the ramping rate x. Because c is negative, the fit-
ted parameter b represents the prediction of COi

2 and COd
2 at

infinitely slow ramping rates, i.e., in the steady state. We also

calculate the uncertainty in the fitted parameter b by block
bootstrapping to account for autocorrelation; see the Supple-
ment. Other fits to COi

2 and COd
2 as a function of ramping

rates, such as an exponential function f (x)= a+bexp(−cx),
could in principle be used, although we found that fit to be
less good in our case.

3 Results

In the following three subsections, we discuss the behav-
ior of the sea ice model and the cubic ODE under time-
changing forcing, the relationship of the transient and equi-
librium behaviors, and a method that we propose for inferring
the existence and location of tipping points from the tran-
sient behavior. Equilibrium hysteresis refers here to the path-
dependent solution of a variable due to bistability and a bifur-
cation in the steady state (in other words, the loop traced by
the steady-state solutions). The term rate-dependent hystere-
sis (An et al., 2021; Manoli et al., 2020) describes hystere-
sis loops that appear in time-changing forcing runs (rather
than in the steady state) and that depend on the rate of forc-
ing change. In our analysis rate-dependent hysteresis applies
to both systems with and without equilibrium hysteresis: it
refers to any differences in the results for increasing vs. de-
creasing CO2 simulations of sea ice that are altered by the
rate of CO2 change.

3.1 Transient response of Arctic winter sea ice to
time-changing CO2

Our goal in this section is to understand the relationship of
winter sea ice forced with time-changing CO2 to its equilib-
rium state, both in cases with and without a sea ice tipping
point. In Fig. 2a, c, and e, we plot the results of running all
three scenarios (wide range of bistability, Scenario 1; nar-
row range of bistability, Scenario 2; and no bistability, Sce-
nario 3) under time-changing (transient) and fixed CO2 val-
ues. In all scenarios, the experiments run with time-changing
CO2 exhibit rate-dependent hysteresis; the hysteresis width
(lower horizontal gray bar in Fig. 2a) is larger for faster ramp-
ing rates (Fig. 2a, c, and e). For Scenarios 1 and 2, which have
a region of bistability and equilibrium hysteresis (upper gray
bar in Fig. 2a), this corresponds to a widening from the equi-
librium hysteresis (that would exist even with infinitely slow
ramping rates), while in Scenario 3, this hysteresis occurs
only in transient simulations and is due to the inertia in the
system (the sea ice cannot respond instantaneously to forc-
ing changes). In Scenarios 1 and 2, whose equilibrium solu-
tions (dashed and dotted black lines in Fig. 2) have a tipping
point and therefore an infinite gradient of sea ice thickness
vs. CO2, the faster ramping rates also lead to more gradual
(and finite) gradient of sea ice thickness vs. CO2.

The rate-dependent hysteresis loops across all scenarios
at fast enough ramping rates (loops composed of the dark-
est blue and darkest red in Fig. 2a, c, and e) are qualitatively
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similar in shape, despite their different underlying steady-
state structures. This similarity indicates that from a single
hysteresis run with time-changing CO2, we cannot discern
whether the underlying Arctic winter sea ice equilibrium be-
havior has a region of bistability or not nor how wide the
region of true bistability is. In particular, a single hysteresis
loop found from a time-changing forcing simulation would
always overestimate the width of bistability if it was assumed
to represent a quasi-steady state. This result demonstrates
that the apparent sea ice hysteresis loop found by Li et al.
(2013) could be due to a system without an equilibrium hys-
teresis, as they suggest, or due to a system with a narrower
equilibrium hysteresis than the one implied by their transient
simulation.

We now discuss the behavior of the simple cubic ODE
(Eq. 1) under similarly time-changing forcing. Previous work
in the dynamical systems literature (e.g., Haberman, 1979;
Mandel and Erneux, 1987; Baer et al., 1989; Breban et al.,
2003; Tredicce et al., 2004; Kaszás et al., 2019) has exam-
ined a variety of simple systems to understand the nature of
bifurcations in the presence of a time-changing (“drifting”
or “transient”) forcing parameter. In the climate literature,
too (e.g., Ditlevsen and Johnsen, 2010; Bathiany et al., 2018;
Ritchie et al., 2021; Boers, 2021), idealized dynamical sys-
tems similar to our Eq. (1) have been used to understand the
predictability of tipping points in the presence of noise, and
the ability to recover from such tipping points (“overshoot”
scenarios). These works, as well as the AMOC study of An
et al. (2021), found that a system with a bifurcation that is run
with a time-changing forcing parameter can follow a given
equilibrium value beyond the bifurcation value of the forc-
ing parameter before undergoing the tipping point transition
to the new equilibrium value. This is consistent with the out-
of-equilibrium behaviors we find for sea ice in Scenarios 1
and 2. To our knowledge, the simple ODE used here has not
yet been analyzed with our specific goal in mind: to com-
pare the shape of rate-dependent hysteresis loops in generic
dynamical systems both with and without bifurcations and
to address the question of whether the equilibrium behavior
can be inferred from the rate-dependent behavior of such sys-
tems.

To address these two goals, we configure Eq. (1) anal-
ogously to the sea ice model in three scenarios with wide
bistability (Scenario 1), narrow bistability (Scenario 2), and
no bistability (Scenario 3) and force it with a time-changing
forcing parameter. In Fig. 2b, d, and f, we see that the three
scenarios with similar dynamics (but different equilibrium
structures) all display rate-dependent hysteresis, similar to
the result from the sea ice model. Specifically, even when
there is only one stable equilibrium solution in both models
(Scenario 3, panels e and f of Fig. 2), there is still a narrow
region of rate-dependent hysteresis. Thus, we find that the in-
ability to tell if rate-dependent hysteresis in Arctic winter sea
ice is accompanied by an underlying equilibrium hysteresis
appears to be a generic feature of dynamical systems, which

helps explain the challenges of interpreting the results of Li
et al. (2013).

Mathematically, this 1D system is fundamentally different
from the sea ice model because it is not periodically forced.
We show in the Supplement that adding a sinusoidal forcing
term to the ODE does not qualitatively change our results.

3.2 Slow convergence of the rate-dependent hysteresis
to the equilibrium behavior

Our next objective is to demonstrate that it would require ex-
pensive runs in a GCM to approach the equilibrium behavior
of sea ice using slower and slower-changing CO2 runs (hys-
teresis experiments). As we saw in Fig. 2, the rate of loss
of sea ice with increasing CO2 is infinite (dashed and dotted
black lines) in Scenarios 1 and 2 at the tipping points. On the
other hand, the gradient of sea ice thickness with respect to
CO2 is more gradual and finite under time-changing forcing
(blue and red curves) but steepens as the ramping rate of CO2
decreases. We now quantify the rate of this steepening by ex-
amining the maximum gradient of sea ice loss during each
transient simulation as a function of ramping rate (inverse of
the years per doubling of CO2).

In Fig. 3a, we plot the maximum gradient of March sea
ice thickness with respect to CO2 during each hysteresis ex-
periment, as a function of the CO2 ramping rate. In Scenar-
ios 1 and 2 (wide and narrow bistability, respectively), the
maximum gradient gets greater as the ramping rate is slower
(Fig. 3a, negative slopes of solid and dashed lines), consis-
tent with Fig. 2 (e.g., steepening from dark-blue to light-blue
curves in Fig. 2a and b). In particular, the gradient approxi-
mately follows a negative power law as a function of ramp-
ing rate on both warming and cooling time series. In Sce-
nario 3, the maximum gradient is nearly insensitive to the
ramping rate (relatively flat dash-dotted lines seen in Fig. 3a).
In Fig. 3b, we see a similar result for the simple ODE, as
seen by the shallowing of the power law from Scenarios 1
to 3 (though here the slope in Scenario 3 is clearly nonzero).
Notably, in the cubic ODE the power law in the case with
the largest region of bistability (Scenario 1) is approximately
given by max(dx/dβ)∝ µ−1, where µ again is the ramping
rate. The Supplement further explains the above convergence
rate of µ−1.

A dependence on the reciprocal of the ramping rate in the
case of wide bistability suggests that running a climate model
with twice as gradual CO2 ramping leads to a less than a
factor of 2 increase in the gradient max(dV/dCO2). This is
an important result because this implies that the distance be-
tween the CO2 at the simulated transient tipping point and
the CO2 of the true (equilibrium) tipping point (which we
want to estimate) also only reduces by a factor of 2 when the
ramping rate is reduced by a factor of 2. A greater power law
slope (e.g., a slope of−2) would imply a much faster conver-
gence to the equilibrium location of the tipping point. Thus,
using more and more gradual ramping experiments may be
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Figure 3. Maximum gradient of sea ice effective thickness with respect to CO2 in (a) and the maximum gradient of x with respect to the
forcing parameter β in (b) during transient simulations. For the sea ice model (a) the data points from the 18 different runs are shown as faded
points, with a superimposed line of best fit. For the cubic ODE (b) the maximum gradient lines corresponding to increasing and decreasing
forcing time series are identical due to the symmetry around β = 0 seen in Fig. 1b, d, and f.

an inefficient way to approach the equilibrium behavior of
this physical system, suggesting the need for a more efficient
approach, discussed next.

3.3 Predicting the steady-state behavior of sea ice
using only transient runs

Our main novel result, presented next, is a method for finding
the CO2 concentration at which a bifurcation (if any) occurs
in the equilibrium using computationally feasible transient
model runs instead of fixed-forcing steady-state runs. We are
interested in this CO2 concentration because it determines
the threshold beyond which significant sea ice loss is practi-
cally irreversible (Ritchie et al., 2021). In our simple, inex-
pensive model, we can test the estimates of the bistability and
associated tipping points derived from transient model runs
against the known true tipping points and equilibrium struc-
ture that are found from fixed-forcing runs (see Methods).
When used in a GCM, our method would provide a predic-
tion for the existence and location of tipping points when the
equilibrium value of sea ice is actually unknown. Thus, this
section is a proof of concept that our new method can accu-
rately determine whether observed rate-dependent hysteresis
is caused by lag around a system with no bistability or tip-
ping points or is caused by a rate-dependent widening of an
equilibrium hysteresis loop in a system with tipping points.

In Fig. 4a, we plot a measure of the upper and lower
CO2 values that correspond to the rightmost and leftmost
edges of the rate-dependent hysteresis (by calculating the
CO2 at which the March sea ice area crosses a critical thresh-
old; see Methods and Fig. S9). We plot this measure for the
warming (increasing greenhouse concentration) trajectories

in blue (COi
2) and for the cooling (decreasing greenhouse)

trajectories in red (COd
2), as a function of the ramping rate

for all three scenarios. As expected, as the ramping rate gets
slower COi

2 and COd
2 approach the CO2 values correspond-

ing to the edges of the equilibrium hysteresis and the location
of the true tipping points in the case of Scenarios 1 and 2 (de-
noted by the × symbols). In Scenario 3, COi

2 and COd
2 ap-

proach the same value (the rate-dependent hysteresis width
approaches zero) because there is no bistability in the steady
state.

Finally, we demonstrate that fitting a curve to the edges of
the rate-dependent hysteresis (COi

2 and COd
2) as a function of

the ramping rate can be used to predict COi
2 and COd

2 at in-
finitely slow ramping rates (i.e., the edges of the equilibrium
hysteresis). This would allow us to estimate the CO2 value
corresponding to a bifurcation in the equilibrium behavior
without running a model to a steady state. In Fig. 4a, we
plot COi

2 and COd
2 and the curves that fit them (see Meth-

ods) as functions of the ramping rate and the predicted val-
ues of COi

2 and COd
2 at infinitely slow ramping rates with a

95 % confidence interval range shaded around them. We per-
form this fitting and estimation process using all the ramping
experiments (18 different ramping rates total, as shown in
Fig. 4a). We then repeat the fit using fewer and fewer exper-
iments to explore how the uncertainty in predicted values of
COi

2 and COd
2 increases as we move to only using a few fast

ramping experiments that are more feasible when using full-
complexity climate models. Figure 4b shows a summary of
these analyses.

The predicted values of COi
2 and COd

2 are remarkably ac-
curate for all scenarios (points approaching the red and blue
x symbols in Fig. 4b), even when excluding several of the
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Figure 4. Estimating the equilibrium tipping point value from the rate-dependent hysteresis runs. In (a), the scatter points show the CO2 value
of the right and left edges of the rate-dependent hysteresis (COi

2 and COd
2, located along increasing (blue) and decreasing (red) CO2 time

series, respectively) for different ramping rates. The dashed lines show the curve that is fitted to the scatter points, and the shaded blue and
red bands show ± 2σ around the predicted values of COi

2 and COd
2 at infinitely slow ramping rates. The blue and red x symbols show the

true equilibrium values of COi
2 and COd

2 (calculated from the fixed-CO2 runs starting with cold and warm initial conditions, respectively).
In (b), we analyze the accuracy of this prediction as we use fewer transient runs. For the three scenarios, we show the result of sequentially
excluding the most gradual ramping simulations from the curve-fitting process used for predictions. The dots and the corresponding bars
represent the predicted equilibrium values of COi

2 and COd
2, with±2σ around the prediction, and dots moving away from the true value with

larger error bars correspond to excluding more and more runs from the calculation.

slower ramping experiments. This is an important test be-
cause when this method is applied to a GCM, one would only
have a smaller number of faster-ramping experiments due
to computational limitations. The uncertainties (indicated by
the shaded blue and red bars around the points) in the pre-
dictions grow when excluding more experiments from the
curve fitting process but still remain very low, especially for
Scenarios 1 and 2. In predicting COd

2 for Scenario 3, the un-
certainties are a bit higher because the functional form of our
fit does not represent this case as well as the others, lead-
ing to serial correlation in the residuals. The structure in the
residuals can be used to guide the choice of the functional
form used to fit such model output in future applications.
This same method and functional form can also successfully
predict the equilibrium structure of our simple ODE (Eq. 1),
with even smaller uncertainties in the prediction when using

very few ramping experiments (see Fig. S11). Finally, we can
use the difference between the distributions COi

2 and COd
2 to

calculate the probability that bistability – and thus a tipping
point – exists (see the Supplement). Another very similar ap-
proach using only the difference between COi

2 and COd
2 (i.e.,

the hysteresis width) as a function of the ramping rate is also
shown in Fig. S10.

Overall, these results demonstrate the potential for using
several shorter runs with time-changing CO2 forcing to effi-
ciently estimate the CO2 value of the tipping points and pre-
dict the existence of bistability in GCMs where equilibrium
runs or long, slow-ramping hysteresis runs are computation-
ally infeasible.
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4 Discussion

We have shown that a single climate model hysteresis run
with time-changing (transient) forcing cannot be used to con-
clusively estimate the true location of Arctic winter sea ice
tipping points, the range of bistability in the steady state, and
even the existence of bistability at all. We demonstrated that
the transient sea ice responses under time-changing CO2 re-
flect the generic behavior of a nonlinear dynamical system
(e.g., our Eq. 1): specifically, we showed that systems with
and without bistability can also produce qualitatively indis-
tinguishable rate-dependent hysteresis behavior. We also find
that very long model runs are needed to identify whether the
system approaches a bifurcation (Fig. 3) and at what CO2
this occurs. We showed that even in runs with a very slow-
changing CO2, the system can be surprisingly far from the
equilibrium as it undergoes a tipping point, consistent with
the work of Li et al. (2013). In addition, even with a very
slow-ramping experiment, one would always have to perform
additional expensive fixed-forcing experiments (as done by
Li et al., 2013) to confirm that the experiment was indeed in
quasi-equilibrium. Instead, we propose a novel method that
uses a few fast-ramping experiments to efficiently predict the
true range of bistability and provide uncertainty estimates on
this prediction.

We demonstrated that the method we propose can accu-
rately predict the steady-state behavior of sea ice in a sim-
ple model; now we discuss applying this method to a GCM.
First, we note that while we use a highly idealized model
of sea ice in this study, the method developed deals with
identifying bistability in complex systems with unknown
equilibrium structures more generally. This means that the
framework should be applicable to other models (including
GCMs), since moving from fast- to slower-ramping rates al-
lows convergence to the equilibrium behavior. It could also
be used in the context of vastly different climate problems,
for example, in identifying the abrupt transitions to a moist
greenhouse (Popp et al., 2016), runaway greenhouse (Gold-
blatt et al., 2013), or snowball Earth state (Hyde et al., 2000).
The functional form used to fit the transient runs, as well as
the level of certainty achieved from a given number of exper-
iments, would likely depend on the given model and climate
problem analyzed. Possible challenges in finding the func-
tional best fit to the transient runs might mirror those of Gre-
gory et al. (2004), who encountered difficulties when trying
to fit a line to un-equilibrated GCM runs with a different goal
of deducing the equilibrium climate sensitivity. We suggest
that a careful examination of the residuals from a given fit
can help guide the choice of functional form.

The generality of the method also highlights another ad-
vantage: the same set of ramping experiments in a GCM
could be used to analyze all suspected tipping elements in the
Earth’s climate system simultaneously. The main challenge
we anticipate in applying this method to GCMs comes from
the significant stochastic variability and multiple timescales

of forcings that may render the calculated width of the rate-
dependent hysteresis more uncertain in a GCM. Nonetheless,
using multiple runs to estimate the width of the bistability of
a given climate variable and providing a quantified uncer-
tainty in such a prediction should offer a potential improve-
ment over using a single hysteresis experiment.

We can estimate the efficiency of the proposed approach
over more standard ones when applied in a GCM. Taking
the experimental setup of Li et al. (2013) as a guide, we
can assume that a slow-ramping experiment to four times
CO2 requires a 2000-year ramp-up and ramp-down with at
minimum a 2500-year equilibration period after each ramp
(though they actually allowed the model to equilibrate for
nearly 6000 years). Within the 500 ppm width of the rate-
dependent hysteresis found by Li et al. (2013), 10 fixed-
forcing experiments 2500 years long would be needed to test
for bistability and estimate the tipping point location at a rel-
atively crude accuracy of 100 ppm. This leads to a total of
34 000 simulation years. On the other hand, if we used our
proposed approach, we could run three ramping experiments
with fast to intermediate rates of 100, 200, and 400 years
to quadruple CO2. We would run only one experiment to
complete equilibration after ramp-up (2500 years) and run
the others only until they lost their sea ice, using the ice-free
steady-state run to conduct the three ramp-downs. This yields
a total of approximately 6400 simulation years and computa-
tional savings of over a factor of 5. Using only three ramping
experiments is sufficient to get an estimate of the equilibrium
hysteresis width and location, but the uncertainty in the esti-
mate could still be high.

Finally, our results indicate that rate-dependent hystere-
sis and irreversibility of Arctic winter sea ice are expected
to be relevant for realistic rates of CO2 increase. While
rate-dependent hysteresis has been explored in other cli-
mate contexts (e.g., AMOC; Kim et al., 2021; An et al.,
2021), previous work on Arctic winter sea ice has typically
sought to identify equilibrium hysteresis in sea ice because
it would imply irreversibility of sea ice loss, generally ig-
noring the out-of-equilibrium behavior of sea ice under rapid
CO2 changes. The SSP585 scenario in CMIP6 corresponds
to a ramping rate of approximately 60 years per CO2 dou-
bling; this is a rate at which sea ice in our idealized model
already exhibits rate-dependent hysteresis and significant de-
viation from its steady state (see Figs. 2 and S2). Since we
identify rate-dependent hysteresis in sea ice here in all sce-
narios, even without a deep ocean and subsequent recalcitrant
warming (Held et al., 2010), we expect rate-dependent hys-
teresis to be even more pronounced in GCMs and in the real
climate when such long-timescale components are included.
We, therefore, conclude that on policy-relevant timescales
the significant irreversibility of winter Arctic sea ice involved
in rate-dependent hysteresis is likely to occur in the real cli-
mate system due to the expected lagged response regardless
of whether an actual bifurcation (tipping point) in the equi-
librium exists.
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Introduction

This document contains the equations of the sea ice model used (Text S1), results from a

modified version of the cubic ODE that has a periodic forcing term (Text S2), specific de-

tails of the calculations of the diagnostics on the time-changing forcing trajectories (Text

S3), a heuristic derivation that explains the result that max(dx/dβ) ≈ 1/µ (Text S4), and

the calculations of the uncertainties on the predictions of bi-stability width (Text S5).

Text S6 provides a method for estimating the likelihood of the existence of bi-stability

using results from the main text. Text S7 provides a similar, but alternate approach for

estimating the equilibrium hysteresis width from transient simulations alone. In Table S1

we provide the exact parameter values used to configure the sea ice model in the three

scenarios described in the main text. Figures S1–S2, we provide extra information on

model setup and experimental design, and Figures S3–S5 show March average quantities

for all four state variables in the sea ice model from the experiments performed in the

main text. Figure S6 shows results from the periodically-forced ODE described in Text

S2, and Figures S7–S8 relate to understanding the convergence behavior of max(dx/dβ)

as a function of ramping rate. Figure S9 helps visualize our method for calculating COi
2

and COd
2, the two edges of rate-dependent hysteresis described in the main text. Fig-

ure S10 demonstrates the skill of the alternative method for predicting the equilibrium

hysteresis described in Text S7, and finally, Figure S11 demonstrates that the method

proposed in the main text also works for predicting the equilibrium structure of a generic

ODE (Eqn. 1).

Text S1: Sea ice model equations

The Eisenman model contains four state variables: sea ice volume (V ), sea ice area (A),

sea ice surface temperature (Ti), and mixed layer temperature (Tml) for a single box repre-

senting the entire Arctic. The atmosphere is assumed to be in radiative equilibrium with

the surface, and the model is forced by a seasonal cycle of insolation, of poleward heat

transport, and of local optical thickness of the atmosphere, which represents cloudiness.

The addition of CO2 is represented by increasing the optical thickness and the midlati-

tude temperature, which increases poleward heat flux. Melt ponds are parameterized by

allowing the ice to melt when the surface temperature reaches 0 ◦C and by modifying the

ice albedo when this condition is met. The equations for the model are written below, and

1



can also be found in the original paper (Eisenman, 2007) that used them. The surface

longwave radiation imbalance at the surface is

ϵ(T, Ts) =
2a

2 +N
− D(Ts)

2
+ b

(
T − Ts +

2Ts

2 +N

)
, (1)

where N is the optical depth of the atmosphere and Ts = ATi + (1−A)Tml is the surface

temperature of the box. D(Ts) is the atmospheric poleward heat transport given by

D(Ts) = kD(Tmidlat − Ts), (2)

where Tmidlat is a prescribed near-surface atmospheric temperature of the midlatitudes.

The net heat flux into the mixed layer is given by

Fml = (1− A)(−ϵ(Tml, Ts) + (1− αo)Fsw)− AγTml + Fentr, (3)

where Fsw is the shortwave radiation reaching the surface. The mixed layer temperature

normally evolves according to this net heat flux, except for when it is at 0◦ C and cooling,

at which point the negative heat flux goes entirely into new ice production and Tml stays

at 0◦ C. This is expressed as:

cmlHml
dTml

dt
=

{
0 if Tml = 0 and Fml < 0,

Fml otherwise,
(4)

Fni =

{
−Fml if Tml = 0 and Fml < 0,

0 otherwise,
(5)

where Fni is the new ice production. The ice volume and surface temperature evolution

are conditioned on whether or not the surface is melting. With the net ice surface heat

flux when Ti = 0 written as Fnet = −ϵ(0, Ts) + (1− αi)Fsw, the equations for ice volume

and surface temperature are:

L
dV

dt
=

{
A(ϵ(Ti, Ts)− (1− αmp)Fsw − γTml)− v0A Ti = 0 and Fnet > 0,

A(−kTi

h
− γTml) + Fni − v0LV otherwise,

(6)

ch

2

dTi

dt
=

{
0 if Ti = 0 and Fnet > 0,

−ϵ(Ti, Ts) + (1− αi)Fsw − kTi

h
otherwise.

(7)

Finally, ice area evolution occurs according to:

dA

dt
=

Fni

Lh0

− A

2V
R

(
−dV

dt

)
− v0A. (8)

As mentioned in the main text, in our implementation of the model we also allow the

CO2 concentration to vary inter-annually, by allowing the optical depth (N) and the

2



midlatitude temperature to be functions of time. They can be written as:

N(t) = N0 + A sin

(
2π

1 yr
t

)
+∆N × log2(CO2(t)/280 ppm), (9)

Tmidlat(t) = T0 +B sin

(
2π

1 yr
t

)
+ 3◦C× log2(CO2(t)/280 ppm), (10)

where the time dependence of the final term in each equation is a modification from

(Eisenman, 2007). The sin terms in each equation represent the seasonal cycles of the

atmospheric optical depth and the midlatitude temperature, respectively, at 280 ppm of

CO2. In our hysteresis experiments, CO2(t) is an exponentially increasing and then ex-

ponentially decreasing function of time (see Fig. S2), leading to CO2 forcings that change

linearly in time.

Test S2: Cubic ODE with periodic forcing

In this section, we analyze an ODE that is similar to the one presented in the main text

but includes a periodic forcing term, which makes it more analogous to the seasonally

forced model of sea ice. The equations for this system are:

dx

dt
= −x3 + δx+ 50 sin(2πt) + β(t), β(t) = β0 + µt, (11)

The magnitude of 50 on the sin term is chosen such that the magnitude of the changes

in β compared to the amplitude of the periodic forcing is roughly similar to the mag-

nitude of CO2 changes compared to the amplitude of the seasonal cycle of insolation in

the sea ice model. The values of δ needed to configure the three scenarios are slightly

different than those for the non-periodic ODE and are as follows: δ = 6 for Scenario 1

(wide bi-stability), δ = 4 for Scenario 2 (narrow bi-stability) and δ = 3.4 for Scenario 3

(no bi-stability). Since the solution x is now oscillatory during time-changing and fixed

forcing scenarios, we plot the maximum values of x during each oscillation; this is meant

to parallel the plotting of March sea ice (which is approximately the maximum amount

of ice during the annual cycle). We only range β from -5 to 5 as this is the range that is

needed to sweep across the bifurcations. We see in Figure S6 that the qualitative charac-

teristics of the rate-dependent hysteresis found in an ODE without periodic forcing (main

text) also are found in this ODE. There is rate-dependent hysteresis for all three scenarios

(panels a-c) and the width of this hysteresis gets wider as we move to faster ramping rates.

The addition of the periodic forcing combined with the choice to plot the maximum value

of x during each oscillation also generates asymmetry in the increasing and decreasing

forcing trajectories (blue vs. red lines). In panel d we plot the maximum gradient of x

with respect to β during transient forcing simulations versus the ramping rate, µ. We

see that, similar to the result in the main text, the maximum gradient follows a negative

power law as a function of µ, with the slope of the power law becoming steeper and ap-

proaching a value of -1 as we move from Scenario 3 to Scenario 1. Thus we conclude that
3



the comparisons we made in the main text between the sea ice model and the simple cu-

bic ODE would also apply if we had chosen to include a periodic forcing in the cubic ODE.

Text S3: Calculating diagnostics on time-changing forcing trajectories

We calculate the maximum rate of change of sea ice volume with respect to CO2 con-

centration by taking the maximum change in monthly-averaged March sea ice volume

between any two consecutive years during the rate-dependent hysteresis period of the

simulations (i.e., ignoring the initial fast decline of sea ice at low CO2) divided by the

change in yearly average CO2 concentration between those two years. The maximum rate

of change of sea ice in time is calculated analogously but divided by the time interval

rather than the change in yearly mean CO2.

To calculate the maximum rate of change of the solution to the cubic ODE with re-

spect to the forcing parameter (β(t)) or time, we calculate the smoothed absolute change

around the two time steps that show the greatest absolute change in x, divided by the

change in β or by time. The “smoothed” absolute change is simply the difference between

the mean value of x over the five time steps before the largest jump in x and the mean

during the five time steps after the jump.

Text S4: Deriving max(dx/dβ) ∝ µ−1

To understand why max(dx/dβ) ∝ µ−1 and thus why the maximum rate of change of

sea ice also follows a similar negative power law as a function of ramping rate, we first

note that,

max

(
dx

dβ

)
= max

(
dx

dt

dt

dβ

)
=

1

µ
max

(
dx

dt

)
. (12)

Thus in Fig. S7 we plot the maximum March dV/dt and the maximum dx/dt respectively

as a function of the ramping rate. We can see that as predicted by eqn. 12, the slopes

of the power laws in main text Figs. 2a and 2b are those found in Figs. S7 minus 1.

In particular, the µ−1 rate of convergence in Scenario 1 is recovered when noting that

max(dx/dt) appears to be a constant value as a function of the ramping rate for small

enough rates; an unintuitive result that is explained further below. The slopes of the power

laws that characterize the convergence of the transient simulations to their equilibrium

behavior may also prove a useful tool for inferring the equilibrium, in addition to the

method we proposed in the main text.

Next, we provide a heuristic derivation for why max(dx/dt) approaches a constant in

Scenarios 1 and 2 when µ is small. Using Figure S8 for reference, we can see that as

x moves from one equilibrium, x∗
a, to the next, x∗

b , during the bifurcation, its maximum

rate of change is given by the local minimum of the dx/dt curve, given by c. However,

because we are considering a non-autonomous equation with the time-changing forcing

β(t) that shifts the dx/dt curve down in time, the local minimum c is a function of time,
4



according to the ramp rate, µ. In other words, the maximum rate of change (dx/dt)

during the transition from x∗
a to x∗

b (the value of which is also changing in time) under

a given forcing β(t) = β0 + µt is greater than or equal to c0 and less than or equal to

c = c0 + µt, where c0 is the local minimum of dx/dt exactly at the point of bifurcation

and t is the time it takes to complete the transition from one steady-state to the other. In

the case where c0 is large compared to µt, we can make the approximation that c ≈ c0 as

µ −→ 0. Thus, the max(dx/dt) −→ c0 as µ −→ 0. Finally, returning to equation 11, we get

that max(dx/dβ) = c0/µ for small µ, recovering the µ−1 rate of convergence we estimated

empirically.

We do not expect this derivation to hold in cases where c0 is not large compared to µ.

Indeed, in the ODE without a bifurcation where c0 = 0, we see that max(dx
dt
) is a positive

power of µ, which, when divided by µ according to equation 11, causes max( dx
dβ
) to be a

negative power of µ with a magnitude less than 1. We argue that this derivation from a

simple ODE provides intuition for the more gradual slopes for the physics-based sea ice

model seen in Fig. 2a as we move from a scenario (1) with a wide region of bi-stability to

a scenario (3) with no bi-stability or bifurcation. Specifically, in a cubic ODE, the value

c0 exactly corresponds to the width of parameter forcing for which there is bi-stability;

while this may not hold exactly for the physical sea ice model, we expect Scenario 1 in

the sea ice model to be associated with a large c0 (a fast maximum rate of change of sea

ice in time), Scenario 2 to be associated with a smaller c0, and Scenario 3 to be associated

with small or zero c0. As discussed previously, the larger the magnitude of c0 the closer

the slope of the maximum rate of change in time versus the ramp rate is to zero, which

in turn sets the slope of the maximum rate of change in CO2 versus the ramp rate. Thus,

the derivation that max(dx/dβ) ≈ c0µ
−1 for the cubic ODE with a bifurcation provides

insight into the convergence behavior of the transient sea ice simulations for all three

scenarios.

Text S5: Calculating uncertainty on predictions of the CO2 value of tipping

points

When fitting curves to COi
2 and COd

2 in order to predict COi
2 and COd

2 at infinitely slow

ramping rates, we noticed that there was some auto-correlation in the residuals (which

are the difference between the fitted curves and the actual values of COi
2 and COd

2 at all

18 ramping rates). This means that using the covariance matrix of the fitted parame-

ters underestimates the uncertainty on the prediction of COi
2 and COd

2 at infinitely slow

ramping rates (especially in the case of Scenario 3). To address this issue, we instead

use a block-bootstrapping method to calculate the uncertainty on our predictions. We

sample with a block size of three, and bootstrap 1000 times, giving us a distribution of

estimates of the equilibrium values of COi
2 and COd

2. From these distributions, we can

calculate the standard deviation of the predictions, and we use these standard deviations

5



to plot 95% confidence intervals around the predictions in main text Fig. 3. We perform

this block-bootstrapping procedure for each of the predictions that use fewer and fewer

simulations to produce all the confidence intervals plotted in Fig. 3b.

Text S6: Calculating the probability of the existence of bi-stability

The block-bootstrapping process described in Text S5 gives us distributions of estimated

values of COi
2 and COd

2 at infinitely slow ramping rates. Since the width of the “true”

hysteresis is the difference between COi
2 and COd

2, we can take the difference of these

distributions to estimate the likelihood that the hysteresis width is greater than zero and

thus that bi-stability and a tipping point exist. Using only experiments with a ramping

rate of 75 years/doubling or faster, in both Scenarios 1 or 2 we find that >95% of the

difference distribution (hysteresis width distribution) is greater than zero; in other words,

we can say that there is less than a 5% chance that bi-stability does not exist. Excluding

even more of the ramping experiments (which would be computationally expensive in a

GCM) to use only experiments with a ramping rate of 47.5 years/doubling or less, we

find that there is an >80% chance that bi-stability exists for both Scenarios 1 and 2. For

Scenario 3 (which we know does not have bi-stability), no matter how many experiments

we exclude there is never more than 55% chance that bi-stability exists; in fact, when using

few experiments the distribution skews towards predicting a negative width of hysteresis,

an unphysical result that may itself suggest the lack of bi-stability. These statistical tests

can be used to estimate the binary existence or non-existence of tipping points, in addition

to the method for predicting of the CO2 location of tipping points presented in the main

text.

Text S7: An alternate approach for predicting the equilibrium structure of

sea ice

Another approach for inferring the equilibrium structure of sea ice from transient runs

only would be to analyze only the difference between COi
2 and COd

2 (i.e., the hysteresis

width) as a function of the ramping rate instead of the two values separately and fit a

curve to see if this width approaches zero (no bi-stability) at infinitely slow ramping rates.

We perform this analysis in Figure S10 and find that it successfully identifies bi-stability

in the Scenarios. However, unlike the method in Fig. 4, this method does not provide

any prediction of the CO2 value of the tipping point (in Scenarios 1 and 2), so we suggest

it is used in addition to, but not in place of, the method in the main text.
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αi αmp αo Equilibrium behavior
Scenario 1 .75 .45 .1 wide bi-stability
Scenario 2 .5 .4 .2 narrow bi-stability
Scenario 3 .4 .4 .4 no bi-stability

Table S1. Model configurations leading to wide, narrow, and no bi-stability regimes. The
symbols αi, αmp, and αo, refer to the albedo of bare ice, melt ponds, and open ocean respectively.
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Figure S1. A comparison of our seasonal cycle of insolation to that of Eisenman (2007).
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Figure S2. A subset our CO2 hysteresis experiments (ramp up, hold CO2 fixed, ramp down)
compared to the ramping rate of the RCP8.5 Scenario in CMIP5 (which is nearly the same as
the ramping rate of SSP585 in CMIP6). Exponential increases in the concentration of CO2 in
time lead to linear increases of the CO2 radiative forcing.
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Figure S3. All four state variables of the sea ice model from Scenario 1 (wide bi-stability)
runs, shown as their March monthly averages: sea ice effective thickness (a), sea ice fraction (b),
mixed layer temperature (c), and sea ice temperature (d). Legend and coloring are the same as
in Fig. 1 in the main text.
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Figure S4. Same as Figure S3, but for Scenario 2 (narrow bi-stability).
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Figure S5. Same as Figure S3, but for Scenario 3 (no bi-stability).
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Figure S6. Results from a version of the cubic ODE that is periodically forced (eq. 11).
Panels a-c show transient (red and blue colored lines) and fixed-forcing (black lines) simulations
for Scenarios 1, 2, and 3 respectively. Panel d shows the maximum gradient of x with respect to
the forcing parameter β during transient simulations versus the ramping rate of each simulation
for all three scenarios.
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of change of the variable x from the cubic ODE (b) during time-dependent forcing simulations.
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Figure S8. Schematic of the upper limit on max(dx/dt) during the bifurcation for the equation
dx/dt = −x3 + 5x − µt (Scenario 1 for the cubic ODE in the main text). The points x∗

a and
x∗
b represent the two stable equilibria before the bifurcation; when the bifurcation happens, x∗

a

disappears and the solution must transition to x∗
b . The variable c, represents the upper limit on

max(dx/dt), and c0 is the value of c at the time of the bifurcation, which is also the width of the
true bi-stability.
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Figure S9. Visualization of how the two edges of the rate-dependent hysteresis (COi
2 and

COd
2) are calculated, demonstrated for Scenario 2 only. COi

2 and COd
2 are shown for a subset of

the ramping rates as the block dots, and are the CO2 values at which March ice fraction crosses
a critical threshold (fraction of .5, shown in gray) along increasing and decreasing CO2 forcing
simulations respectively (see Methods in main text). As indicated by the gray arrows, we can see
that for slower and slower ramping rates, COi

2 and COd
2 are converging to the width of bi-stability

in the equilibrium.
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Figure S10. An alternate method for estimating the equilibrium hysteresis width. Here,
we fit a single curve to the difference between COi

2 and COd
2, which gives the rate-dependent

hysteresis width. We use the same polynomial function fit and block-bootstrapping approach
for estimating the uncertainty as done for the main text Figure 4. The left panels show the
rate-dependent hysteresis width at different ramping rates as scatter points, the polynomial fit
to this width as a dashed line, the true equilibrium hysteresis width as ×’s, and ±2σ around
the predicted equilibrium hysteresis width as gray shading. The right panels show the resulting
predictions of equilibrium hysteresis width (gray dots) and the ±2σ uncertainty around them
(gray bars) as the most gradual ramping experiments are sequentially removed from the fitting
process. We can see that this method successfully identifies a non-zero equilibrium hysteresis
width for Scenarios 1 and 2, even as several runs are excluded from the prediction, and correctly
identifies an equilibrium hysteresis width of zero for Scenario 3.
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Figure S11. Predicting the equilibrium hysteresis width in a simple cubic ODE. We show that
the same method described in the main text and applied in the context of sea ice can be used to
predict the equilibrium structure of Eqn. 1 using only transient runs. In the left panels, the blue
and red scatter points show the rate-dependent hysteresis width edges, the dashed lines show the
curves that fit them, the ×’s show the edges of the true equilibrium hysteresis found from fixed
forcing runs, and the shaded bars indicate ±2σ around the predicted edges of the equilibrium
hysteresis. The right panel shows the predictions of the equilibrium hysteresis edges (dots) as
the most gradual runs are sequentially excluded from the function fitting, and the uncertainty
around these predictions in the shaded bars. In this simple system, we predict the location of
the edges of the equilibrium hysteresis with very low uncertainty even when very few transient
runs are used to make the prediction.
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