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Abstract The sub-gridscale floe size and thickness distribution (FSTD) is an emerging climate variable,
playing a leading-order role in the coupling between sea ice, the ocean, and the atmosphere. The FSTD,
however, is difficult to measure given the vast range of horizontal scales of individual floes, leading to the
common use of power-law scaling to describe it. The evolution of a coupled mixed-layer-FSTD model of a
typical marginal ice zone is explicitly simulated here, to develop a deeper understanding of how processes
active at the floe scale may or may not lead to scaling laws in the floe size distribution. The time evolution
of mean quantities obtained from the FSTD (sea ice concentration, mean thickness, volume) is complex
even in simple scenarios, suggesting that these quantities, which affect climate feedbacks, should be care-
fully calculated in climate models. The emergence of FSTDs with multiple separate power-law regimes, as
seen in observations, is found to be due to the combination of multiple scale-selective processes. Limita-
tions in assuming a power-law FSTD are carefully analyzed, applying methods used in observations to FSTD
model output. Two important sources of error are identified that may lead to model biases: one when
observing an insufficiently small range of floe sizes, and one from the fact that floe-scale processes often do
not produce power-law behavior. These two sources of error may easily lead to biases in mean quantities
derived from the FSTD of greater than 100%, and therefore biases in modeled sea ice evolution.

Plain Language Summary Sea ice is an incredibly complex mosaic of individual pieces, known as
floes, with sizes that range from centimeters to tens of kilometers. The precise distribution of these floes is
an important factor in climate simulation, as it affects how the ice, ocean, and the atmosphere evolve
together. Observing the full range of floe sizes is a serious technical challenge, and sea ice has long been
assumed to have a fractal distribution of floe sizes, one that can be described by a power law. We address
whether this assumption is sensible by explicitly simulating how floes respond to climate forcing, leading to
floes that melt, collide, and fracture. We find that the distribution of floe sizes is often not a power law, and
errors caused by assuming this sort of power law behavior can lead to significant errors in how sea ice is
simulated. In some cases, power-law behavior is observed, like in long simulations when waves break ice
floes that are colliding with one another. We highlight the need to observe and understand this incredibly
rich and complex system in greater detail before making assumptions that will be incorporated into new cli-
mate models.

1. Introduction

Sea ice is a complex, multi-scale mosaic of floes with a wide variety of thicknesses, and with horizontal sizes
that can range from centimeters to tens of kilometers, often below the grid scale of typical global climate
models (GCMs). As the Arctic sea ice cover has declined and thinned in the recent past, it is more sensitive
to fracture by ocean surface waves that break the ice into small floes. Parameterizing the evolution of the
sub-gridscale distribution of floe sizes and its interaction with climate processes is therefore now an impor-
tant objective for sea ice models. Yet very little is known about how the sub-gridscale distribution of floe
size evolves, nor how the wide range of scaling laws typically ascribed to floe size measurements may
emerge due to processes acting on individual floes. No current climate model simulates the evolution of
the floe size distribution, nor parameterizes its influence on other aspects of the coupled climate system.
This study focuses on understanding how climate forcing may determine the evolution of the sub-gridscale
floe size and thickness distribution, and how scaling laws develop.
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The sub-gridscale distribution of sea ice floes is described by the floe size and thickness distribution (FSTD,
f(r, h)), with f ðr; hÞ dr dh5f ðrÞdr equal to the fraction of the ocean surface covered by floes with a size
between r and r 1 dr and a thickness between h and h 1 dh. The integral of f over all sizes r is the ice thick-
ness distribution (ITD), the evolution of which is an important component of modern sea ice models [e.g.,
Bitz, 2008]. The integral of f over all thicknesses h is the floe size distribution (FSD). The FSD plays an impor-
tant role in sea ice melting [Steele, 1992; Horvat et al., 2016], rheology [Feltham, 2008; Herman, 2012; Rynders
et al., 2016], the propagation of ocean surface waves [Dumont et al., 2011; Bennetts and Williams, 2014], and
the exchange of buoyancy and momentum in the ocean and atmospheric boundary layers [Birnbaum and
L€upkes, 2002; Tsamados et al., 2014]. Parameterizations of lateral melting and form drag sensitive to floe size
have significant impact in climate model simulations [Tsamados et al., 2015], but cannot be evaluated prop-
erly as floe size is not a prognostic variable in any modern GCM.

Hampering efforts to parameterize the evolution of the FSD/FSTD for climate model simulations is the lack
of detailed observations of the FSD and its evolution in the polar oceans. The FSD has been observed at iso-
lated points in both space and time over the past four decades. From these observations, a consensus has
developed that the FSTD decays as a power-law distribution in floe size. Yet observations of floe size distri-
butions do not support the existence of a universal power law: for example, observed power-law-fit expo-
nents span a very wide range, from as low as 0.91 [Steer et al., 2008] to 5 and greater [Toyota et al., 2011].
Both of these observations were made at the ice edge in the Weddell Sea. Most observational studies are
inconsistent in whether they support of power law decay at all. Often, fitting to measurements is done over
a narrow range of floe sizes. When the range of resolved floe sizes is expanded [i.e., Toyota et al., 2006,
2011], observations are fit to two power-laws covering different size ranges, with variable slopes. The
observed distribution of floe sizes is indeed often better fit by non power-law distributions [Herman, 2011].
Examining the common hypothesis that the FSD is a self-similar (power law) distribution is a main objective
of this study.

The observed wide variability and weak fit of power-law exponents to observations demonstrate our limited
understanding of the evolution of the floe size distribution. We do not yet understand when and due to
what processes power law behavior is to be expected. Of course, if power laws are observed, one wants to
understand which of the physical processes that shape floes leads to the emergence of what types of power
laws. As an explicit simulation of the FSD may not be practical in most climate studies, it is also important to
understand the evolution of quantities such as the mean floe size and power-law slopes, for use in wave-ice
interaction models [Williams et al., 2013] or floe-size-dependent rheologies [Rynders et al., 2016]. Apart from
understanding how power laws may emerge, understanding how they may be deduced from observations,
and what may lead to biased estimates, is also important.

We simulate the evolution of the joint floe size and ice thickness distribution, using the FSTD model devel-
oped by Horvat and Tziperman [2015, hereinafter HT]. This model explicitly considers how floes are influ-
enced by melting and freezing, ocean surface waves, mechanical interactions between floes (rafting and
ridging), and by advection into and out of a given domain. As the HT model is sensitive to a number of dif-
ferent physical processes, we may evaluate whether observed FSD decay characteristics might be explained
through the interaction of processes active at different floe length scales. This process-based approach is
only one way in which to understand the scaling properties of the FSD. For example, one might suggest a
simple deterministic model that predicts a power-law decay as in Toyota et al. [2011]. While this approach
can reproduce the phenomenological behavior of some FSD observations, it assumes that the FSD can be
represented using a power law. The factors that determine the shape of the FSD are likely more complex
and variable. The HT model represents processes acting on individual floes, though it does not account for
large-scale ice fracturing, or ‘‘linear kinematic features,’’ that can occur within pack ice, and found to be
largely scale-invariant [Schulson, 2004].

The HT model has only been evaluated against data qualitatively, due to the aforementioned lack of data
on the temporal evolution of the FSD over a wide range of floe sizes. Nevertheless, the HT model is useful
in that it allows for (1) examining how the general features of FSD evolution might be determined and
evolved using a process-based model, and (2) examining potential biases that arise when assuming power-
law FSD behavior, by employing simple observational techniques to the modeled FSD and considering
whether these give incorrect estimations of sea ice state variables. A somewhat related model for the FSD
was presented by Zhang et al. [2015, hereinafter ZSSS], and was compared to power-law-fits to observations
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by Zhang et al. [2016]. This model assumed that all floes of different sizes have the same ITD, and therefore
does not represent the dynamics of the coupled thickness and size distribution, and includes only a simpli-
fied parameterization of ice breakup from random surface waves. Further context and comparison between
the HT and ZSSS models are provided in section 2.

This paper proceeds as follows: we couple a mixed layer ocean model to the FSTD model of Horvat and Tzi-
perman [2015] in section 2. We then consider how the FSD evolves under a variety of external forces and
physical processes using a series of experiments in section 3, and discuss the limitations of assuming and
analyzing a power law FSD from observations and for future modeling studies and observational analysis.
We conclude in section 4.

2. The Discrete FSTD Model

To simulate the evolution of sea ice floes the HT floe size and thickness distribution model [Horvat and
Tziperman, 2015] is coupled to a mixed-layer ocean model. The numerical scheme evolves a matrix repre-
sentation of the floe size distribution, fjk based on a discretization of floe sizes rj, and thicknesses hk. The
value taken by fjkDrjDhk5fjkðrj112rjÞðhk112hkÞ is the area fraction that is covered by floes with
size between rj and rj11 and thickness between hk and hk11, and the time evolution of fjk is computed
according to,

fi112fi

Dt0
5LAðfiÞ1LT ðfiÞ1LMðfiÞ1LWðfiÞ; (1)

where Dt05ti112ti is the model time step (see Appendix A, Table 1 for a full list of model parameters). The
term LA represents the tendency of the FSTD due to ice advection into and out of the domain. The term LT

is the tendency due to ice thermodynamics and their effects on both the thickness and size of floes. This
term accounts for the change to ice concentration due to lateral melting and freezing, which Horvat and Tzi-
perman [2015] pointed out is absent from the ZSSS model. The term LM is the tendency due to mechanical
interactions between floes. This tendency explicitly accounts for the likelihood of floe collisions that occur
when the ice cover is deformed, and also for the formation of new ice floes when two floes either raft or
ridge. The representation of ridging in the ZSSS model leads to the formation of thicker floes, as desired,
yet not to changes to the FSD. The term LW is the tendency due to fracture by ocean surface waves, which
carefully accounts for the spectrum and random nature of the ocean wave field and for the attenuation of
the surface waves within the ice field. The ZSSS model contains a related fragmentation parameterization
that leads to area transfer from large to small floes, however this does not depend on the ocean surface

Table 1. Model Parameters Used in This Study

Variable Description Value

Dt0 Model time-step 1 h
rlw Width of floe lead region 0.5 m
qa Atmospheric density 1.275 kg m– 3

ca Atmospheric specific heat capacity 1005 J(kg
�
K)– 1

Ci
D Turbulent heat transfer coefficient over ice 1.331023

�i Sea ice emissivity 1
ai Sea ice albedo 0.75
ji Sea ice thermal conductivity 2.03 W(m

�
K)– 1

qi Sea ice density 934 kg m– 3

Lf Sea ice latent heat of melting 334000 J kg– 1

aw Ocean albedo 0.06
I0 Fraction of solar radiation absorbed in surface layer 0.45
�0 Ocean emissivity 0.97
Co

D Turbulent heat transfer coefficient over ocean 131023

Lv Latent heat of vaporization 2.53106 J kg– 1

qw Ocean density 996 kg m– 3

cw Ocean specific heat capacity 4185 J(kg
�
K)– 1

ch Ocean-ice Stanton number 0.06
j Ocean vertical eddy diffusivity 10 m2(d)– 1

jw Extinction coefficient of solar radiation in ocean 0.1 m– 1

Si Salinity of sea ice 5 psu
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wave spectrum or the interaction of floes with this wave field, as in the HT model. The adaptive scheme
used to integrate equation (1) is described in detail in the Appendix A.

2.1. The Coupled FSTD-Ocean Model
We couple the FSTD model to an ocean mixed-layer model following Petty et al. [2013]. The specifics of how
mixed-layer model variables are computed are given as Appendix B, and a schematic of the mixed layer
model is provided in the supporting information Figure S1. The ice has a surface temperature determined
diagnostically by the exchange with the atmosphere and ice, and occupies a fraction of the domain equal
to the ice concentration, c, computed from the FSTD according to,

c5

ð
r
f ðr; hÞdr;

where the integral is taken over all floe sizes and thicknesses. The ocean model has a surface layer, parti-
tioned into an ‘‘open ocean’’ region and a ‘‘lead’’ region as in Horvat and Tziperman [2015]. The lead region
encompasses a thin layer of water surrounding each individual floe, of horizontal width rlw 5 0.5 m around
the floe and of depth 0.1 m below the floe, as in Horvat and Tziperman [2015]. The use of a surface layer
that is separate from the mixed layer below provides a more realistic representation of the upper ocean
layer thermodynamics as it allows the two to evolve somewhat independently, and thus provides a more
realistic framework for the FSTD model, also consistent with the HT model. Others have shown that such a
surface layer may be redundant in some climate studies [Petty et al., 2014; Tsamados et al., 2015]. The sur-
face layer thickness is as deep as the lead region and is therefore 0.1 m thicker than the ice. In the lead
region, the water temperature is at the freezing point, Tf � 21:8

�
C. For simplicity the freezing temperature

does not vary with mixed-layer salinity. The lead region exchanges heat with the open ocean and the mixed
layer beneath. In open water areas, the surface ocean layer absorbs a fraction of incoming solar radiation,
exchanging heat with the lead region and the mixed layer below, with its temperature determined diagnos-
tically. Below the ice and ocean surface layer lies a mixed-layer that exchanges heat and fresh water with
the sea ice, heat with the surface layer, and fresh water with the atmosphere.

The FSTD is discretized into 13 evenly spaced ice thickness categories, with midpoints from 0.2 to 2.7 m,
and a maximum floe thickness category with an initial thickness of 2.9 m that is allowed to evolve in order
to conserve volume when ice is formed with thickness exceeding that of the thickest category. There are 90
floe size categories, spaced variably according to rn115

ffiffiffiffiffiffiffiffi
6=5

p
rn with midpoints from 0.5 to 1650 m. This var-

iable spacing guarantees that when two floes combine to form a third, the new floe belongs to a floe size
category that is distinct from that of the two interacting floes [Horvat and Tziperman, 2015, section 3].

The ocean domain represents a semi-infinite marginal ice zone with a zonal width D, placed between a
region of pack ice (say to the west) and a region of open water (to the east) (Figure 1). The pack ice region
is characterized by a specified FSTD, fin , and is advected into the MIZ with an ice velocity u0. The ice is

Figure 1. Schematic of the model used in this study. Pack ice with FSTD finðr; hÞ is advected into the domain, which represents a marginal
ice zone, with a velocity u0. Within the model domain the ice is represented through its FSTD f(r, h), and advected into the open ocean
with the same velocity u0. At the interface with the open ocean, waves with a spectrum SðkÞ impinge upon the MIZ.
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advected through the domain, and exits with a specified velocity u. The time rate of change of the FSTD
due to advection is therefore,

La5
u0fin2uf

D
:

In the experiments that follow, we assume that the two advection velocities are equal. The rate of collisions
of floes depends on the shear in the ice velocity, uy, that we prescribe as an independent parameter that
does not affect the zonal advection. To the east, the MIZ borders open water, where a surface wave field
represented by a spectrum SðkÞ reaches the MIZ.

2.2. Evaluating Whether the FSD Decays as a Power Law
We wish to understand the evolution of scaling behavior in the FSD. Perovich and Jones [2014] examined
how the slope of a power-law FSD might be determined from visual imagery. Ignoring ice thickness, con-
sider a floe size distribution, f(r), where f ðrÞ dr is the fraction of the ocean surface covered by floes with a
size between r and r1 dr. Suppose this FSD decays as a power-law, f0r2a within the range of floe sizes from
r1 to r2, where f0 is a suitable normalization coefficient such that

Ð1
0 f ðrÞdr5c is the ice concentration.

Assume without loss of generality that there are no floes with size outside the range from r1 to r2. The ice
concentration, c, and floe perimeter per square meter, P, are calculated,

c5

ðr2

r1

f0r2adr
f0

12a
r12a

1 2r12a
2

� �
� f0

12a
r12a

1 ; (2)

P5

ðr2

r1

2prf0r2a

pr2 dr52
f0

a
r2a

1 2r2a
2

� �
� 2f0

a
r2a

1 ; (3)

where we assume r2 � r1. This formulation may also be applied over any range of floe size from r1 to r2 by
regarding c and P as the ice concentration and floe perimeter per square meter belonging to floes with size
between r1 and r2. With c and P known, the power-law exponent was computed by Perovich and Jones [2014] as,

a5 12
r1P
2c

� �21

: (4)

Both c and P may be computed readily from visual imagery of the ice surface. Therefore, if the FSD decays
like a power law, equation (4) can be used to determine the power-law slope from observations without
using more complex image-processing algorithms to identify individual floes.

The assumption of a power-law FSD implied in equation (4) is not necessarily valid. However, with access to
the full time-evolving FSD we can examine drawbacks of this assumption, comparing the results of applying
equation (4) to other techniques for estimating the FSD slope.

The first alternative method is a simple least-squares fit to the modeled FSD. This method often produces
inaccurate estimations of the power law decay coefficient Clauset et al. [2009] and no information regarding
whether the underlying distribution decays as a power law at all. Further, this form of regression is often
erroneously applied to the cumulative distribution function, which is concave-down, and is therefore not a
straight line in log-log space. In the sections that follow the least-squares fitting is applied in all cases to the
FSD itself.

The previous methods require that the minimum floe size over which the FSD decays as a power law be
specified. The second alternative method employs the maximum likelihood estimator (MLE) as outlined by
Clauset et al. [2009] and demonstrated in Virkar and Clauset [2014]. This method is the most accurate
method for identifying the minimum floe size at which the tail begins, and the slope of the power-law tail.
Since the MLE is computed from observational data, when it is applied, we generate 50,000 synthetic floe
size observations from the model output, estimating the most likely power-law slope.

These three methods estimate the decay exponent of a power-law decaying FSD, and the simplest statisti-
cal test for power-law decay is that all estimate approximately the same value for a. These types of compari-
sons can test for biased estimates of power-law slope. Each estimate, however, assumes that the underlying
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distribution is a power law, a hypothesis that must be tested statistically. Virkar and Clauset [2014] outline
an approach for this test using binned observations, and in section 3.2 we examine a simple hypothesis test
using model data, comparing different distributional fits to the FSD.

In the results that follow, we evaluate how FSTD model output compares to the estimate (4), to understand
how and when a power-law FSDs may emerge. We use this comparison to examine the scenarios under
which equation (4) can be used to analyze power-law FSD in observations.

3. Results

We proceed as follows: we consider how mean quantities that are derived from the FSTD may evolve in dif-
ferent and nonintuitive ways in section 3.1. We then consider how the individual forcing fields of thermody-
namics, mechanics, and wave fracture affect a floe size distribution that is initially a power law in sections
3.2–3.4. Finally, running the model using all forcing fields combined, we consider how different regimes
emerge at different floe length scales in section 3.5.

3.1. Influence of Sea Ice Advection on Mean Quantities Derived From the FSTD
Consider first the evolution of an FSTD forced only by the advection of ice from the pack ice region and then
out of the domain, with a constant velocity u 5 10 cm/s. In this case we do not yet use the mixed layer model
developed in Appendix B. The evolution of the FSTD may be solved for analytically in this case. Despite this sim-
ple context, the evolution of some important quantities derived from the FSTD is nonintuitive, emphasizing the
importance of comprehensively understanding the FSTD before parameterizing its evolution in climate studies.

Let the initial FSTD, f ðr; t50Þ, be a narrow Gaussian centered at a floe size of 5 m and a thickness of 1 m,
with an ice concentration of 25%. The incoming pack ice FSTD, finðrÞ, is a narrow Gaussian centered at a floe
size of 150 m and floe thickness of 2 m. The standard deviation of each Gaussian is 5 m in floe size and
0.1m in ice thickness. We choose these initial distributions for simplicity, however the results that follow are
general and apply to any case where advection acts on the FSTD. The domain width D is 10 km.

The FSTD, f ðr; tÞ, evolves according to,

@f ðr; tÞ
@t

5
u
D

finðrÞ2f ðr; tÞð Þ;

with a solution,

f ðr; tÞ5finðrÞ1 f ðr; t50Þ2finðrÞð Þexp 2ut=Dð Þ:

The FSTD approaches the pack ice FSTD, finðrÞ, exponentially at all sizes and thicknesses, with a timescale
sadv5D=u51:15 days. Figures 2a–2d show how four sea ice model variables evolve over the first 12 days:
ice concentration, c (Figure 2a), ice volume per square meter, V (Figure 2b), mean ice thickness per unit
area, �h5V=c (Figure 2c), and mean floe size, �r (Figure 2d). The mean floe size is computed using the number
distribution of floes, NðrÞ,

NðrÞ5 f ðrÞ
pr2

;

where NðrÞdr is the number of floes per square meter with floe size between r and r1dr,

�r5

ð
r

Nðr0; tÞr0 dr0

ð
r

Nðr0; tÞ dr0
: (5)

and the subscripts indicate an integral over all floe sizes and thicknesses. This definition is simply related to
the total floe perimeter within a grid cell, which is necessary to determine the strength of lateral melting, as
2p�rN , where NðtÞ is the number of floes per unit area. The mean floe size may also be defined as an area-
weighted average, replacing NðrÞ with f ðrÞ in equation (5), but this mean size is not related to key metrics such
as the total perimeter. In any case, the mean floe sizes based on both f ðrÞ and NðrÞ are shown in Figure 2d.
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Despite the exponential approach of the FSTD at all sizes to the pack ice FSTD, the above four mean model
variables do not approach their corresponding pack ice values at the same rate. To quantify the difference
in the evolution of the different variables, we compute and plot (Figure 2e) the approach of each variable,
normalized as ðx2xinÞ=ðx02xinÞ, where x0 is the initial value of variable x, and xin the corresponding pack ice
value. Sea ice concentration (red) and volume per square meter (blue) approach the pack ice sea-ice values
over a timescale sadv. Neither the mean ice thickness per unit area nor mean floe size (Figures 2c and 2d),
approach their steady state at this rate. Mean ice thickness approaches the mean ice thickness of the pack
ice faster than does ice volume per unit area or concentration (Figures 2c and 2e, green line). Mean floe size
does not follow an exponential approach, approaching the pack ice mean floe size much slower than the
other variables considered here (Figures 2d and 2e, purple line).

The time evolution of the mean size �r is obtained from equation (5),

@�r
@t

5

ð
r

@N
@t

r0 dr0
ð
r

N dr02
ð
r

N r0 dr0
ð
r

@N
@t

dr0

ð
r

Nðr0; tÞ dr0

0
@

1
A2

5
N in

sadv

�r in2�r
NðtÞ

(6)

where �r in is the mean floe size of the pack ice FSTD, NðtÞ is the number of floes per unit area, and N in is
the number of floes per unit area in the incoming pack ice, and integrals are taken over all floe sizes and
thicknesses. The initial growth of the mean floe size is determined by the time-scale sadvN 0=N in � 200
days, which varies, approaching sadv as NðtÞ approaches N in. When there are fewer floes per unit area in
the pack ice than in the MIZ represented by the model domain (as is the case in this experiment), this time-
scale is larger than sadv. The mean ice thickness evolution is found as,

@�h
@t

5
cin

sadv

�hin2�h
cðtÞ ;

and its initial growth is determined by the timescale sadv c0=cin � 7 h, which also varies, approaching sadv as
c approaches cin.
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Figure 2. The evolution of four sea ice variables subject to advection through the model domain. (a) Ice concentration. (b) Ice volume per
square meter. (c) Mean ice thickness. (d) Mean floe size, computed either from the floe size distribution (dashed line) or the floe number
distribution (solid line). Dashed black lines correspond to pack ice values advected into the domain. (e) Time series of the normalized dis-
tance between each variable in (a-d) and its corresponding pack ice value, computed as ðx2xinÞ=ðx02xinÞ, where x0 is the initial value of
variable x, and xin the corresponding pack ice value. Shown are averages based on both the number distribution (N) and FSD (f).
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This simple example demonstrates how mean important diagnostics for the sea ice cover, which are com-
puted as moments of the ITD (in the case of mean thickness), FSD (in the case of mean floe size), or FSTD
(both) may evolve quite differently in time from one another even when one expects simple behavior. Sea
ice models compute the evolution of ice volume, V, and ice concentration, c, and so the mean ice thickness,
�h5V=c, can be diagnosed without evolving the FSD. However mean floe size cannot be similarly related to
sea ice state variables. Climate models that do not parameterize the full evolution of the floe size distribu-
tion, but still require information about the sub-gridscale variability of floe size for use in parameterizations
(e.g., of the floe-size dependent melting rate [Steele, 1992; Horvat et al., 2016]), must take this into account
before evolving mean floe size as a potential state variable.

3.2. The Influence of Lateral Melting on the Floe Size Distribution
We now consider how the FSTD evolves subject to thermodynamic forcing alone, such that floe sizes are
only affected by lateral melting, as in the study of Perovich and Jones [2014]. The HT model geometrically
partitions net surface heat fluxes into those that are close to sea ice floes and those that lead to ocean sur-
face warming and cooling. Those fluxes that influence floe development are further partitioned into compo-
nents that lead to lateral and basal growth or melting. Details on the partitioning scheme are found in
Horvat and Tziperman [2015, section 2.1], and details of the ice thermodynamic model are given in Appen-
dix section B3.

To force the model, we use atmospheric fields from the NCEP-II [Kanamitsu et al., 2002] climatology at the
location of the SHEBA ice camp at 78N, 166 W, in July. The atmospheric temperature is 0.5

�
C, the atmo-

spheric specific humidity is 3.6 g/kg, the surface pressure is 1010 hPa, and the atmospheric wind speed is
1 m/s. There is precipitation in the form of rain of 1 mm/m2/d reaching the ocean. There is 290 W/m2 of
shortwave radiative forcing, and 270 W/m2 of downward long-wave radiative forcing. The deep ocean tem-
perature is prescribed at 21:8

�
C, the deep ocean salinity is prescribed at 33 PSU, and the mixed layer tem-

perature and salinity are initialized at these values. The ocean mixed layer depth is 30 m. The initial floe size
distribution is the product of a power-law in floe size from 5 to 1500 m, with an exponent of 22 and a
Gaussian ice thickness distribution centered at 1 m thickness, with an initial ice concentration of 75%.

Figure 3a shows the evolution of ice concentration (red line, right axis), ice volume per square meter (blue
line, left axis) and mean ice thickness (green line, left axis) over the course of this simulation. The surface
ocean is warmed by the external forcing fields by 116 W/m2 per unit area of open water (equation (B4)). As
the initial ice-free fraction is 25%, this corresponds to an initial average over the entire domain area of 29
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Figure 3. Evolution of the FSTD subjected to ice melting only. (a) Time evolution of sea ice concentration (in percent), ice volume per unit area and mean ice thickness (in m). (b) Log-log
plot of the evolution of the FSD, normalized to one, over time. Red line is initial FSD. (c) Power-law exponent fits: least squares fit over the range from 5 to 500 m (solid red line), pre-
dicted value from equation (4) (dashed red line), maximum likelihood estimate for the distributional tail, with the tail identified using the method of Virkar and Clauset [2014] (green
line), and least-squares fit to the tail of the distribution (blue line). (d) Comparison of Kullback-Leibler divergence (equation (8)) between the modeled FSD and the maximum likelihood
estimate of Virkar and Clauset [2014] (blue line), an exponential fit (red line), a generalized Lotka-Volterra fit (purple line) [Herman, 2011], and a least-squares fit to the FSD tail.
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W/m2. The sea ice melts over a 50 day period, and as the concentration decreases, more heat is absorbed
into the surface layer. The sea ice melts due to warming at the ice surface with an average (averaged over
both time and the FSTD) magnitude of 13 W/m2 (calculated from equation (B1)), warming at the ice base
with an average magnitude of 2 W/m2 (calculated from equation (B5)), and a dominant warming from the
lead region with an average magnitude of 61 W/m2 (calculated from equation (B6)).

Blue lines in Figure 3b show the FSD as function of floe size every two weeks, normalized such that it inte-
grates to one to allow for a comparison of the FSD shape between different times, as the ice area decreases.
Over time, the slope of the FSD shallows and deviates from a power law at small floe sizes, similar to the
deviation from power law at small floe sizes found in observations by Perovich and Jones [2014]. The evolu-
tion of a floe size distribution f(r) subjected to only melting (equation (4)) [Horvat and Tziperman, 2015] is,

@f ðr; tÞ
@t

jT 5Gr 2
@f ðrÞ
@r

1
2
r

f ðrÞ
� �

; (7)

where Gr < 0 is the lateral melting rate. The first term in (7) represents the movement of floes between size
classes as they change their size, and the second term represents how, as floes change their size, they also
change their area and therefore the shape of the FSD. For an initial power-law FSD f ðr; 0Þ5f0r2a, the solu-
tion, f(r, t) is obtained using the method of characteristics,

f ðr; tÞ5f0
r2

ðr1jGr jtÞ21a � f0r2a 12ða12Þ jGr jt
r

� �
:

The second term in parentheses, being a function of the floe size r and proportional to time, is responsible
for deviation from power law at sufficiently long times. We define the timescale, sPL5�r=ðða12ÞjGr jÞ, over
which the FSD departs from its power-law behavior for scales up to the mean floe size. During this simula-
tion, lateral melting rates are Gr � 5 cm/d, and the initial mean floe size is �r � 30 m. With a 5 2, we there-
fore have sPL � 150 days. The timescale over which ice volume melts is set by the vertical melt rate, which
in these simulations is Gh � 2 cm/d. With an initial mean thickness �h51 m, the ice therefore melts over a
period of 50 days <sPL. Lateral melting therefore does not cause the FSD to deviate from its initial power-
law behavior before it melts completely, for scales up to the mean floe size.

If the FSD were to deviate significantly from a power law, we expect a difference between the least-squares
fit to the model output in Figure 3b and the power-law prediction from equation (4). Figure 3c shows this
comparison, plotting the value of a computed by fitting the FSD to a straight line in log-log space from 5 to
500 m (solid), compared to a evaluated using equation (4), where r155 m (dash). In general, lateral melting
reduces the fit slope of the FSD over this range from 2 to 1.75 over the course of the simulation. Smaller
floes melt most significantly, and lead to a deviation in the power-law slope that is shown as an increasing
difference between the computed power-law exponent and a in Figure 3c. The maximum relative error
between aest and a is small, just 7%, as the influence of this lateral melting is not significant at the scale of
the mean floes, as predicted above when comparing the timescale of ice melt to the timescale, sPL, over
which the FSD deviates from a power law.

We also compute an estimate of the power-law tail using the method of Virkar and Clauset [2014] (Figure
3b, green line). To do so, we generate a set of synthetic floe sizes following the distribution f(r), computing
the maximum likelihood estimates of the power-law exponent a and minimum floe size rmin over which the
tail of the distribution from rmin !1 decays as a power law. We fit this synthetic data to three alternative
distributions: a naive least-squares fit to the binned synthetic data (Figure 3b, green line), an exponential
distribution, and the ‘‘generalized Lotka-Volterra’’ distribution hypothesized by Herman [2011].

For each fit ~gðrÞ we compute the KullBack-Leibler divergence,

DKLðf jj~gÞ5
ð1

rmin

fðrÞlog
f ðrÞ
~gðrÞ dr; (8)

a measure of the information lost when substituting the hypothesized distribution ~g for the actual model
distribution f [Joyce, 2011]. When DKL 5 0, the hypothesized distribution accurately captures the real distri-
bution, while when DKL 5 1 the misfit is maximal in this measure. We test whether the hypothesis of a
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power-law tail is appropriate by comparing the values of DKL for different fits to the distribution f. Since the
lateral melting is most effective at smaller scales, the tail of the distribution retains a power-law slope of 22
(Figure 3b). Computing DKL reveals that the distributional tail is better fit by a power law than a GLV or
exponential distribution, as expected (Figure 3d). Revealingly, the maximum likelihood estimator is a better
fit to the modeled distribution than a simple least-squares fit to the binned data, as demonstrated by Virkar
and Clauset [2014].

The above discussion suggests that lateral melting may alter the shape of the FSD if the ratio of sPL to the
melting time scale, �r Gh= �hjGr jð21aÞ

� �
is small. This ratio is related to the (large) aspect ratio of average floes,

�r=�h. Typically, parameterizations of lateral melting used in sea ice models [Steele, 1992; Horvat and Tziper-
man, 2015], determine the partitioning of a net heat flux between lateral and vertical melting using this
aspect ratio. This is because the total surface area between a floe and the ocean surrounding it consists of a
lateral part of area 2prh and a basal part of area pr2, with a ratio 2h=r. If the heat flux between the ocean
and the ice is diffusive, this ratio determines how much heat from the ocean will go into the lateral versus
the basal edge of floes. When this aspect ratio is large, a power-law FSD impacted by lateral melting alone
will maintain its shape, and the computation of a via equation (4) will be accurate. However, Horvat et al.
[2016] found that this commonly used diffusive partitioning may significantly underestimate the lateral
melting for large floes because it does not include the effect of ocean eddies. In such situations, where
ocean eddies significantly contribute to the effective lateral melting, the FSD is expected to quickly deviate
from a power law.

3.3. The Influence of Floe Collisions on the Floe Size Distribution
We next examine how mechanical interactions between floes influence the FSTD evolution. The HT model
considers the statistical likelihood that two floes collide as the ice cover undergoes deformation, allowing
for floes to raft or ridge with one another and former larger, conglomerate floes. Details can be found in
Horvat and Tziperman [2015, section 2.2].

To force the model, we prescribe a mean ice velocity, u0510 cm/s, that advects the FSTD through the model
domain as described in section 3.1. The ice velocity field has a prescribed shear component with magni-
tude juy j � u0=D5231026 1/s. The thermodynamic component of the FSTD model considered in section 3.2
is not active. The initial FSTD, f0ðrÞ, and the incoming pack ice FSTD, finðrÞ, are the product of a power-law FSD
between floe sizes 521500 m with slope a 5 2, and an ice thickness distribution that is a Gaussian centered
at 1 m. The pack ice FSTD has 100% ice concentration, whereas the initial FSTD has 75% ice concentration.

The shearing ice velocity field leads to differential ice motions, collisions, and interactions between floes.
Figure 4a shows the evolution of the ice state variables of concentration, volume per unit area, and ice
thickness. Mechanical interactions between floes lead to uplift (ridging and rafting) of ice and therefore
reduce the ice concentration. The time rate of change of concentration @c

@tjcoll due to this deformation is
[Thorndike et al., 1975; Horvat and Tziperman, 2015, section 2.2, equation (B5)],

@c
@t

����
coll

52
u0

2D
525310271=s:

The time rate of change of ice concentration is therefore determined by the balance between the advection
of new ice concentration and the reduction of ice concentration due to collisions, and can be solved for
analytically as follows,

@c
@t

52
u0

2D
1

u0

D
cin2cð Þ5 u0

D
1
2

2c

� �
;

where cin 5 1 is the incoming pack ice concentration. The steady-state solution is c 5 1/2, thus due to these
mechanical interactions the FSTD reaches a steady-state ice concentration of 50%.

Collisions between floes shape the FSD by transferring ice area from smaller floe sizes to larger ones. Both
the initial and advected FSDs, f0ðrÞ and finðrÞ, have power-law slopes of 22. However, when examining the
transient evolution of the FSD, we note that it deviates from a power-law behavior (Figure 4b, blue lines). At
later times, the distribution becomes more power-law-like, and results in a shallower sloping distribution
(Figure 4b, darkest blue line). Using a least-squares fit, the steady-state distribution is fit to a power-law
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slope of a51:2 (Figure 4c, solid line) over the floe size range from 5 to 500 m. The FSD tail, however,
steepens over time (Figure 4b, green and blue lines), and the least-squares fit exponent has a lower KL
divergence from the modeled FSD compared to the MLE when considering the tail of the distribution (Fig-
ure 4d), though both are significant improvements over a possible exponential fit or generalized Lotka-
Volterra fit. The transient behavior implies that variability in the strengths of mechanical interactions
between floes (e.g., due to changes in shear or convergence) will lead to deviations from a power law FSD
over large size ranges, but a power-law tail is maintained.

Comparing a calculated via equation (4) to the power-law fit over 5–500 m aest shows, indeed, that the dif-
ference between the two starts at zero when the behavior exactly follows a power law. The error increases
as the FSD deviates from a power law over the first 10 days, approaching a steady-state after 20 days (Figure
4c, solid line). There is weaker agreement between the two than in the case of pure thermodynamic forcing.
The relative error between a and aest now exceeds 15% during the first 20 days, during which time the FSD
is not well-approximated by a power law at steady state, equation (4) predicts a slope of 1.34, for a relative
error of 11%. For comparison, the implied difference in total floe perimeter for power-law FSDs with slopes
a51:34 or a51:2 between r 5 5 to r 5 500, and 100% ice concentration, is between roughly 160 and
190 km of floe perimeter per square kilometer of ocean surface, which may affect estimated lateral melt
rates.

3.4. The Influence of Wave Fracture on FSD Slope
We next explore how ice fracture by ocean surface waves affects the FSTD. The HT model explicitly simu-
lates the evolution and attenuation of sea surface height within the ice cover based on the wave spectrum
reaching on the ice, computing locations of maximum strain. Floes are assumed to flex with the sea surface
height, and when the strain felt by floes exceeds a critical threshold, they break, as in Dumont et al. [2011].
Full details of the parameterization are provided in Horvat and Tziperman [2015, section 2.3].

We consider again ice advected into and out of the domain with a velocity u 5 10 cm/s, but no shear or
divergence and therefore no mechanical interactions between floes, and no melting. At the ice edge, a
monochromatic swell wave spectrum, with a peak wavelength k 5 100 m is applied to the ice field. This
ocean wave spectrum fractures large floes into floes with a preferred size of k=2 � 50 m.

The fracture of floes by ocean surface waves reduces the mean floe size (Figure 5a) and steepens the floe
size distribution by breaking floes of size larger than k=2 (Figure 5b, blue lines). Floes larger than 50 m are
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Figure 4. Evolution of the FSTD during mechanical floe interactions. (a) Time evolution of sea ice concentration (in percent), ice volume per unit area and mean ice thickness (in m).
(b) Log-log plot of the evolution of the FSD, normalized to one, over time. Red line is initial FSD. Green line is pack ice FSD. Darkest blue line is final FSD. (c) Power-law exponent fits: least
squares fit over the range from 5 to 500 m (solid red line), predicted value from equation (4) (dashed red line), maximum likelihood estimate for the distributional tail, with the tail identi-
fied using the method of Virkar and Clauset [2014] (green line), and least-squares fit to the tail of the distribution (blue line). (d) Comparison of Kullback-Leibler divergence (equation (8))
between the modeled FSD and the maximum likelihood estimate of Virkar and Clauset [2014] (blue line), an exponential fit (red line), a generalized Lotka-Volterra fit (purple line) [Her-
man, 2011], and a least-squares fit to the FSD tail.
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fractured by the waves, so therefore we expect there to be two regimes, one composed of floes smaller
than 50 m, and one composed of floes larger than 50 m. We therefore compute a least-squares power-law
fit to the FSD over the floe size range from 5 to 50 m, finding a gradual decrease in the slope computed
from a least-squares fit, from a 5 2 to a51:8, as new floes are formed with a size near 50 m (Figure 5c, solid
line). Since the FSD clearly does not exhibit a power law tail we do not apply the method of Virkar and Clau-
set [2014].

The value of a evaluated using equation (4) over the range between 5 and 50 m (dashed line, Figure 5c) is
inaccurate, estimating a power law slope roughly 0.25 greater, even at t 5 0, when the FSD is prescribed to
be a power law. This discrepancy results from the approximation that the size range of the power law decay
is wide, r2 � r1, used in equations (2) and (3) to derive the expression for a in equation (4). When the com-
putation of a is extended over the range from 52500 m, the method is accurate at t 5 0. Yet at later times,
extending the range to 500 m cannot give an accurate approximation because the behavior is not of a
power law beyond sizes of about 50 m.

These results demonstrate an important limitation of the approximations used by Perovich and Jones [2014]
to derive the simple expression (4) for the power-law decay of the FSD. Equation (4) is inaccurate when con-
sidering a single decade of floe size, as the small tail of the FSD can bias the estimated power law, even
when the behavior is exactly a power law, as it is at t 5 0 in the above simulation. Many observations of the
FSD only resolve a small range of floe sizes, and therefore estimates based on (4) may be biased when a
small window of floe sizes is resolved. In that case, one may need to solve equations (2) and (3) numerically,
though it may be safer to estimate the actual distribution shape, rather than assuming a power law decay,
given that the FSD evolution demonstrated in Figure 5b is not power-law-like over the range of floe sizes
considered here.

3.5. Determination of the FSD Structure When Sea Ice Is Subject to Several Forcing Fields
Having explored each physical process individually, we next simulate the evolution of the FSTD when all
external forcing fields are active, and examine the steady-state balances between the different physical pro-
cesses, at different floe length scales. Both the incoming FSTD and initial FSTD are the product of a Gaussian
ice thickness distribution centered at 1 m thickness and a power-law FSD with exponent 22 over the range
from 5 to 1500 m. In supporting information Text S1 and Figure S2, we examine the sensitivity of the results
presented below to fin. In general, the qualitative behavior of the FSTD that develops is insensitive to the
slope of the pack ice FSD. The incoming pack ice concentration is 100%, and the initial FSTD concentration
is 75%. The thermodynamic forcing is the same as in section 3.2, and the mechanical forcing and advective
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Figure 5. Evolution of an FSTD fractured by surface waves. (a) Mean floe size over time (m). (b) Log-log plot of the evolution of the FSD,
normalized to one, over time. Red line is initial FSD. Green line is pack ice FSD. Darkest blue line is final FSD. (c) Comparison of power-law
fit to simulated FSD with analytical estimates. Black solid line is the numerical fit to the simulated FSD over the range from 5 to 50 m.
Dashed solid line is the result obtained via equation (4) over the range 5–50 m.
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velocities are the same as in section 3.3. We choose as an ocean surface wave field a realistic Bretschneider
wave spectrum [Michel, 1999],

SðkÞ dk5
H2

s

8
k

k2
z

e21
p

k
kzð Þ

4

dk;

where Hs 5 2 m is the significant wave height, and kz550 m is the average distance between zero-crossings
of the wave record.

Figure 6a shows the evolution of ice concentration, ice volume per unit area, and mean ice thickness. In
response to the presence of both collisions and melting, the ice concentration reaches a steady-state value
of 42%, lower than in the simulation in which only collisions are active (Figure 4a, red line). Initially, mechan-
ical interactions between floes increase the ice thickness and open water fraction. The increased open water
fraction leads to greater heating of the sea ice as more heat is absorbed by the ocean surface layer, and this
reduces the mean ice thickness to a steady-state value of 1.36 m (Figure 6a, green line). Ice volume per unit
area is not influenced by ice fracturing or mechanical collisions, and achieves a steady-state balance
between melting and volume advection of 0.6 m3/m2.

Figure 6b plots the floe size distribution (normalized to integrate to 1) at days 1, 7, and 60, as well as the ini-
tial and incoming pack ice FSD (red and dashed green lines). Over time, three distinct regimes emerge,
labeled I-III in Figures 6b and 6e. The three regimes are: (I) a shallow, decaying regime from r1-r255–50 m,
(II) a steeper decaying regime from r1-r2550–150 m, and (III) an intermediate decaying regime from r1-
r25150–1500 m. The modeled floe size distributions shown in Figure 6b are scale-dependent, and therefore
are not power laws. In practice, however, observations often resolve small ranges of floe size, with the FSD
fit to a straight lines in log-log space over that size range. We mimic this observational approach by naively
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Figure 6. Evolution of the FSTD forced by melting, ice advection, mechanical interactions between floes, and fracture by ocean surface waves. (a) Time evolution of sea ice concentration
(right axis), ice volume per unit area and mean ice thickness (m, left axis). (b) Log-log plot of the evolution of the normalized FSD, over time. Red line denotes the initial FSD. Green line
denotes the incoming pack ice FSD. Darkest blue line represents the steady state FSD. Vertical dashed black lines separate the three distinct regions of power law scaling. (c) Log-log
plot of the evolution of the normalized ITD over time. Red line shows the initial ITD, green line the pack ice ITD, darkest blue line the steady state ITD. (d) (solid lines) Power-law exponent
fit to the FSD over the three scaling regimes identified in Figure 6b, from 5 to 50 m (red), 50 to 150 m (blue) and 150 to 1500 m (green), compared to the prediction of equation (4)
(dashed lines). (e) The FSD tendency due to each physical process in the FSTD equation (1), averaged over the final week of the simulation. (f) Same as Figure 6d, but for the ITD.
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assuming that the distribution is fit to a power law slope in each size regime, with a coefficient either
obtained by a least-squares fit or via equation (4), to demonstrate what might lead to differing interpreta-
tions of FSD slope and behavior at different length scales. The precise range of floe sizes in each regime is
chosen based on the shape of the steady-state FSD. In applications to observations, the choice should be
made on the basis of a statistical test for a power-law tail [Virkar and Clauset, 2014]. In the supporting Infor-
mation Text S2 and Figure S3, we examine the sensitivity of the power-law decay coefficient a to the chosen
width of these intervals.

The emergence of the distinct regimes (I) and (II) resembles observations in the Sea of Okhotsk and in East
Antarctica, where at small scales the FSD was observed to decay with a shallower slope than at larger scales
[Toyota et al., 2006, 2011], with a transition occurring between 100 and 200 m. In each floe scale regime, we
compute and plot the exponent of a power-law fit to the simulated FSD as solid lines in Figure 6d. We com-
pare this result to the value of a obtained via equation (4). Now, r1 and r2 are the endpoints of the floe
length scales considered in each regime (Figure 6d, dashed lines), and the variables c and P refer to the ice
concentration and floe perimeter per square meter belonging to floes with size between r1 and r2 as dis-
cussed in section 2.2. To evaluate what terms in the FSD equation dominate at steady state, we compare
the tendencies from each process in Figure 6e, averaged over the final 14 model days.

The first regime (I) of floe sizes, from 5 to 50 m, has a shallower slope than the incoming pack ice distribu-
tion (green dashed line, Figure 6b), decaying as a power law with an exponent 21 (Figure 6d, green solid
line). This power law decay is consistent with observations of the FSD from small floes in a variety of con-
texts, in the Sea of Okhotsk [Inoue, 2004], the Arctic [Perovich and Jones, 2014], and the Antarctic [Toyota
et al., 2011]. At this scale, the main sink of ice area comes from mechanical interactions (Figure 6e, green
line) as these floes, which constitute a majority of the ice area, frequently collide and consolidate to form
larger and thicker ice floes. The influence of ice thermodynamics on the FSD is dominated by other pro-
cesses (Figure 6e, blue line), but is most significant at the smallest floe sizes. At the smallest floe scales (5–
20 m), the source of new ice area due to advection (Figure 6e, red line) balances a sink of ice area due to
collisions. From 20 m to 50 m, a balance emerges between the source of area due to the fracture of larger
ice floes by waves (Figure 6e, purple line) and the sink of area due to floe collisions.

The FSD slope in regime I is not captured by equation (4), which predicts a slope a51:6, closer to the slope
of the pack ice FSD (a 5 2) than to the slope of the FSD itself (a50:9). For comparison, the total floe perime-
ter per square kilometer area for two FSDs with slopes of a50:9 and a51:6, is roughly 105 and 240 km/km2,
correspondingly. In parameterization of lateral melt in climate models this would correspond to an
increased lateral melt rate by a factor of about 250%. This discrepancy between the predicted and simu-
lated power laws is due to a combination of the two factors discussed previously, the influence of ice ther-
modynamics at small floe sizes discussed in section 3.2, and the cutoff-error discussed in section 3.4.

In the second regime (II) covering floe sizes 50–150 m, floes are large enough to be fractured by the waves
impinging on the model domain. The steady-state balance at this scale is between the influx of new ice
area due to collisions between smaller floes in regime I, and the removal of ice area as floes are fractured by
waves. This regime has a steep spectral slope which approaches a 5 6 over time. In this range, the predic-
tion of equation (4) is accurate. This change in power law slope resembles the ‘‘regime shift’’ identified by
Toyota et al. [2006, 2011], whose scale has been hypothesized to be related to the flexural strength of small
ice floes, but here is set by the peak wavelength of the ocean surface wave spectrum.

In the third regime (III), comprising floe sizes 150–1500 m, the most significant source of new ice area is
advection of floes from the pack ice (Figure 6e, red line). The aspect ratio of these floes is small, and thermo-
dynamic melting therefore does not significantly influence the evolution of the FSD at this scale. As floes
belonging to regime III are larger than the peak wavelength of the ocean wave spectrum, all floes in regime
III are readily fractured by the wave field, and the tendency due to wave fracture is therefore uniform as a
function of r at this scale. As a result, the slope of the FSD in this regime is set by the slope of the ice being
advected into the domain, a 5 2 (Figure 6d, green lines). As this is the highest end of floe sizes considered
in this simulation, there is no high-range cutoff, and the prediction made by equation (4) mirrors the simu-
lated slope (Figure 6d, dashed green line).

Figure 6c shows the ice thickness distribution at several times during the simulation. Initially strongly
peaked around h 5 1 m, the ITD is spread both into smaller and larger thicknesses by the external forcing.
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Figure 6f shows the contribution to the steady-state balance from each individual forcing term. As wave
fracture does not influence floe thicknesses, it does not lead to an ITD tendency. Advection from the pack
ice (Figure 6f, red line) reinforces the Gaussian shape of the distribution by advecting ice floes with thick-
nesses near the peak of 1 m. Sea ice melting (Figure 6f, blue line) thins ice, shifting ice area from the peak
thickness to smaller thicknesses. As the influence of lateral melting is generally small (see earlier discussion,
Figure 6e, blue line), the total change in area due to the thermodynamic process is nearly zero. Mechanical
collisions (Figure 6f, green line) do not conserve area, and move thinner ice to form thicker ice with reduced
area, spreading the distribution to larger thicknesses.

4. Conclusions

We have simulated the evolution of the joint floe size and thickness distribution (FSTD), coupled to a
mixed-layer ocean model, to understand the evolution of scaling laws in, the floe size distribution (FSD).
The model simulates the FSTD evolution subject to different forcing factors: advection of sea ice into and
out of the model domain, thermodynamic forcing from the ocean and atmosphere, mechanical interactions
between colliding floes, and floe fracture due to ocean surface waves. We explored the response of the
FSTD to each of the forcing factors, and to all of them combined, to gain a deeper understanding of how
the scaling behavior of the FSD may evolve.

We note that the time evolution of mean quantities derived from the FSTD, such as the mean floe size and
thickness, may evolve in a seemingly nonintuitive manner. Specifically, the time-dependence of the these
mean quantities may be different from that of the FSTD itself. This distinction could be important when
interpreting observations and model simulations of the FSTD, and parameterizing its effects in models that
do not resolve floe evolution in the detail considered here.

Next, we carefully examined the limitations of assuming a power law behavior by comparing two methods for
computing power-law decay, one based on a least squares fit to the modeled FSD, and an observational tech-
nique that computes the floe size power law from observations of sea ice concentration and floe perimeter [Pero-
vich and Jones, 2014]. We find two main sources of error can arise when using this simple observational method
alone. The first source of error comes from when power-law scaling does not exist, or transient FSD evolution
leads to a departure from scale-invariance. All of the forcing scenarios considered here exhibit at least some
departure from scale-invariance. A second source of error arises due to an insufficiently large range of resolved
floe sizes. This can lead to a bias even when the FSD is a power law with known slope. The two sources of error
can lead to significant mis-estimations (>100%) of important metrics derived from the FSTD, such as the floe
perimeter per unit area and mean floe size, which determine interactions between the FSTD and climate.

In addition to examining the constraints on calculating power laws of the FSD from observations, we also
examined when such power laws are expected to arise and what physical balances may be responsible for
their occurrence. We find that an initial power-law FSD will remain a power law if lateral melting is weak rel-
ative to basal melting. Under standard parameterizations of the effect of melting on ice floes [Steele, 1992]
this is expected to be the case at floe sizes larger than a few tens of meters. However, Horvat et al. [2016]
showed that when the effect of ocean eddies is considered, lateral malting is important even at large floe
sizes, making power laws much less likely. We also show that the FSD also may deviate from a power law
due to mechanical interactions when the sea ice is subjected to transient rather than steady forcing, and
when floes are broken by ocean surface waves into a range of floe sizes.

By considering how multiple different forcing fields acting on different scales shape the FSD, we demon-
strated the emergence of different behavior at different length scales, dividing the FSD into three distinct size
regimes depending on the physical process that dominantly affects floes of each size range. For floes smaller
than about 200 m, we find two separate regimes. The first, for sizes 5–50 m, is a shallow power law regime
whose slope is set by the balance of ice advected into the domain, the fracture of larger floes, and the loss of
ice area due to the floe collisions and merging. The second power law regime, for sizes 50–150 m, is a steeper
power law regime that is determined by the balance of new floes formed through the collisions and merging
of smaller floes balanced by the fracture by ocean surface waves. These two regimes combine to form a
‘‘joined power law’’ distribution similar to observations in the Antarctic [Toyota et al., 2011]. The point (‘‘regime
shift’’) at which the transition between the two subregimes occurs was not well understood previously, and
was hypothesized to be related to the fragmentation of small ice floes. In our simulations we find that this can
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be set by the ocean surface wave spectrum, which sets the typical size of fractured floes, however this does
not rule out that fragmentation could determine the scale of floe breaking. More detailed observational stud-
ies of FSD evolution with and without the presence of ocean surface waves, should be done to determine in
what forcing scenarios and in which size regime each fractural process is important.

The incorporation of sensitivity to floe size is an important aspect of modern sea ice modeling. Having
details of the floe size evolution will provide useful information about the ice-ocean-atmospheric boundary
layer, the rheology of the sea ice, the propagation of waves into and through the ice pack, the thermody-
namic properties of the ice cover, and of mixing by wind, waves, and eddies in the ocean mixed layer. But it
is important to achieve a careful understanding of how the combined FSTD evolves before incorporating or
parameterizing its effects in climate studies, and to determine in which ways such an implementation can
lead to biases in modeled sea ice evolution.

This study, therefore, is an intermediate step toward including the floe size distribution in climate models,
and provides three lessons relevant to such models and to related observational analysis. First, we find (sec-
tion 3.1) that the mean floe size and mean thickness cannot be assumed to advect and mix like passive
tracer. This is because the mean flow thickness, for example, is the ratio of ice volume per unit area and ice
concentration. These two quantities are conserved when mixed between two GCM grid cells, but their ratio,
being a nonlinear function of the two, does not. Simple FSD models that represent only, say, the mean floe
size [e.g., Williams et al., 2013], must take this into account. This can be accomplished by considering the
relationship between mean floe size, the number of floes per unit area, and the ice concentration, or by
evolving the FSD on its own. Second, it is difficult to justify using a single power law for representing the
FSD, because of the different processes active at different scales (section 3.5, see also the observational
analysis of Toyota et al. [2011]). In particular, because there is a known coupling between small floes and
sea ice melting [Steele, 1992; Horvat et al., 2016], representing the different FSD dynamics at small scales
(300 m and smaller) versus large scales is important. Additional observations of FSD evolution as function of
scale are therefore also badly needed. Third, rigorous tools for testing whether the FSD decays as a power
law should be applied to observations [Virkar and Clauset, 2014]. As demonstrated here, simpler methods
might inadvertently lead to biases in estimated power laws.

In this study we provide insights into the different scale-selective physical processes acting on floes. We also
demonstrate when assuming scaling behavior in observational analysis might be biased or incorrect. This
added knowledge does not supplant the need for observations of the state and evolution of the FSTD/FSD and
the relationship to these physical processes. How to make repeated observations of small-scale features such
as the FSD (but also melt ponds, ridge distributions, and other subgrids cale sea ice features), in order to test
appropriate process models for the next generation of global climate models, remains an important problem.

Appendix A: Time Stepping Scheme of FSTD Model

Floe categories must be represented by nonnegative areas, and the total ice concentration can never
exceed one. Given an FSTD and a set of external forcing fields, these constraints place a strict bound on the
model time-step in the forward Euler scheme described by equation (1). However, given the nonlinear rela-
tionship between the forcing and the FSTD, a model time-step that ensures these constraints are met is dif-
ficult to estimate, and may be smaller than necessary for numerical stability. To address this issue, we
designed an adaptive time-stepping procedure which shortens the model time-step as needed. The positive
definite constraint is that for all j; k,

0 � fjkDAjk � 1;

where DAjk5DrjDhk . In order to assure the positivity of the FSD, after computing the tendency in fjk, for all
{j, k}, the model time step Dt5ti112ti is required to satisfy

Dt <
fjk

Dfjk
;

where fjk represent the value before the update during the current time step, and the delta term is the
update value. Simultaneously, in order for the solution to be bounded by 1, the model time-step must sat-
isfy the following for all {j, k},
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Dt <
12fjkDAjk

DfjkDAjk
:

The updated model time-step Dt is then chosen as the maximum value for which all constraints are met
and Dt � Dt0, where Dt0 is a global time-step specified at the beginning of the simulation. The external
forcing fields (wave spectrum, heating) are updated every Dt0. The matrix f is updated using the time step
Dt, and the procedure is then repeated using an initial step of Dt02Dt, reducing it as necessary, until the
next update of the external forcing fields after a time Dt0 dlapsed. At that point the time stepping is reini-
tialized with Dt5Dt0.

Appendix B: Mixed-Layer Model

The ocean mixed layer model closely follows Petty et al. [2013] in that it is composed of a mixed-layer ocean and
surface layer, but it has been adapted to fit within the FSTD framework of Horvat and Tziperman [2015]. Below
we demonstrate how the temperatures and salinities of the ice, surface layer, and mixed layer are determined.
For further discussion of the properties of these models, see Petty et al. [2013] and Tsamados et al. [2015].

B1. Ice Surface Temperature
The ice surface temperature, Ts;i , is calculated via a balance of the fluxes of sensible cooling, latent cooling and
longwave emission, longwave absorption, shortwave absorption, and conductive heating at the ice surface,

Qsurf ðTs;iÞ5qacaCi
DUaðTs;i2TaÞ1

1qaLsCi
DUa qsatðTs;i; PÞ2qa
� �

1�irT 4
s;i

2�iQLW 2ð12aiÞQSW 2QcðTs;iÞ50;

(B1)

where qa is the atmospheric density, ca is its specific heat capacity, Ci
D is the turbulent heat transfer coeffi-

cient over ice, Ua is the 10 m wind, Ta 10 m atmospheric temperature, Ls is the latent heat of sublimation,
qsatðTs;iÞ is the saturation specific humidity at temperature Ts;i and atmospheric pressure P, qa is the atmo-
spheric specific humidity, �i is the emissivity of sea ice, QLW is the downwelling long-wave heat flux, ai is the
albedo of sea ice, QSW is the downwelling short-wave heat flux, and Qc is the conductive heat flux through
the ice (positive upward). We assume that none of the downwelling shortwave radiation penetrates through
the ice. The thermodynamic component of the HT model is configurable with any column thermodynamical
model. For the presentation of these results, we use the simple 0-layer model of Semtner [1976]. The con-
ductive heat flux is calculated by integrating the diffusion equation over the sea-ice layer, to give,

Qc5
jiðTf 2Ts;iÞ

hi
;

where ji is the conductivity of sea ice, and a positive Qc has a warming effect on the surface. If the diag-
nosed sea-ice surface temperature is above the melting point, we set Ts;i50

�
C and we compute the residual

heat flux from this temperature Qsurf ð0
�
CÞ, which is used to melt the sea ice at its surface,

@h
@t surf

5
Qsurf

qi Lf
:

B2. Ocean Surface Temperature
The ocean surface temperature Ts;o is determined through another balance of turbulent and radiative heat
fluxes with the atmosphere, with the mixed layer below and with the sea ice. The total atmospheric heating
of the surface layer, RðTs;oÞ, is,

RðTs;oÞ5ð12awÞð12I0ÞQSW

1�oQLW

2qacaCo
DUaðTs;o2TaÞ

2qaLv Co
DUa qsatðTs;o; PÞ2qa
� �

2�orT 4
s;o;

(B2)

where Co
D is the turbulent transfer coefficient above ocean, Lv is the latent heat of vaporization, and �o is the

ocean emissivity. The surface layer absorbs some of the solar radiation, and we define I0 to be the fraction
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of the solar radiation arriving at the top of the mixed layer, so that 12I0 is the fraction absorbed in the sur-
face layer. A positive R has a warming effect on the surface.

The surface layer also exchanges turbulent heat fluxes with the mixed layer below. We assume the turbulent
exchange is proportional to a friction velocity u�5

ffiffiffiffiffiffiffiffiffiffi
s=qw

p
, where s is the wind stress. With the approxima-

tion that s is proportional to the square of the wind velocity Ua, and a bulk momentum transfer coefficient,
the friction velocity in a region of open water u�o, in a region under sea ice u�i , and averaged over the
domain u� are defined,

u�o5

ffiffiffiffiffiffi
so

qw

r
5Ua

ffiffiffiffiffiffiffiffiffiffi
qaCo

D

qw

s
;

u�i 5

ffiffiffiffiffiffi
si

qw

r
5Ua

ffiffiffiffiffiffiffiffiffiffi
qaCi

D

qw

s
;

u�5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
csi1ð12cÞso

qw

s
5Ua

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qa

qw
cCi

D1ð12cÞCo
D

� �r
;

where c is the ice concentration. In a region of open water, the turbulent exchange between the surface
layer and the mixed layer QmoðTs;oÞ is,

QmoðTs;oÞ5qw cw u�oðTmix2To;sÞ; (B3)

where cw is the specific heat capacity of seawater, and Tmix is the mixed-layer temperature. The net heat
exchange per unit area is this factor multiplied by the open water fraction, /.

The shallow surface layer exchanges heat laterally with the ‘‘lead’’ region. The number of floes per unit area,
per floe size, is denoted NðrÞ5f ðrÞðpr2Þ21. For a circular floe of size r5ðr; hÞ, the lateral surface area of its
boundary layer is 2pðr1rlwÞðh10:1mÞ. The total area shared between the ocean surface region and the
boundary layer per unit area, Aside, is therefore computed via the FSTD as,

Aside52p
ð
r

NðrÞðr1rlwÞh dr:

This factor increases when the number of floes per unit area is larger (i.e., the mean floe size is smaller), as
the floes have a greater surface area. The turbulent exchange per unit area shared between the ocean sur-
face layer and sea ice lateral boundary layer, QsiðTs;oÞ, is computed as,

QsiðTs;oÞ5qw cw chu�oðTf 2To;sÞ:

The magnitude of the turbulent flux is reduced by a factor ch, a Stanton number, that describes the weaken-
ing of the turbulent exchange near the solid ice boundary [McPhee, 1992]. For a 1 degree temperature dif-
ference and a 1 cm/s friction velocity, the heat flux is approximately 200 W/m2 [Pollard et al., 1983; Tang,
1991]. The net heat exchange (per unit area) is therefore AsideQsi .

We determine the ocean surface temperature Ts;o using an energy balance for the surface layer,

/ RðTs;oÞ1QmoðTs;oÞ
� �

1AsideQsiðTs;oÞ50;

which initially assumes that there is no latent heat release due to sea-ice growth. Fluxes that occur in
regions of open water are multiplied by the open water fraction /, where /512c, for c the ice concentra-
tion. If the ocean surface temperature Ts;o calculated using this balance is colder than the freezing point,
new sea ice is formed. We then compute the same budget with Ts;o5Tf , and add the latent heat release
due to sea ice formation at the ocean surface, Qo. The residual heat loss is compensated for by latent heat
released due to new sea-ice formation, i.e.,

Qo5/ RðTf Þ1QmoðTf Þð Þ; (B4)

noting that QsiðTf Þ50.
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B3. Ice Thermodynamics
In the FSTD model of Horvat and Tziperman [2015], the effect of ocean heating on sea ice is cast in terms of
three heat fluxes: a heat flux to the base of floes, Ql;b, a heat flux to the sides of floes, Ql;l , and an open-
water heat flux Qo. The partitioning of ocean heating between the two is based on the aspect ratio of indi-
vidual floes, as in Steele [1992]. The open-water heat flux is zero when the surface ocean temperature is
reduced to its freezing point (equation (B4)). This method of computing ice heat fluxes is distinct from that
which is present in modern sea ice models. For example, in melting, the Community Sea Ice model assumes
all of the heating of the ocean surface layer can be used to melt sea ice. In contrast, the geometric sea-
surface partitioning method of Horvat and Tziperman [2015] allows for the presence of warm ocean surface
waters in regions away from floes, which is more realistic [Perovich, 2003].

The heat flux into the lead area, however, arises from both the turbulent exchange with the surface layer,
Qsi, and the turbulent exchange between the mixed layer and the ice base. The heat exchanged between
the mixed layer and ice base is,

Qmi5qw cw chu�i ðTmix2Tf Þ; (B5)

where the ice is at its freezing point at its base. The lead heat flux, Qlead, which affects the development of
floes, is the sum of the lateral exchange between the floe boundary layer and the ocean surface layer and
the turbulent exchange between the ice base and the ocean mixed layer,

Qlead5AsideQsi1cQmi:

The time rate of change of ice thickness GhðhÞ, depends on the basal component of the lead heat flux, Ql;b,
the conductive heat flux going from the ice base to the ice surface QcðTs;iÞ, and the surface heat flux
Qsurf ðTs;iÞ. Adding the three together, we obtain the time rate of change of ice thickness,

Gh5
Qsurf ðTs;i; hÞ

qiLf
1

QcðTs;iÞ2Ql;b

0:9qi Lf
;

where the value of 0.9 multiplying the enthalpy of fresh ice qi Lf accounts for the increased salinity at the
ice base, and we assume the surface ice is fresh [Bitz and Lipscomb, 1999]. The part of the lead heat flux that
causes lateral melting is used to melt sea ice in contact with sea-water, so that the time rate of change of
floe size, Gr is,

Gr5
Ql;l

0:9qiLf
:

B4. Mixed Layer
The mixed layer temperature Tml and salinity Sml are calculated as function of time, and its depth Hml is pre-
scribed and, for simplicity, constant in our simulations. The mixed layer exchanges heat and salt with a rest-
ing deep layer. In this study we prescribe a constant temperature and salinity equal to the initial mixed-
layer temperature and salinity, Td521:8

�
C, Sd 5 33 PSU. Assuming a coefficient of vertical eddy diffusivity

j, the turbulent exchange of temperature between the mixed layer and deep layer is,

Qdm5qcwj
Td2Tml

Hml
5qcwj

DTd

Hml
:

The mixed layer is also influenced by solar radiation penetrating through the surface layer, and via the
exchange of heat between it and the surface layer and ice. The net heat flux within the mixed layer by pen-
etrating shortwave or surface exchange, Qml, is,

Qml5/ 	 ð12awÞI0ð12e2jw Hml ÞQSW

2/ 	 QmoðTs;oÞ

1c 	 QmiðTmixÞ:

(B6)

Positive Qml means mixed-layer warming. There are three components to Qml. The first is the absorption of
shortwave radiation. A fraction I0 of the solar radiation incident over water, /QSW , passes through the sur-
face layer. A fraction ð12e2jw Hml Þ of this, where jw is the extinction coefficient of shortwave radiation in
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seawater, is absorbed in the mixed layer. The second term, /Qmo, is the heat exchanged with the ocean sur-
face layer, and the third term, c 	 Qmi , is the heat exchanged with the ice.

The net salt flux into the mixed layer from above per unit area, FS (in psu m/s), is,

FS5
qi

qw
ðSmix2SiÞ

@Vi

@t
2ðP2EÞSmix ;

with positive Qs implying that the mixed-layer becomes saltier. Vi is the ice volume per unit area, ðP2EÞ
(in m/s) is the precipitation minus evaporation rate per unit area, and Smix is the mixed layer salinity. The
evaporation rate E is calculated from the latent heat fluxes in equations (B1) and (B2). The precipitation P is
prescribed as the total precipitation reaching the ocean. FS is therefore the sum of salinity tendency due to
ice melting or freezing, and evaporation minus precipitation.

The full equations for determining the evolution of mixed layer temperature and salinity are, therefore,

@Tml

@t
5

Qml

qw cw Hml
1DTd

j
H2

ml

� �
(B7)

@Sml

@t
5

FS

Hml
1DSd

j
H2

ml

� �
: (B8)
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