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Marine stratocumulus cloud decks are regarded as the reflectors of the climate system, returning

back to space a significant part of the income solar radiation, thus cooling the atmosphere. Such

clouds can exist in two stable modes, open and closed cells, for a wide range of environmental

conditions. This emergent behavior of the system, and its sensitivity to aerosol and

environmental properties, is captured by a set of nonlinear equations. Here, using linear stability

analysis, we express the transition from steady to a limit-cycle state analytically, showing how it

depends on the model parameters. We show that the control of the droplet concentration (N), the

environmental carrying-capacity (H0), and the cloud recovery parameter (s) can be linked by a

single nondimensional parameter ðl ¼
ffiffiffiffi
N
p

=ðasH0ÞÞ, suggesting that for deeper clouds the transi-

tion from open (oscillating) to closed (stable fixed point) cells will occur for higher droplet con-

centration (i.e., higher aerosol loading). The analytical calculations of the possible states, and

how they are affected by changes in aerosol and the environmental variables, provide an

enhanced understanding of the complex interactions of clouds and rain. VC 2017 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4973593]

We describe and explore a delay differential equation

that captures key elements of the interplay between cloud

formation and depletion by rain, and how it is regulated

by atmospheric aerosol. We analytically obtain the Hopf

bifurcation points that describe transitions between a sta-

ble fixed point, which implies a balance between cloud

formation and depletion (a steady state), to a limit cycle

behavior that is related to cycles of formation of thicker

clouds that are later consumed by stronger rain. At dis-

tances in the parameter space further away from the

bifurcation point, the system exhibits a period doubling

route to chaos. Exploring how the model transitions

depend on the environmental conditions and aerosol con-

centration sheds new light on the cloud’s sensitivity to the

interplay between key parameters in nature, and specifi-

cally to possible anthropogenic aerosol effects on cloud

properties and transitions between cloud states.

I. INTRODUCTION

Marine stratocumulus cloud decks forming over dark,

subtropical oceans are regarded as the reflectors of the atmo-

sphere.1 The decks of low clouds 1000s of km in scale reflect

back to space a significant portion of the direct solar radiation

and therefore dramatically increase the local albedo of areas

otherwise characterized by dark oceans below.2,3 This cloud

system has been shown to have two stable states: open and

closed cells. Closed cell cloud systems have high cloud

fraction and are usually shallower, while open cells have low

cloud fraction and form thicker clouds mostly over the con-

vective cell walls and therefore have a smaller domain aver-

age albedo.4–6 Closed cells tend to be associated with the

eastern part of the subtropical oceans, forming over cold water

(upwelling areas) and within a low, stable atmospheric marine

boundary layer (MBL), while open cells tend to form over

warmer water with a deeper MBL. Nevertheless, both states

can coexist for a wide range of environmental conditions.5,7

Aerosols, liquid or solid particles suspended in the atmo-

sphere, serve as Cloud Condensation Nuclei (CCN) and there-

fore affect the concentration of activated cloud droplets.8

Changes in droplet concentration affect key cloud properties

such as the time it takes for the onset of significant collision

and coalescence between droplets, a process critical for rain

formation. The onset of significant collision-coalescence pro-

cess can thus be represented by a delay factor.9,10

The emergent behavior of the coevolution of cloud and

rain has been shown to be captured by a set of dynamical

equations with a delayed sink term.11 Numerical analysis of

these equations yields bifurcation points that separate differ-

ent dynamical regimes. The first point marks a shift from a

steady-state (stable fixed point) in which the rain consumes

the cloud at the exact rate of cloud replenishment, to oscilla-

tions (limit cycle) of stronger rain that depletes the cloud

that created it and therefore dissipates until the cloud is thick

enough to reform rain. These results were shown to provide

insights into naturally occurring closed and open cells in

marine stratocumulus cloud systems,12 and the processes

underlying transitions between these states. The oscillating

branch of the solutions represents open cell clouds that
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typically produce stronger rain,1,13,14 and as the rain depletes

the cloud water and suppresses the updraft by evaporating

below cloud base, the average cloud tends to last for shorter

durations.6 The closed cells tend to produce very little driz-

zle and their morphology remains stable for more than 10 h

despite the fact that their characteristic scale suggests a theo-

retical lifetime of only �1 h.12,15,16 The one-dimensional,

time-delay equations for cloud thickness (H) and for droplet

concentration (N) were later coupled by a spatial dynamical

feedback to a set of oscillators that produce spatial patterns

of cellular convection similar to the ones produced in

detailed cloud resolving models and seen in nature.17

The nature of the transitions from open to closed cellular

convection has been studied using both large eddy simula-

tion (LES) and the cloud and rain equations.18 This study

showed that the transition between closed and open cellular

cloud states shows hysteresis as function of the aerosol load-

ing. Such behavior is expected in a Delay-Differential-

Equation (DDE) as the solution depends on the history of the

delayed element.

Here, we explore the cloud and rain equation response

to small perturbations around the steady state, which allows

analytical exploration of the nature of the damped oscilla-

tions toward the fixed points, and of the first bifurcation

point that marks the transition from a fixed point to a limit

cycle. For completeness, we further explore the transition

toward chaotic behavior. This transition occurs in a nonphys-

ical regime in the current simple model, yet it is possible that

subsequent studies will find such a transition in a physical

regime of somewhat more detailed model. The linear stabil-

ity analysis allows us to better understand transitions

between states and how they depend on changes in aerosol

and the environmental variables, which provides new

insights into the complex interactions between clouds, aero-

sol, and rain. As aerosol concentration strongly affects the

cloud droplet concentration (N), changes in the parameter N
imply here changes in the aerosol loading.

II. MODEL EQUATIONS

Time delay differential equations (DDE) are used in many

dynamical systems,19 including population dynamics,20 neural

networks,21 El Nino,22 and more. As even a simple linear DDE

requires an infinite number of initial conditions to initialize the

delay term, it is formally equivalent to a partial differential

equation or to an infinite system of ordinary differential equa-

tions in terms of its number of degrees of freedom. DDEs can

display complex behavior, some of them chaotic, and therefore

often cannot be solved analytically.19

Using the notation Hðt� DÞ for the H value in D time

units before the time t, the cloud and rain equation can be

coupled to an aerosol equation as follows:11

dH

dt
¼ H0 � H

s
� affiffiffiffi

N
p H2 t� Dð Þ;

dN

dt
¼ N0 � N

s2

� cR t� Dð ÞN t� Dð Þ;

where the time dependent variables are the cloud depth (H),

and the droplet concentration (N). R is the rain-rate, which is

a function of H and N, and a � 100 ½day�1 m�2:5� is a scaling

constant that links cloud depth, droplet concentration, and

rain rate. The a value was determined both theoretically and

from measurements.23–25 The environmental and droplet

(aerosol) conditions are represented by H0 and N0 as the

cloud-depth and droplet concentration carrying capacities, s
and s2 are characteristic times for reaching the carrying

capacity values under no sink conditions, D is the delays that

represents past states that control the current sinks. Note that

following theoretical and modeling studies the delayed rain

sink term depends on the inverse of the square root of N.26

Here, we consider the basic cloud and rain equation in

which N is a free parameter

dH

dt
¼ H0 � H

s
� affiffiffiffi

N
p H2 t� Dð Þ: (1)

Such a representation of the problem assumes that changes

in the aerosol concentration are relatively small. It represents

cases for which the source of aerosols is steady or when the

aerosol consumption by drizzle is relatively small. This

reduces the problem to a first order nonlinear DDE con-

trolled by four parameters: (i) H0—the cloud carrying capac-

ity parameter that represents the systems maximal potential

for cloud depth. (ii) s—the characteristic cloud recovery

time. (iii) N, which controls the strength of the sink term

(rain), and (iv) D—the time delay that represents the time it

takes to convert cloud water into rain by stochastic micro-

physical collection processes.11

Equation (1) can be nondimensionalized by replacing H
with the normalized height h ¼ H=H0 and t with t� ¼ t=s.

When translating the equation for dH=dt to dh=dt�, model

parameters N, H0, and s are replaced by a single parameter

l ¼
ffiffiffiffi
N
p

asH0

; (2)

and Eq. (1) is therefore transformed to a simpler nondimen-

sional form

dh

dt�
¼ 1� h� 1

l
h2 t� � D�ð Þ; (3)

where D� ¼ D=s is the nondimensional delay. Throughout

this paper, we will refer to the nondimensional version of the

problem (Eq. (3)) as the Cloud and Rain (C&R) equation.

When solving Eq. (3) for the steady state case (hsts), for

which the derivative (dh
dt�) vanishes, h ¼ hsts is constant in

time and the delay does not play a role in determining hsts. In

such a case, Eq. (3) reduces to a simple one-parameter poly-

nomial whose physical solution (allowing only positive h
values) is

hsts ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

4
þ l

r
� l

2
: (4)

The fact that N1/2 and the cloud depth carrying capacity

appear only via their ratio in a single nondimensional
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parameter (l) has an important implication that will be dis-

cussed later. We note the hsts is a fixed point that can be

either stable (to which the C&R equation converges in the

steady-state) or non-stable. For all cases, if the equation’s

initial conditions are equal to hsts throughout the delay

period, the solution will remain hsts for all later times. Next,

we will use linearized stability analysis to explore the sys-

tem’s response to small perturbations from hsts.

III. ANALYTICAL SOLUTION FOR THE CASE OF NO
DELAY

When the delay is set to zero the C&R equation

becomes a first order, nonlinear ordinary differential equa-

tion with a quadratic term (a Riccati equation)27 that can be

transformed to a second order linear ordinary differential

equation and has an analytical solution of the form

h ¼ l
2
�1 tanh

k1

2
1� t�

2
1

� �
� 1

� �
; (5)

where k1 is an integration constant and 1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
4
lþ 1

q
is a posi-

tive nondimensional number. Prescribing the initial conditions

hðt ¼ 0Þ ¼ 0, to show how the cloud develops in time,

yields k1 ¼ 2
1 tanh�1ð�1=1Þ. The hyperbolic tangent function

approaches 1 for positive argument, or �1 for negative argu-

ment, with a sharp transition near zero. For large enough t*, the

hyperbolic tangent component can therefore be replaced with

�1 such that the solution for h converges to the steady state

solution of Eq. (4). The transition in time from: h ¼ 0 to h ¼
hsts is smooth and monotonic with no oscillations, as for an

over-damped oscillator. This behavior will be linked to the sta-

bility analysis of the fuller equation with delay in Section IV.

IV. STABILITY ANALYSIS AROUND hsts

As stated earlier, hsts is a fixed point for all parameter

values. We can therefore perform a stability analysis of the

C&R equation to investigate the response to small perturba-

tions around the fixed point for different values of the model

parameters.

Let d be a small perturbation around the fixed point hsts

such that h ¼ hsts þ dðtÞ, thus dd
dt� ¼ dh

dt� . Linearizing around

hsts and neglecting terms nonlinear in d yields

dd
dt�
¼ �d� 2

l
hstsd t� � D�ð Þ: (6)

Expressing d as an exponent d ¼ ebt� allows separation of

the contribution of the delay, and transforms Eq. (6) to

bebt� ¼ �ebt� � 2

l
hstse

bt�e�bD� ; (7)

thus yielding a transcendental equation for b

b ¼ �1� 2

l
hstse

�bD� : (8)

The exponent b may, in general, be complex. Its real part,

Refbg, determines the stability of the perturbations, and its

imaginary part, Imfbg, the frequency as the solution con-

verges or diverges from the fixed point. For Refbg < 0

and Imfbg ¼ 0 the system is in a state similar to an over-

damped oscillator converging to the fixed point with no

oscillations (a continuation of the case of no delay). The case

Refbg < 0 and Imfbg > 0 describes decaying oscillations

toward the steady state. Refbg > 0 generates an unstable

fixed point where the perturbation is amplified, leading to

steady oscillations. Points in the parameter space for which

Refbg ¼ 0 describe the first bifurcation in which the system

transforms from having a stable to a non-stable fixed point.28

The transcendental equation for b (Eq. (8)) has a closed

form solution based on the Lambert W function that solves

WðzÞeWðzÞ ¼ z, which is often used for DDE analysis29

b ¼ 1

D�
W �2

hsts

l
D�eD�

� �
� 1: (9)

Inserting the expression for hsts from Eq. (4), into the argu-

ment of the Lambert W function in Eq. (9) (nÞ yields

n ¼ �2
hsts

l
D�eD� ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffi
1þ 4

l

s0
@

1
AD�eD� : (10)

For the physical parameter range, the argument n is always

negative and is composed of two factors, one a function of l
and one of D�. n grows monotonically with l (becomes less

negative and smaller in absolute value) and decreases with

D�. The main branch of the Lambert W function is a real and

negative number as long as its argument is real, negative

number equal or larger than �e�1 (where it reaches its global

minimum Wð�e�1Þ ¼ �1 ). Therefore, since n is always

negative, Eq. (9) reveals that as long as n � �e�1, b will

have a real and negative value. For such cases, small pertur-

bation d ¼ ebt� decays exponentially to the fixed point hsts

with no oscillations (an overdamped regime). Inserting the n
expression (Eq. (10)) and solving this condition explicitly

shows that as long as

1þ D�eD�þ1

D�eD�þ1
>

ffiffiffiffiffiffiffiffiffiffiffi
lþ 4

l

s
; (11)

b is real and negative. For a given nonzero value of l, as D�

approaches zero, the left side of Eq. (11) increases rapidly

such that the condition is always fulfilled and the solution is

similar to the no-delay case of D� ¼ 0, which we showed to be

overdamped (Eq. (5)). We define a critical delay (D�c) which

satisfies the equality 1þD�eD�þ1

D�eD�þ1 ¼
ffiffiffiffiffiffiffi
lþ4
l

q
, for which n ¼ �e�1

and therefore where Refbg reaches its minimal value of

b ¼ � 1

D�c
þ 1

� �
; (12)

and where the solution’s convergence to the fixed point is

fastest.

For n < �e�1, Imfbg is not zero. The oscillations decay

toward the stable fixed point as long as Refbg < 0, namely,

based on Eq. (9), as long as RefWðnÞg < D�, while the first
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bifurcation point, i.e., the transition to a limit cycle state,

occurs when Refbg ¼ 0, namely, RefWðnÞg ¼ D�.
Writing the explicit equation for the value of the model

parameters at the bifurcation point

Re W 1�
ffiffiffiffiffiffiffiffiffiffiffi
1þ 4

l

s0
@

1
AD�eD�

0
@

1
A

8<
:

9=
; ¼ D� (13)

reveals an equation that resembles one of the definitions of the

Lambert W function (i.e., WðzezÞ ¼ z) with an additional nega-

tive scalar w ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
1þ 4

l

q� �
. The argument of the Lambert

W function in Eq. (13) is therefore a negative real number. If

the solution for WðwD�eD� Þ ¼ z; and z ¼ xþ iy, solving and

for x and y while requiring that Imfzezg ¼ 0 yields x ¼ D�

and w ¼ 1
cos y, which implies that jwj � 1 (for a more detailed

proof see the lemma in the Appendix). Therefore Eq. (13)

can be satisfied only when j1�
ffiffiffiffiffiffiffiffiffiffiffi
1þ 4

l

q
j � 1, namely, when l

� 4/3. We define this limit as llim ¼ 4=3. The bifurcation

points exist only when l < llim. Therefore, any point for

which l � llim is a stable fixed point.

Figure 1 shows b as a function of the two controlling

parameters: l and D*. Five distinct features can be seen in

this parameter-space (the l vs. D* space):

(I) The area in which Imfbg ¼ 0, and therefore where

the system is overdamped, is shaded light blue in

panel (c), revealing that for lower delay values the

perturbation decays toward the fixed point ðhstsÞ with

no oscillations.

(II) The line along which Refbg has a local minimum is

shown in panel (a) (narrow blue “valley”) and marked

as a blue contour in panel (c), marking the edge of the

overdamped regime. Points along this line mark the

fastest decay of the perturbation toward hsts for a

given value of l. For a given l, the corresponding

delay values along this line are defined as the critical

delays (D�c), which can be calculated by Eq. (12).

(III) The area in which Refbg < 0 and Imfbg > 0 is

between the critical delay line and the black contour

shown on the left panel (white area in panel (c)).

Values of D� and l in this regime will lead to damped

oscillations. The shading of the period as function of

the two model parameters (Fig. 1, panel (b)) reveals a

decrease of the period near the critical delay line up

to a local minimum followed by a monotonic increase

(reduction of the frequency) as a function of the

delay.

(IV) Solutions corresponding to points in the parameter

domain to the right of the vertical llim line (i.e.,

l > llim, purple vertical line in panel (c)) can only be

of stable fixed point type.

(V) The first bifurcation line is marked by the black con-

tour line, for which Refbg ¼ 0, and therefore

RefWðnÞg ¼ D�. This line shows the transition at

which hsts shifts from a stable to a non-stable fixed

point. For small D* values, the bifurcation point

described in Eq. (13) occurs for small l values that

monotonically grow as D* increases approaching the

l¼ 4/3 limit.

(VI) The area in which Refbg > 0 is left of the black con-

tour (panel (c)). In this part of the parameter space,

hsts becomes an unstable fixed point and therefore per-

turbations from the fixed point will shift the solution

to a limit cycle or, as will be shown later, to a period

doubling route to chaos.28

To further explore the nature of the transition from stable

fixed point to non-stable, we run a set of numerical simula-

tions around the first bifurcation point. Because hsts is inde-

pendent of D�, it is convenient to change it while holding l
constant such that hsts is unchanged (see Eq. (4)). Figure 2

shows that the equation undergoes a supercritical Hopf bifur-

cation, showing that as the delay is increased, the amplitude

of the oscillation indeed increases as �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� � D�0

p
, away from

the bifurcation point ðD�0Þ. For completeness, we also present

the evolution for the non-physical regime for which the lower

h values are negative, and find that the solution undergoes a

period-doubling route to chaos, and the ratios of the distance

between the values of D* at the period-doubling points con-

verge to the Feigenbaum constant.30,31

Recall that we solved here the nondimensional form of

the C&R equation for which 3 out of the 4 model parameters

were replaced by l, reducing the dimensionality to only 2

nondimensional parameters. However, the interpretation of

the results in the original dimensional parameter space is not

always straightforward, because changing a dimensional

parameter corresponds to moving along some curve in the 2d

l vs. D* nondimensional parameter space. In particular, we

note that both nondimensional parameters D* and l are nor-

malized by s�1 while l is also normalized by
ffiffiffiffi
N
p

=H0.

Varying
ffiffiffiffi
N
p

=H0 while keeping other parameters fixed corre-

sponds to a straight horizontal line parallel to the l axis in

the l vs. D* space, showing that as
ffiffiffiffi
N
p

=H0 increases (i.e.,

increase in l) the system’s state will shift from an unstable

to a stable fixed point. Changes in the dimensional delay D
correspond to a straight vertical line in the l vs. D* space,

parallel to the D* axis (e.g., the dotted orange vertical line

on Fig. 1, panel (c)) for which l is held constant. An increase

in D leads to a transition from stable to non-stable fixed

points. As shown in Eq. (13), the D* values for which the

Hopf bifurcation point occurs depend on l, and for l> llim,

the equation will have a stable fixed point for any D*.

Varying s while holding all other variables fixed is described

by an inclined line in the l vs. D* space, approaching the

origin (when s!1Þ for which the slope depends onffiffiffiffi
N
p

=H0. As illustrated in the dotted magenta line in Fig. 1

(panel (c)), some of these lines can cross the Hopf bifurca-

tion contour twice, showing a transition from stable fixed

point to non-stable and then to stable again, as s increases.

To illustrate how b affects the solution, Fig. 3 shows

simulations for parameters corresponding to two lines in the

l vs. D* parameter space: first (dotted orange line in Fig. 1

panel (c)), when D is the free variable and all other parame-

ters are fixed (similarly to the runs in Fig. 2 for which

H0¼ 1000 m, N¼ 16 cm�3, s¼ 20 min, therefore l¼ 0.29,
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yielding a constant fixed point), and second, when s is the

free variable (H0¼ 1000 m, N¼ 16 cm�3, and D¼ 15 min,

marked by the dotted magenta line in Fig. 1, panel (c)). The

two numerical simulations were run for five values of b each

(marked in Fig. 3, upper panels) controlled by changes in D
(left column) and s (right column), demonstrating qualita-

tively different solutions for b and therefore different stabil-

ity regimes of the dynamics around the steady state. Each

simulation was initiated with the fixed-point cloud height,

H ¼ Hsts, and the thickness therefore remained constant in

time, until a small perturbation was introduced. As shown in

Eq. (4), hsts is a function of l only; hence for the cases in

which the delay is the free parameter, hsts remains the same

for all simulations (Fig. 3 left column). For the first 3 delay

varying simulations (Fig. 3, panels (b)–(d)), Refbg < 0, and

therefore, the perturbations decay back to the Hsts which is

a stable fixed point. In the case of panel (b), Imfbg ¼ 0,

and therefore, the system is in the overdamped regime and

solutions decay to Hsts with no oscillations. As the values of

b are closer to the bifurcation point, the decay to the fixed

point is slower. On the same note when Refbg > 0 (panels

(e) and (f)), the closer the b values are to the bifurcation

point, the slower is the shift to a steady limit cycle state.

The s varying simulations (Fig. 3 right column) show that

the system can enter and exit the non-stable fixed point

regime crossing the Hopf bifurcation contour twice, and

therefore will have a stable fixed point for relatively small s
values (panels (h) and (i)) and for relatively high s values

(panel (l)) and between them be in the limit cycle state

(panels (j) and (k)).

FIG. 1. b, the linear stability parameter as a function of l and D�. Panel (a) shows the Refbg values, panel (b) shows the nondimensional oscillation period

2p=Imfbg, and panel (c) shows a schematic map of the l vs. D� parameter space, marking key features. Six distinct regimes are shown here: (I) The area

for which Imfbg ¼ 0 marking the overdamped state (light blue area on panel c). (II) On the edge of the first area, the line for which Refbg has a local mini-

mum (shown as narrow blue valley on panel (a)) marking the critical values for which the fastest local response to perturbation converges back to hsts (blue

line on panel (c)). (III) The area in which Refbg < 0 and Imfbg > 0 marking damped oscillations toward the stable fixed point (white area in panel (c)).

(IV) The l¼llim (4/3) line (purple vertical line on panel (c)) marking the limit for non-stable fixed point. All points with l>llim will be in stable fixed

point state. (V) The black contour that marks the first bifurcation point for which Refbg ¼ 0 and the system state changes from hsts, i.e., stable fixed point

to oscillations. (VI) The area in which Refbg > 0 is marked between the first bifurcation contour and the Y axis for which hsts is not a stable fixed point.

Numerical simulations with selected parameters along the orange (fixed l) and along the magenta (varying s, fixed D, H0, and N) dotted lines shown in

panel (c) are discussed below.
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V. DISCUSSION

In this paper, we consider warm marine stratocumulus

clouds for which all hydrometeors are liquid (cloud droplets

and raindrops). Cloud droplets nucleate on aerosol particles

that serve as Cloud Condensation Nuclei (CCN). Raindrops

form when larger droplets collide and collect the smaller

ones. The efficiency of transferring cloud droplets to rain

correlates positively with the first two moments of the drop-

let size distribution, i.e., the average size and the variance.

An increase in the aerosol concentration increases the con-

centration of activated cloud droplets. This implies that more

droplets are competing for the available vapor and therefore

their average size will decrease.8,32 Such changes incur a

suppression of drop collection, so that variance decreases.

The result is a delay in the onset of rain formation, and for

marine stratocumulus, a decrease in the rain-rate up to a

point of complete rain suppression.9,33

We have analyzed the cloud and rain (C&R) equation

for which the droplet (aerosol) concentration is assumed

fixed and is prescribed. Such an assumption can be justified

when the source of aerosols is steady (either local or due to

long range transport) and when the aerosol consumption by

drizzle is relatively small. In such cases, fixed N (often

also assumed in cloud resolving models) allows one to

study the coevolution of cloud and rain in a model of

reduced complexity.

FIG. 2. Numerical simulations of the nondimensional C&R equation (Eq. (3)) as a function of D* for a fixed l¼ 0.29, such that hsts is constant for all runs.

Panel (a) shows the system evolution from a stable fixed point through a limit cycle state when passing the first bifurcation point (D*0� 0.72) and later to a

period doubling route to chaos. The black dotted line shows the case for which the system is in a stable steady state (hsts¼ 0.41). The blue and red lines mark

local maxima and minima of the function. Panel (b) is a zoom-in around the first bifurcation point (marked in green rectangle in panel (a)). On panel (c), the

amplitude differences are plotted against the square root of the distance from the bifurcation point
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� � D�0

p
. As expected for a supercritical Hopf bifurcation,

such a graph shows linear relations.
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The C&R question has four parameters (s, D, H0,

and N). When nondimensionalizing the equation, the envi-

ronmental parameters s and H0 and the droplet concentra-

tion N are replaced by a single parameter l ¼
ffiffiffiffi
N
p

=ðasH0Þ.

Apart from reducing the complexity, this offers important

physical insights into the interplay between the environ-

mental and aerosol properties with respect to the system’s

stability.

FIG. 3. Illustrations of the system response to small perturbations around the fixed point along two lines in the l vs. D* parameter space. The left column is for

fixed l that yields fixed steady state height (hsts ¼� 412 m) described as the dotted vertical orange line in Figure 1 (panel (c)) and the right column is for varying s
(fixed D, H0, and N)) described as the inclined dotted magenta line crossing the origin in Figure 1(c). The upper panels show the real and imaginary parts of b as a

function of D (left) and s (right). Five distinct b values (marked in each panel) describe different states of the numerically simulated system. In the left column:

Panel (b) is in the overdamped regime for which Im(b)¼ 0 and Re(b)< 0. The conversion toward the fixed point is fast with no overshooting (oscillations). Panels

(c) and (d) are in the damped oscillatory regime for which Im(b)> 0 and Re(b)< 0 showing the system response to the perturbation with damped oscillations.

Re(b) is more negative for case (c) and therefore the damping factor of the exponent b is larger and the system converges to the fixed point faster. Re(b)> 0 for the

cases shown in panels (e) and (f) indicate that the fixed point is not stable and that the system will shift to a limit-cycle state. Re(b) is positive and larger for case (f),

and therefore, the system deviates faster from the fixed point to the oscillating state. The right column shows that when s is the free parameter, the system can enter

and exit the non-stable fixed point regime crossing the Hopf bifurcation contour twice: In panel (h), l> llim, and therefore, the fixed point is stable. In panel (i),

l< llim but still Re{b}< 0, and therefore, the oscillations decay toward the stable fixed point. In panels (j) and (k) Re{b}> 0, indicating that the fixed point is not

stable and the system is in a limit-cycle state while in panel (l) D*� 0.5 and the system shifts again to the steady-state area of the l vs. D* plane near the origin.
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We performed linear stability analysis which yielded an

analytical expression for the stability as a function of the two

parameters (l and D*). The C&R equation forms a very rich

solution space, ranging from a stable over-damped conver-

gence through fixed point, to a limit cycle, to chaotic behav-

ior. Each solution type occupies a distinct regime in the l vs.

D* parameter space.

The nondimensional delay D* and l have opposite

effects on the stability. Larger l values (larger aerosol con-

centration, all other variables being equal, hence smaller

sink term) imply a more stable solution, while an increase in

D* leads to an instability of the steady solution. In the limit

we have shown that any point for which l> llim yields solu-

tions that are characterized by a stable fixed point.

For a small D* and a large l, perturbations decay back

to the steady solution with no oscillations. For larger D*, the

system shifts, through a critical delay D�c , to a damped oscil-

latory regime, and later, crossing the first bifurcation point,

to a limit cycle regime, and finally to a chaotic regime.

As expected, an increase in the aerosol and therefore

in the droplet concentration N decreases the rain-rate.

Reduction in the rain-rate can shift the system state from a

limit cycle to coexistence of steady (weak) rain and fixed

cloud thickness (stable fixed point solution). The l parameter

is linear in
ffiffiffiffi
N
p

=H0 and does not depend on D*. This sug-

gests that clouds forming in atmospheric conditions that

allow thicker clouds will shift from a limit cycle state to a

steady-state under higher aerosol concentrations, and there-

fore that the shift from open to closed cells would occur at

higher aerosol concentrations for a thicker marine boundary

layer.

Figure 4 illustrates how l values depend on N and H0

for a given characteristic time for cloud recovery time

(s¼ 20 min). llim is marked by the magenta contour. The

l < llim subspace, to the right of the contour, represents l
values where Refbg values can have positive values and so

the system can have unstable fixed points (depending on the

D values). For larger s values, the llim contour shifts to the

left, expanding the relative area over which the system can

be unstable.

However, within the possibly unstable subspace in

which l< llim the system’s response to changes in s were

shown to exhibit non-monotonic behavior, namely, an

increase in s will shift the solution from a stable to an unsta-

ble, and back to a stable fixed point state. Both D* and l are

linear in 1=s, and therefore, varying s corresponds to moving

along a straight, inclined line via the origin in the l vs. D*
parameter space (dotted magenta line in Fig. 1(c)). The slope

of such lines depends on the value of
ffiffiffiffi
N
p

=H0. Smallerffiffiffiffi
N
p

=H0 values imply a steeper slope and therefore a longer

path in the non-stable fixed point regime, again showing that

smaller aerosol concentrations reduce the size of the parame-

ter regime in which the system is in a steady state.

We acknowledge that such a simplified description of

the interplay between cloud and rain cannot capture the full

complexity of these interactions in natural systems.

Moreover, some of the physical processes that are important

in observed clouds are not included here (radiation, for

example). Nevertheless, in the spirit of simple dynamical

systems analogues to complex systems, the analytical and

numerical analyses shown here offer new perspectives on the

role and interplay of the main physical parameters. The work

demonstrates how changes in these parameters can shift the

system between different regimes within the solution space.

The existence of such regimes could be explored in the

future with more detailed numerical models.
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APPENDIX: NOTES ON SOLUTION TO THE LAMBERT
W FUNCTION

Lemma 1: An extended view of the solution form of the

Lambert W function for any real number. The Lambert W

function maps zez ! z. If

WðgÞ ¼ z; 8g 2 R and z 2 Z; (A1)

then
zez ¼ g: (A2)

Expressing z ¼ xþ iy and requiring that ImðzezÞ ¼ 0 implies

the following link

x ¼ �y

tan y
: (A3)

Inserting Eqs. (A3) in (A2) yields

1

cos y
xex ¼ g: (A4)

FIG. 4. l values as a function of H0 and N. The magenta contour marks the

llim ¼ 4=3 line. The subspace for which l < llim (right of the magenta con-

tour) is where unstable fixed points can be found. These are associated with

high H0 and small N, i.e., the regime where rain is more likely.
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Therefore, Eq. (A1) becomes

W
1

cos y
xex

� �
¼ xþ iy: (L5)

Eq. (A4) suggests an extended view on the Lambert W func-

tion adding a factor of 1
cos y to the standard xex kernel of the

function. Moreover, j 1
cos y j � 1; 8y. For the cases that

g � �1
e , a real solution for WðgÞ exist for which y¼ 0 and

1
cos y ¼ 1, such that the solution collapse to the standard form

of WðgÞ ¼ x or g ¼ xex. In the general case, however, the

fact that j 1
cos y j � 1 implies that for g > 1

e, WðgÞ � Re

fWð�gÞg. Such representation for the cases of real argu-

ments and the derived results may have implications in other

cases where solutions of the W function are involved. We

note that the solution presented in Eq. (5) is not unique and

that there are other W function’s branches that yields x,y

pairs that can satisfy the equation. The above theorem is

applicable to all of these x,y pairs.
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