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Over recent decades, the stratospheric polar vortex has shifted toward 
 more frequent weak states, which can explain Eurasian cooling trends in 

 boreal winter in the era of Arctic amplification.

MORE-PERSISTENT WEAK 
STRATOSPHERIC POLAR 

VORTEX STATES LINKED TO 
COLD EXTREMES

MARLENE KRETSCHMER, DIM COUMOU, LAURIE AGEL, MATHEW BARLOW, ELI TZIPERMAN, AND JUDAH COHEN

Despite global warming, recent winters in the 
northeastern United States, Europe, and espe-
cially Asia were anomalously cold. Some mid-

latitude regions like central Asia and eastern Siberia 
even show a downward temperature trend in winter 
over past decades (Cohen et al. 2014a; McCusker 
et al. 2016). In contrast, the Arctic has been warming 
rapidly, challenging scientists to explain the so-called 
warm Arctic–cold continents pattern in boreal winter 

(Shepherd 2016). Though there is general agree-
ment that sea ice loss contributed to the warming 
of the Arctic via ice–albedo feedbacks (Screen and 
Simmonds 2010), it remains controversial whether 
observed midlatitude cooling is related to internal at-
mospheric variability (Sun et al. 2016; McCusker et al. 
2016), to tropical (Palmer 2014) or Arctic (Cohen et al. 
2013; Cohen 2016) trends in teleconnection indices, 
or to a combination of those.
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Previous research showed that a weak stratospher-
ic polar vortex (hereafter also referred to as “polar 
vortex” or “vortex”) can affect surface weather via 
a downward influence of planetary waves (Baldwin 
and Dunkerton 2001; Hitchcock and Simpson 2014), 
which leads to cold-air outbreaks in the midlatitudes 
and a negative surface Arctic Oscillation signal (Cohen 
et al. 2013; Kolstad et al. 2010; Butler et al. 2014; 
Baldwin and Dunkerton 2001; Sigmond et al. 2013; 
Kretschmer et al. 2016). Moreover, it was shown that 
sudden stratospheric warmings (SSWs) can modulate 
the tropospheric flow for up to 2 months (Baldwin 
and Dunkerton 2001; Hitchcock and Simpson 2014), 
which can even offset the impact of El Niño–South-
ern Oscillation (ENSO) events (Polvani et al. 2017). 
Consequently, including stratosphere activity in cli-
mate models significantly improves seasonal forecast 
skill for winter weather (Scaife et al. 2016; Sigmond 
et al. 2013). Despite this key role of the polar vortex 
for winter circulation and surface temperature, a 
quantitative analysis of the potential stratospheric 
role for the recent cooling trends has yet been lacking.

There are several metrics to describe polar vortex 
variability, extreme states, and its coupling with the 
troposphere, but the different indices do not neces-
sarily capture all of these aspects. Often, the strato-
spheric impact on surface temperatures is analyzed 
in the context of SSWs (Polvani et al. 2017; Butler 
et al. 2014). Detection of SSWs is, however, sensitive 
to their exact definition, which varies throughout 
the literature (Butler et al. 2015). Moreover, SSWs are 
individual rare events and thus do not describe the 
overall behavior of the vortex. The tropospheric re-
sponse of SSWs depends, however, on their temporal 
evolution and persistence in the stratosphere (Kodera 
et al. 2016; Runde et al. 2016). To study the recovery 
phase of extreme stratospheric events, Hitchcock 
et al. (2013) identified polar night jet oscillation (PJO) 
events. These describe long-lasting anomalous warm 
temperatures in the stratospheric polar cap and are 
often preceded by SSWs, but approximately half of 
the SSWs recover rapidly from the abrupt warming 
(Hitchcock et al. 2013).

Recently, machine learning approaches such as 
clustering algorithms have successfully been applied 
to study impacts of and changes in circulation pat-
terns (Feldstein and Lee 2014; Horton et al. 2015; 
Lee and Feldstein 2013; Cheng and Wallace 1993), 
providing a promising data-driven tool to classify 
atmospheric fields. Motivated by these results, we 
perform cluster analysis on the daily extratropical 
stratosphere to identify its dominant spatial pat-
terns and temporal evolution. This way, we can study 

different vortex states as well as persistence of specific 
events. We analyze how long-term changes in polar 
vortex variability might have affected surface warm-
ing patterns.

DATA. We use daily mean European Centre for Me-
dium-Range Weather Forecasts (ECMWF) interim 
reanalysis (ERA-Interim; Dee et al. 2011) data from 
January 1979 to December 2015, leap days excluded. 
Data that were used to characterize the stratospheric 
polar vortex (geopotential height and zonal wind 
velocity at 10 hPa) were provided on a 0.75° × 0.75° 
latitude–longitude grid. To study precursors and 
lagged effects of different polar vortex cluster events, 
we use gridded (3° × 3°) data of sea level pressure, 
near-surface temperature, and poleward heat f lux 
(υ*T*) at 100 hPa, where υ is the meridional wind 
velocity, T is the temperature, and the asterisks denote 
the deviation from the zonal mean. We further use 
daily mean Modern-Era Retrospective Analysis for 
Research and Applications, version 2 (MERRA-2; 
Molod et al. 2015), data from 1980 to 2015 to perform 
sensitivity analyses on the reanalysis product and 
clustering technique used.

METHODS. We employ hierarchical clustering 
(Cheng and Wallace 1993) on the daily mean zonal 
wind velocity field poleward of 60°N at 10 hPa. We 
chose this domain and level for consistency with most 
other SSW definitions and polar vortex studies (Butler 
et al. 2015). We limit the cluster analysis to the months 
January and February (JF) over the period 1979–2015, 
as these months show the strongest polar vortex vari-
ability. First, we calculate the climatological anomalies 
for each day by subtracting their multiyear mean. Ad-
ditionally, to account for the denser grid toward the 
pole, we apply area weighting. There are n = 2,183 daily 
observations (37 years × 59 days), each corresponding 
to a vector of length 19,680 (number of grid points in 
our domain) representing the state of the polar vortex 
on a particular winter day. The cluster algorithm 
groups days with similar extratropical stratospheric 
wind fields in one cluster, which can be represented by 
the composite of all days assigned to it (see appendix 
and supplemental information for more details: https://
doi.org/10.1175/BAMS-D-16-0259.2).

We determine time series of the seasonal occur-
rence frequencies for each cluster, which ranges from 
zero (absent) to one (every day of the winter was as-
signed to that cluster). Linear trends in occurrence 
frequency are calculated using a least squares fit 
regression model, and the slope was tested for sig-
nificance using a two-sided Student’s t test. We define 
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a cluster “event” as a period of consecutive days for 
which the same cluster is identified.

MORE FREQUENT WEAK POLAR VORTEX 
STATES. Our analysis reveals that seven is an ap-
propriate choice for the number of clusters, providing 
a sufficiently detailed overview of the spectrum of dif-
ferent polar vortex patterns, while still allowing each 
pattern to describe a significant part of the total polar 
vortex phase space (see appendix and supplemental in-
formation). This is also demonstrated by the relatively 
high mean pattern correlation of 0.59, which is used 
to estimate how well the clusters represent the original 
data: the area-weighted pattern correlation of each 
daily field to its cluster composite is calculated, and 
the average over all days represents a global measure 
of similarity.

Figure 1 shows the composite mean of the 10-hPa 
geopotential height field for all seven clusters, 

ordered by polar cap height (i.e., the area-weighted 
mean at 10-hPa geopotential height north of 60°N), 
starting with the strongest polar vortex cluster (thus 
with the lowest polar cap height). Though clustering 
was performed on the zonal wind field, we present 
geopotential heights for easier visualization of the 
different polar vortex shapes. The associated zonal 
wind plots are given in Fig. ES3 in the online supple-
ment. The patterns range from a strong circumpolar 
vortex (cluster 1) to a slightly less strong polar vortex 
(cluster 2), to progressively weaker polar vortices with 
displaced vortex centers toward Eurasia (clusters 3, 
5, and 6) and North America (cluster 4), and finally 
a weak distorted vortex (cluster 7). Below the cluster 
composites, time series of their seasonal frequency 
with a linear least squares fit trend line are displayed 
for each cluster. The strong vortex cluster (cluster 1) 
has a significant (p = 0.047) downward linear trend of 
–0.2 (37 yr)–1, whereas the weak vortex clusters 5, 6, 

FIG. 1. Polar vortex clusters and their frequency trends. Composite mean of 10-hPa geopotential height values 
over all days that were assigned to the same cluster (clustering performed with zonal wind anomalies) and time 
series of normalized occurrence frequency in winter (JF) with least squares fit line. The number in parentheses 
denotes the total frequency occurrence (%) for the studied period.
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and 7 increased in frequency, the last with a trend of 
0.12 (37 yr)–1 (p = 0.146).

In principle, it is possible that trends in (seasonal) 
frequency are only the result of two or more similar 
clusters with opposing trends that would cancel each 
other out if those clusters were merged. To test this pos-
sibility, we calculate for each day the pattern correlation 
with the composite mean of each cluster (Fig. ES4, 
see supplemental information for details). This thus 
quantifies how the daily polar vortex patterns resemble 
the different clusters at each time step. We find that 
the strong vortex clusters (clusters 1 and 2) exhibit a 
downward trend in pattern correlation (p ≈ 0.07). In 
contrast, the weak vortex clusters (clusters 6 and 7) 
have upward trends (p ≈ 0.07). Thus, over the last 37 
winters, the daily polar vortex state shifted toward 
the weaker cluster patterns. This is consistent with 
the overall weakening of the stratospheric zonal wind 
field, especially at the vortex edge over the continents 
(Fig. 2a, Fig. ES5 for the polar cap mean). South of 
60°N, the trends in zonal wind velocity are even up-
ward, indicating an equatorward shift and broadening 
in addition to the weakening of the vortex.

To test how well our cluster analysis ref lects 
observed trends, we multiply the zonal wind com-
posite mean of each cluster with the slope of its 
frequency trend (Lee and Feldstein 2013). Summed 
for all clusters (Fig. 2b), this shows how much of the 
seasonal-mean change is explained by the change in 
frequencies, and we find that it compares well with 
the actual trend field (Fig. 2a). In fact, approximately 

72% of the observed weakening north of 60°N is 
already explained by the less frequent occurrence of 
the strong vortex cluster 1 and the more frequent oc-
currence of the weak polar vortex cluster 7 (Fig. 2c).

To further test how the frequency of cluster events 
changes over time, we count the mean seasonal oc-
currence in the first half (1979–96) and the second 
half (1998–2015) of the studied time period for each 
cluster (Fig. 3a). We find that the frequency of clus-
ter 7 increased significantly (using a bootstrapping 
approach; see appendix) by 140% from on average 
~3 days per winter up to roughly 7 days (p < 0.01). 
In contrast, the frequency of cluster 1 halved from 
approximately 12 days per season to just 6 days 
(p < 0.05). The increased frequency of cluster 7 days 
results from an increase in the persistence of cluster 
7 events (consecutive days assigned to cluster 7). 
Whereas in the first half of the studied time period 
the mean persistence of cluster 7 events was 5.3 days, 
it was significantly (p < 0.01) longer in the second 
half, with events persisting on average 14.1 days (an 
increase by more than 160%). In contrast, the mean 
persistence of cluster 1 events was approximately 9 
days in both periods, but their occurrence dropped 
notably from 27 events in the first half to just 11 events 
in the latter half. Thus, the increase in cluster 7 days 
is due to longer events and the decrease in cluster 1 
days is due to less events.

ROBUST CLASSIFICATION OF WEAK 
POLAR VORTEX STATES. Our finding of 

FIG. 2. Trend in strongest and weakest polar vortex clusters explain the overall trend of the polar vortex.  
(a) Seasonal-mean (JF) trend in zonal wind poleward of 40°N. Significant values (p < 0.1) according to two-sided 
Student’s t test are shown in hatches. (b) Sum of all seven polar vortex cluster representatives multiplied by 
their trend in seasonal frequency. (c) As in (b), but only for clusters 1 and 7.
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more (less) frequent weak 
(strong) polar vortex days 
over the past winters is 
robust and insensitive to 
the total number of clus-
ters (from 2 to 20 clusters). 
Furthermore, the cluster 
representatives and fre-
quency trends of the stron-
gest and the weakest clus-
ter are robustly identified 
and are mostly insensitive 
to the dataset (MERRA-2 
instead of ERA-Interim), 
clustering technique (using 
k-means or self-organizing 
maps instead of hierar-
chical clustering), clus-
tered variable (geopotential 
heights instead of zonal 
wind velocity), and pressure level (100 hPa and the 
mean over 10–50 hPa). Generally, clustering over 
lower pressure levels results in higher seasonal fre-
quencies of weak polar vortex states. This is consistent 
with previous studies showing that disturbances of 
the upper stratospheric flow persist for longer when 
they descend to lower levels (Hitchcock et al. 2013) 
and also with the fact that strong lower-stratospheric 
anomalies often coincide with tropospheric circula-
tion anomalies (Baldwin and Dunkerton 2001) that 
are not necessarily observed at higher levels. More 
precise information on how the different tests com-
pare can be found in the supplementary information 
(Figs. ES6–ES15).

Our clustering methodology is also consistent 
with other metrics to classify extremely weak states 
of the stratospheric polar vortex. All starting days 
of major SSWs in January and February, as detected 
by Charlton and Polvani (2007), are assigned to the 
weak vortex clusters 6 and 7 (Fig. ES17), which also 
coincide with polar night oscillation events (Fig. ES16; 
Hitchcock et al. 2013). In summary, the different sen-
sitivity tests show that a cluster approach applied at 
10 hPa provides a robust and appropriate methodol-
ogy to study the occurrence and persistence of weak 
polar vortex events as well as their coupling with 
lower-stratospheric pressure levels.

LINKS TO SURFACE TEMPERATURE. The 
tropospheric response to weak polar vortex states can 
influence surface weather for up to 2 months (Baldwin 
and Dunkerton 2001; Hitchcock and Simpson 2014; 
Sigmond et al. 2013). Further, the tropospheric 

response is more pronounced if the stratospheric re-
covery is slow following a vortex disturbance (Kodera 
et al. 2016; Runde et al. 2016). Thus, an increase in 
more persistent weak polar vortex states, that is, lon-
ger-lived cluster 7 events, could potentially influence 
winter temperatures. In other words, the moderate 
changes in the mean vortex state (Fig. ES5) are much 
less relevant for surface conditions than the increased 
persistence of extremely weak states.

To study the relationship of clusters 1 and 7 
events with surface weather, we create composites 
of (detrended) near-surface temperature (Fig. 4). 
As expected, strong vortex states (cluster 1) coin-
cide with mild temperatures in the eastern United 
States and northern Eurasia and cold temperatures 
over Alaska and Greenland (Fig. 4a). In contrast, 
during weak vortex states (cluster 7), anomalously 
cold temperatures are observed in northern Eurasia 
whereas Canada is anomalously warm (Fig. 4b). 
Thus, the increased frequency in cluster 7 during 
recent winters might be linked to the surface cooling 
trends over Eurasia. To test this, we first determine 
different linear regression models onto mean winter 
(JF) near-surface temperature at each grid point and 
plot their R2 values (Fig. 5), indicating how much of 
the observed temperature variability is explained by 
the linear model. To account for potential biases due 
to trends in the regressors and the temperature time 
series, we detrended the variables first. Though polar 
cap height (PCH) variability can already explain some 
seasonal temperature variability (Fig. 5b), regres-
sion by cluster 7 seasonal frequency gives higher R2 
values, significant over extended regions, including 

FIG. 3. Average occurrence (days) per winter of each cluster from 1979 to 1996 
(light blue) and from 1998 to 2015 (dark blue) and the change (%). Significant 
changes (p < 0.05) are indicated in red.
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central Siberia, eastern Canada, and the western At-
lantic sector but not the United States (Fig. 5c). The 
combination of ENSO (described by the mean winter 
Niño-3.4 index) and the seasonal frequency of cluster 
7 further improves the results over the Pacific and 
parts of the United States (Fig. 5d), but ENSO alone 
has very little inf luence on Eurasian temperature 
variability (Fig. 5a). Note that the correlation between 
the detrended cluster 7 frequency time series and the 
detrended Niño-3.4 index is only 0.01, showing that 
they are almost completely independent.

Next, we calculate the temperature trends at each 
grid point for each of the regression models (Figs. 6a–
c). For consistency with previous studies analyzing the 
warm Arctic–cold continent pattern (Sun et al. 2016; 
Cohen et al. 2013; Cohen 2016; McCusker et al. 2016), 
we calculate trends over the era of Arctic amplifica-
tion (Cohen et al. 2014a), that is, from 1990 onward. 
We apply the regression parameters from the models 
calculated for the detrended data from 1979 to 2015 

(Fig. 5) to predict tempera-
ture trends using the non-
detrended regressors from 
1990 to 2015. All models 
show a warm Arctic–cold 
continent pattern, with 
much stronger cooling over 
Eurasia than over North 
America. The explanatory 
power of ENSO (Fig. 6a) 
and PCHs at 10 hPa (not 
shown) is small. In con-
trast, regression by cluster 7 
frequency (Fig. 6b) captures 
the observed Eurasian pat-
tern well. The best agree-
ment with observations 
(Fig. 6d) is achieved with 

the models including both cluster 7 and the Niño-3.4 
index (Fig. 6c). Thus, although other factors certainly 
play a role as well, the observed cooling trends over 
Eurasia (Fig. 6d) are well captured by the trend to-
ward more-persistent weak vortex states (Fig. 6b), 
something that can be further improved by including 
tropical variability (Fig. 6c).

COLD WEATHER IN EURASIA. Several stud-
ies focused on Eurasia, as the winter cooling trend 
there has been more pronounced (McCusker et al. 
2016; Sun et al. 2016; Li et al. 2015; Mori et al. 2014). 
Indeed, our analyses show that the relationship be-
tween weak polar vortex states and surface tempera-
ture is much stronger for this region, as compared 
to the northeastern United States (Figs. 4b, 5c, 6b).

Our predicted regression model based on cluster 7 
correlates (r = 0.46, R2 = 0.21) significantly (p < 0.01, 
according to a Student’s t test) with winter tempera-
ture averaged over the Eurasian sector (50°–65°N, 

FIG. 4. Composites of detrended near-surface temperature during (a) cluster 
1 and (b) cluster 7 days. Significant values (p < 0.05) are indicated with dots.

FIG. 5. Explained variance (R2 values) of winter (JF)-mean temperature for regression with (a) winter-mean 
Niño-3.4 index, (b) winter-mean PCH, (c) cluster 7 frequency, and (d) cluster 7 frequency and the winter-mean 
Niño-3.4 index. Before calculating the regression models, the linear trends of the regressors and the tempera-
ture were removed. Significant (p < 0.05) models according to F test are indicated in hatches.
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15°–130°E; black box in Fig. 7a). This model performs 
much better than a regression model based on the 
PCH index at 10 hPa (r = 0.26, R2 = 0.07, p = 0.11). 
Thus, the seasonal frequency of weak states is a better 
predictor for Eurasian temperature variability than 
the polar cap mean. Moreover, the cluster 7–based 
model explains ~60% of the domain-mean Eurasian 
cooling trend since 1990 (–0.95 K decade–1). For 
ENSO and the PCH, this is respectively only 17% 
and 24%. When ENSO is combined with cluster 7, the 
percentage of the recovered cooling trend in Eurasia 
jumps to 77%. This shows that the trend toward more-
persistent weak polar vortex states can explain most 
of the winter cooling trend over northern Eurasia.

Next, we consider Eurasian cold extremes (defined 
as days when the temperature anomaly over the Eur-
asian sector is below –5°C, coinciding with the 10th 
percentile) and calculate the relative occurrence fre-
quency of each cluster. For the null hypothesis, that is, 
that stratospheric variability plays no role, one would 
expect for each cluster a 
frequency during cold ex-
tremes approximately equal 
to its occurrence over all 
winter days as displayed in 
Fig. 1. Though only 8.25% 
of all considered days were 
assigned to cluster 7 (Fig. 1), 
the likelihood of cluster 
7 days roughly doubles to 
17.2% if only cold days are 
considered (Fig. 7b), which 
is a significant increase 
(p < 0.01, according to a 
chi-square test). The occur-
rence of cluster 6 days also 
exceeds the expected fre-
quency, whereas the strong 
vortex clusters 1–3 occur 

less often than statistically expected. Similarly, only 
3% of the hottest days (exceeding the 90th percentile) 
are cluster 7 days, which significantly (p < 0.01) differs 
from the expected occurrence of ~8% (not shown).

To assess the direction of causality between weak 
vortex states and Eurasian cold extremes, we perform 
lagged coincidence analysis. In the week before the 
onset of cluster 7 events, most days are assigned to weak 
polar vortex states (51% cluster 6, 20% cluster 5), which 
themselves are already associated with low temperature 
anomalies over Eurasia. The mean Eurasian tempera-
ture anomaly preceding cluster 7 events is –1.2°C, but 
it reaches its minimum value during cluster 7 events 
with an average anomaly of –1.9°C. Thus, cluster 7 days 
represent the peak of the polar vortex disturbance as 
well as the peak of the cold anomalies over the north-
ern Eurasian sector. Consistently, in the week before 
the onset of a cold event, the likelihood of cluster 6 is 
anomalously high. If we merge clusters 6 and 7, the 
mean Eurasian temperature during these weak vortex 

FIG. 6. (a)–(c) Linear trends in temperature as projected by the regression models in Figs. 5a, 5c, and 5d, respectively, 
and (d) observed trends for the period 1990–2015. The regression models were calculated based on detrended 
data from 1979 to 2015 and the projected trends are calculated for the undetrended regressors from 1990 to 2015.

FIG. 7. (a) Coincidence analysis for extreme cold days over the Eurasian sec-
tor (50°–65°N, 15°–130°E). (b) The deviation from the statistically expected 
occurrence frequency (as displayed in Fig. 1) of each cluster is shown during 
cold days (<−5°C).
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states is still negative (–1.1°C), but the temperature in 
the preceding week is anomalously warm at +0.4°C. 
Thus, since weak vortex events (clusters 6 and 7) are 
preceded by positive temperature anomalies in Eurasia, 
we propose that the observed cooling trend in this 
region is more likely the consequence of the vortex 
weakening rather than its cause. Moreover, we found 
that cluster 7 Granger causes Eurasian temperature 
variability in winter and that the opposite is not true, 
which further supports this assumption (see supple-
mental information). This is also consistent with recent 
findings, showing that cold spells over Eurasia are 
longer lasting if accompanied by a weak polar vortex 
(Garfinkel et al. 2017).

PRECURSORS AND POTENTIAL REASONS 
FOR WEAK POLAR VORTEX STATES. 
Finally, we analyze potential reasons for the observed 
trends in frequency of the polar vortex clusters 1 and 
7. Both observational and modeling studies have 
shown that strong upward wave propagation in the 
upper troposphere can weaken the stratospheric flow 
(Jaiser et al. 2013; Kretschmer et al. 2016; Kim et al. 
2014; Polvani and Waugh 2004; Shaw et al. 2014) as 
expected on theoretical grounds (Matsuno 1971) 
and is often preceded by distinct sea level pressure 
anomalies (Baldwin and Dunkerton 1999; Cohen 
and Jones 2011; Kretschmer et al. 2016). Therefore, we 
created composites of anomalies in sea level pressure 
(30–10 days before the start date of cluster events) and 
meridional heat flux υ*T* at 100 hPa (10 days prior 
to the cluster events), which is a common proxy for 
vertical wave propagation (Figs. 8a–d, showing only 
those for clusters 1 and 7). The choice of time lags 
was motivated by previous studies (Kretschmer et al. 
2016; Kim et al. 2014; Cohen and Jones 2011), but the 
results are also robust for time shifts of a few days. 
In the month before the onset of a weak polar vortex 
event, sea level pressure over most of northwest Eur-
asia is anomalously high while sea level pressure over 
the Chukchi Sea, North America, and the northern 
Atlantic is anomalously low (Fig. 8b). This pressure 
dipole is followed by an anomalously strong poleward 
heat flux over northern Europe, central Asia, and the 
Chukchi and Beaufort Seas and a lower-than-normal 
heat flux north over the Lena River and over northern 
Canada (Fig. 8d). In contrast, strong polar vortex 
events are preceded by patterns of opposite sign of 
sea level pressure and heat flux anomalies but are of 
less amplitude (Figs. 8a,c).

Vice versa, to test if high western Siberian sea level 
pressure events are also followed by weak polar vortex 
states (in a statistically significant way), we create an 

index of area-averaged sea level pressure over the Ural 
Mountains region (45°–70°N, 40°–85°E) for Decem-
ber and January (Cohen et al. 2014b; Kretschmer et al. 
2016). We define strong western Siberian high events 
when the index exceeds 1,035 hPa, which corresponds 
to the 93rd percentile. In the month following high 
sea level pressure over western Siberia in December 
and January, the frequency of cluster 7 events triples 
(from 8.25% to 26.1%, p < 0.01), whereas that of cluster 
1 events halves (from 16.12% to 7.15%, p < 0.01; see ap-
pendix). Thus, not only are cluster 7 events preceded 
by high sea level pressure over the Ural Mountains, 
but high sea level pressure anomalies over western 
Siberia also strongly increase the likelihood of weak 
polar vortex states.

The cluster 7 υ*T* precursor anomalies (Fig. 8d) 
correspond to a reinforcement of the climatological 
poleward heat f lux, which was shown to lead to a 
weakened polar vortex (Polvani and Waugh 2004; 
Dunn-Sigouin and Shaw 2015; Shaw et al. 2014). 
Moreover, the sea level pressure composites for cluster 
7 (Fig. 8b) are consistent with different studies linking 
increased vertical wave propagation to tropospheric 
forcing (Kretschmer et al. 2016; Feldstein and Lee 
2014; Cohen and Jones 2011). Constructive inter-
ference with the climatological high leads to more 
vertical wave activity in the upper troposphere and 
thus a weakening of the polar vortex (Feldstein and 
Lee 2014; Kretschmer et al. 2016; Cohen et al. 2014b; 
Smith et al. 2010). Therefore, the detected precursors 
of cluster 7 are in accordance with known physical 
mechanisms of troposphere–stratosphere coupling.

The formation of anomalous high pressure over 
northern Eurasia has been associated with late au-
tumn Barents and Kara sea ice loss and enhanced 
Eurasian October snow cover extent (Kim et al. 2014; 
Kretschmer et al. 2016; Feldstein and Lee 2014; Cohen 
et al. 2014b). Therefore, we speculate that these pro-
cesses, which have been linked to Arctic amplification 
(Cohen et al. 2014a; Overland et al. 2011) and which 
have also been reproduced by climate models (Jaiser 
et al. 2016; Handorf et al. 2015), contributed to the pat-
terns that favor a weakened polar vortex represented 
by cluster 7 (Figs. 8b,d). Moreover, the involved time 
lag of approximately 3 months (Kretschmer et al. 
2016) for these Arctic-driven mechanisms might ex-
plain why clustering with November and December 
data exhibits no trends in the frequency of the differ-
ent vortex clusters (Fig. ES9). The negative sea level 
pressure anomalies over the North Pacific for cluster 7 
events (Fig. 8b) are also similar to patterns associated 
with El Niño years, which are associated with a weak 
polar vortex (Baldwin and O’Sullivan 1995; Polvani 
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et al. 2017). However, since 
different ENSO indices did 
not show any trend over the 
last decades, the weakening 
polar vortex can probably 
not be explained by ENSO-
related teleconnections. 
Nevertheless, the interplay 
between different tropical 
teleconnections (Garfinkel 
and Hartmann 2008), natu-
ral variability (McCusker 
et al. 2016), and variability 
in atmospheric responses to 
Arctic sea ice loss (Screen 
and Francis 2016) as well as 
impacts of regional differ-
ences in sea ice decline (Sun 
et al. 2015) might influence 
the stratospheric response. 
This interplay of possible 
causal drivers requires fur-
ther analyses using both 
climate models and observa-
tions (Overland et al. 2016).

CONCLUSIONS. Using 
cluster analysis, we iden-
tified dominant patterns 
of the stratospheric polar 
vortex in boreal winter. We 
showed that the polar vortex 
weakening over the last four 
decades was a result of more-
persistent weak polar vortex 
states (cluster 7) and less 
frequent strong polar vortex 
events (cluster 1) rather than an overall weakening. 
This shift in polar vortex states can account for most 
of the recent winter cooling trends over Eurasian mid-
latitudes via stratosphere–troposphere coupling. The 
observed sea level pressure and heat flux precursors 
are in agreement with proposed physical mechanisms 
and can explain the weakening of the polar vortex via 
a dynamical troposphere–stratosphere coupling.

Our analysis shows that the Eurasian cooling trend 
in the era of Arctic amplification can largely be ex-
plained by polar vortex variability. Understanding the 
two-way link between stratospheric and tropospheric 
circulation is thus essential for understanding winter 
teleconnections in the Northern Hemisphere. Any 
improvements in wintertime seasonal forecasts are 
likely to depend on our comprehension of competing 

drivers, including the influence of stratospheric vari-
ability (Sigmond et al. 2013; Kretschmer et al. 2016).
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FIG. 8. Precursors to cluster events. Composite of (detrended) sea level pres-
sure anomalies 30–10 days prior to start days of (a) cluster 1 and (b) cluster 
7 events. (c),(d) As in (a) and (b), respectively, but for (detrended) poleward 
heat flux υ*T* anomalies at 100 hPa averaged 10 days before onset of cluster 
event. In all panels, significant values (p < 0.05) are indicated with dots.

57AMERICAN METEOROLOGICAL SOCIETY |JANUARY 2018



APPENDIX: METHODS. Clustering. The hier-
archical cluster algorithm starts with n clusters (the 
starting vectors) and then iteratively merges two clus-
ters until only one cluster (the mean over all vectors) 
exists. In each step the clusters with minimal distance 
are merged and their mean is calculated. Here we use 
Ward’s metric criteria, meaning that the two clusters 
to be merged at each step are those that result in the 
minimal increase in variance in the merged cluster, 
over all possible unions of clusters.

While more computationally demanding, hierar-
chical clustering has the advantage over other clus-
tering techniques such as k-means or self-organizing 
maps (SOM), that no a priori knowledge on the num-
ber of clusters is required. Each of the n – 1 merging 
steps can be tracked back and the optimal number of 
clusters can thus be defined afterward. The structure 
of the clustering process is visualized in a dendo-
gram (Fig. ES1) and is used to choose the number 
of clusters, although that choice does require some 
subjective judgment (see supplemental information).

Statistical analysis. For the comparison of the first and 
second half of the studied time period (Fig. 3a), we test 
for significance by randomly picking blocks of 7 days 
of each season from the time series that contain the 
cluster events. The length was chosen based on the 
mean event length of all clusters during the whole 
period. The blocks are then shuffled between years 
and calendar slots, creating artificial time series, but 
the order within the blocks is maintained (preserving 
the intraseasonal autocorrelation of the original time 
series). This way, we create a new time series from 
which we calculate the frequency difference of the 
two data halves. We do this 10,000 times and calculate 
the percentiles of the observed frequency difference.

Composite plots. Before computing the temperature 
composites (Fig. 4), the data were detrended to prevent 
biases due to trends in the occurrence of the clusters. 
The significance of the composites is tested, creating 
10,000 artificial time series by randomly picking and 
shuffling blocks of the original time series (with a 
block length of 5 days). For each newly created time 
series, we pick as many days as were used to form the 
composite, but we also keep the start days and length 
of the identified events from the original time series 
to account for a potential increase in autocorrelation 
during long-lasting cluster events. For the precursors 
we similarly composite (Fig. 8), but we neglect polar 
vortex data of the very first 30 days (i.e., 1–30 Janu-
ary 1979) since leading sea level pressure and υ*T* 
values are not included in the reanalysis datasets. The 

composites are then formed over the days preceding 
the onset of the identified cluster event.

Coincidence analysis. To assess the coincidence of cold 
events in Eurasia and weak polar vortex states, we 
define cold days as days when the mean temperature 
anomaly over the Eurasian sector is below a certain 
threshold, for example, below –5°C. Next, we calculate 
the frequency of each cluster on cold days and compare 
to the frequency of each cluster on all days. To test 
significance for the observed frequency of a specific 
cluster i, we apply a chi-square test to the contingency 
table containing the cluster number (occurrence of 
cluster i/other than cluster i) and the extreme event 
(occurrence of cold extreme/no cold extreme).

For the coincidence of anomalous sea level pres-
sure over western Siberia and weak polar vortex states, 
we calculate a baseline (i.e., climatological) frequency 
for each cluster based on the 25–35 days following 
every day in December and January (neglecting 
December 1978, which is not included), which coin-
cides with the absolute frequencies of the different 
clusters as shown in Fig. 1. We compare that to the 
frequency for each cluster based on the 15–35-day 
periods following Siberian high events. To assess the 
significance, we create 1,000 synthetic time series 
with the same number of Siberian high events as 
in observations, but randomly distributed in time. 
This way, we get a distribution of the cluster events 
frequencies following Siberian high events and can 
calculate percentiles to get the corresponding p value.
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CHOICE OF NUMBER OF CLUSTERS. The 
choice of number of clusters is a compromise between 
reducing the data dimensionality and preserving as 
much variability as possible. The dendogram of a 
hierarchical cluster analysis 
visualizes the required dis-
tance in each merging step 
and helps to select a number 
of clusters. For each merging 
step, the required distance 
for merging two clusters is 
shown on the y axis of the 
dendogram plot. Similar 
clusters are lined via shorter 
y-axis segments, and large y 
distances within one cluster 
should be avoided. In the 
present analysis, we used 
Ward’s minimum variance 
algorithm such that distance 
refers to the variance of 
the elements in the cluster. 
Therefore, large increases in 
this distance mean that after 

merging two clusters, the within-cluster variance in-
creased by much, whereas smaller jumps refer to the 
merger of similar clusters. Based on the dendogram 
(Fig. ES1) of the last 30 merging steps for clustering 

FIG. ES1. Dendogram of hierarchical clustering with area-weighted zonal 
wind velocity anomalies poleward of 60°N at 10 hPa for the last 30 steps of 
the clustering. Each color represents one cluster.
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with area-weighted zonal 
wind anomalies in January 
and February, we conclude 
that seven is an appropriate 
choice for the number of 
clusters (i.e., the different-
colored clusters) because 
the within-cluster distanc-
es are similar. Moreover, 
the so-called “elbow” plot 
(Fig. ES2), which shows the 
cluster distance as a func-
tion of the number of clus-
ters, shows a bend for seven 
clusters. This means that 
the distance is only slightly 
smaller for a greater number 
of clusters but the distance 
growth accelerates for fewer 
clusters. As indicated by 
the dendogram (Fig. ES1) 
only five clusters would be 

FIG. ES2. Elbow plot of hierarchical clustering with area-weighted zonal 
wind velocity anomalies poleward of 60°N at 10 hPa for the last 15 steps of 
the clustering.

FIG. ES3. As in Fig. 1 in the main text, but cluster representatives shown for zonal wind velocity instead of GPH.
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another reasonable choice, which would mean the 
merger of cluster 1 and cluster 2 as well as of cluster 
6 and cluster 7. However, we find that our results (in 
particular with respect to the trends in the regres-
sion models based on cluster 7) are insensitive to this 
choice. Moreover, we find that for all tested numbers 
of clusters from 2 to 20, the strongest (weakest) vortex 
cluster shows a decreasing (increasing) trend in sea-
sonal frequency as well as an increasing (decreasing) 
trend in daily pattern correlation (see Fig. ES4 for 
seven clusters).

DAILY PATTERN CORRELATION. To derive 
the trend of the daily pattern correlation time series 
(Fig. ES4), we perform linear regression by calculating 
the least squares fit trend line. Since the daily pattern 
correlation time series (Fig. ES4) are autocorrelated, 
applying a Student’s t test to test significance of the 
slope would violate the assumption of independent 
residuals. Therefore, we apply bootstrapping on 
the data, preserving the intraseasonal and seasonal 
variability of the original time series. To assess the 
significance of the slopes, we perform a (one sided) 

significance test with the H1 hypothesis that those 
clusters with a downward (upward) trend in seasonal 
frequency (see Fig. 1 in main text) also show a down-
ward (upward) trend in pattern correlation. First, for 
each year, we determine daily anomalies for the pat-
tern correlations by subtracting the seasonal-mean 
value for that year. Next, we randomly pick 15 blocks 
from each season, each with a length of 4 days. The 
block length was chosen based on the intraseasonal 
autocorrelation functions, which dropped below a 
significance threshold (p < 0.05) after 3–4 days. The 
blocks are then shuffled between years and calendar 
slots creating artificial time series of daily anomalies, 
but the order within the blocks is maintained (pre-
serving the intraseasonal autocorrelation of the origi-
nal time series). Finally, we add the shuffled seasonal 
means of the original data to the daily values of each 
newly constructed year. This way, we also keep the 
variability between the different years. We calculate 
the slope of the linear least squares fit of this artificial 
time series and repeat the procedure 10,000 times in 
order to derive the (one sided) percentiles of the origi-
nal slope with respect to the calculated distribution.

FIG. ES4. Trends in daily pattern correlation for each cluster and the percentile of the slope in brackets (see 
appendix in the main text).
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FIG. ES5. Mean polar cap (poleward of 60°N) wind velocity in winter (JF) 
from 1979 to 2015 and least squares trend line (p = 0.11).

FIG. ES6. As in Fig. 1 in the main text, but for clustering with GPH anomalies.
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OTHER SENSITIVITY ANALYSES. We repeat 
the cluster analysis with other variables that describe 
the stratospheric polar vortex (SPV). First, we repeat 
the analyses using geopotential height (GPH) data 
over the same polar-cap region and at same pressure 
level (10 hPa). Then, we repeat the analyses with zonal 
wind and GPH data averaged over the pressure levels 
at 10–50 hPa and for 100 hPa, respectively. To test sen-
sitivity of the clustering technique, we also perform 
k-means clustering, which requires k starting vectors, 
for example, by randomly selecting k vectors of the 
input data. Then, each input vector is assigned to the 
starting vector it is closest to in terms of Euclidean 
metric and their mean is calculated. This gives k new 
clusters for which the procedure is repeated until a 
prechosen maximum number of iteration steps is 
reached. The k-means algorithm is computationally 
less expensive than hierarchical clustering. However, 
it has the disadvantage of being sensitive to the initial-
ization vectors as well as to the choice of k. Therefore, 
we perform k-means clustering by using the centroids 
identified with hierarchical clustering as our starting 

vectors and compare the results. Furthermore, we ap-
ply self-organizing maps (SOM) on the Modern-Era 
Retrospective Analysis for Research and Applications, 
version 2 (MERRA-2), dataset. Thus, we are not only 
testing another clustering technique, but also a dif-
ferent reanalysis dataset. SOM requires a prechosen 
representation dimension (which can even be multi-
dimensional). For consistency with our analysis, we 
choose a 7 × 1 matrix.

The cluster representatives (visualized with abso-
lute 10-hPa GPH values) are similar for both variables 
(u or GPH) and cluster algorithms (hierarchical clus-
tering, k-means, SOMs); the strongest and weakest 
vortex clusters are especially robustly identified for all 
variables and cluster techniques (Figs. ES6–ES8, ES14, 
ES15). Moreover, we find that the signs of the slopes 
of the seasonal frequency time series and of the pat-
tern correlation are consistent and significance is of 
similar range, confirming our finding of a weakened 
polar vortex in recent winters.

In particular the weak polar vortex states are 
robustly identified by the different sensitivity tests 

FIG. ES7. As in Fig. 1 in the main text, but for k-means clustering.
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(Figs. ES15, ES18). More precisely, 84% of cluster 
7 days identified by hierarchical clustering on ERA-
Interim data coincide with cluster 7 days based on 
self-organizing maps performed on MERRA-2 data. 
This number even rises to 98% if both weak polar 
vortex representatives cluster 6 and cluster 7 days are 
considered. Cluster analysis on geopotential heights 
instead of zonal wind velocity thus results in simi-
lar numbers. Furthermore, the results are not very 
sensitive to the choice of pressure level either, giving 
robust findings for clustering of zonal wind velocity 
and GPH at 100 hPa and averaged over the levels 
10–50 hPa. More than 80% of the cluster 7 days at 
10 hPa are also detected for clustering at lower pres-
sure levels (100 hPa and the 10–50-hPa mean instead 
of 10 hPa; Fig. ES18). Consequently, the seasonal clus-
ter 7 frequency is robustly identified by the different 
sensitivity tests with pairwise correlation coefficients 
ranging from 0.82 to 0.99 (Fig. ES15).

FIG. ES8. As in Fig. 1 in the main text, but for k-means clustering with GPH at 10 hPa.

GRANGER CAUSALITY. To assess the direction 
of causality between the stratosphere and surface 
weather in more detail, we have applied a Granger 
causality test. We first projected the area-weighted 
daily geopotential height anomaly field poleward of 
60°N onto the cluster 7 representative to construct a 
continuous time series. A daily domain-mean tempera-
ture index over northern Eurasia, however, might be 
strongly biased given strong synoptic variability in the 
troposphere likely diluting any potential signal coming 
for the stratosphere. Therefore, we have applied the 
Granger causality test on 5-day-mean time series. We 
detrended both time series, fitted the autoregressive 
model (using the Akaike information criterion), and 
finally tested for Granger causality. Using an F test, 
the H0 hypothesis could be rejected (p < 0.05), mean-
ing that the cluster 7 time series index Granger causes 
Eurasian temperature variability in winter. However, 
we found that the opposite is not true.
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FIG. ES9. As in Fig. 1 in the main text, but for clustering with Nov and Dec data.
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FIG. ES10. As in Fig. 1 in the main text, but for clustering with zonal wind velocity anomalies averaged over 
10–50 hPa.
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FIG. ES11. As in Fig. 1 in the main text, but for clustering with zonal wind velocity at 100 hPa.
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FIG. ES12. As in Fig. 1 in the main text, but for clustering with GPH anomalies averaged over 10–50 hPa.
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FIG. ES13. As in Fig. 1 in the main text, but for clustering with GPH at 100 hPa.
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FIG. ES14. As in Fig. 1 in the main text, but for SOM clustering with MERRA-2 data from 1980 to 2015.

ES12 JANUARY 2018|



FIG. ES15. Time series of seasonal-mean cluster 7 frequencies for the different sensitivity analyses from 1980 
to 2015.

FIG. ES16. “Abacus” plot of polar night jet oscillation (PJO) with cluster 6 and cluster 7 days indicated to the 
left of the ribbons (courtesy of Peter Hitchcock). The calculation of PJO events and the color scaling are as in 
Hitchcock et al. (2013a,b).
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FIG. ES17. Cluster number for each day 
for clusters as in Fig. 1. The red boxes 
indicate the sudden stratospheric 
warming events in the European 
Centre for Medium-Range Weather 
Forecasts (ECMWF) interim reanaly-
sis (ERA-Interim) data taken from 
www.esrl.noaa.gov/csd/groups/csd8 
/sswcompendium/majorevents.html.
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FIG. ES18. Visualization of cluster 6 (light red) and clus-
ter 7 (red) event evolution in each winter, marked by 
the gray vertical lines for the different sensitivity test. 
(a) Hierarchical clustering of the 10-hPa wind field with 
(top) ERA-Interim data and (bottom) self-organizing 
maps on MERRA-2 data. (b) Hierarchical clustering 
of (top) the 10-hPa wind field with ERA-Interim data, 
(middle) data averaged over 10–50 hPa, and (bottom) 
data at 100 hPa. (c) As in (b), but clustering based on 
geopotential heights.

ES15JANUARY 2018AMERICAN METEOROLOGICAL SOCIETY |


