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Transfer function tools commonly used in engineering
control analysis can be used to better understand the
dynamics of El Niño Southern Oscillation (ENSO),
compare data with models and identify systematic
model errors. The transfer function describes the
frequency-dependent input–output relationship
between any pair of causally related variables,
and can be estimated from time series. This can
be used first to assess whether the underlying
relationship is or is not frequency dependent, and if
so, to diagnose the underlying differential equations
that relate the variables, and hence describe the
dynamics of individual subsystem processes relevant
to ENSO. Estimating process parameters allows the
identification of compensating model errors that may
lead to a seemingly realistic simulation in spite of
incorrect model physics. This tool is applied here
to the TAO array ocean data, the GFDL-CM2.1
and CCSM4 general circulation models, and to the
Cane–Zebiak ENSO model. The delayed oscillator
description is used to motivate a few relevant
processes involved in the dynamics, although any
other ENSO mechanism could be used instead. We
identify several differences in the processes between
the models and data that may be useful for model
improvement. The transfer function methodology
is also useful in understanding the dynamics and
evaluating models of other climate processes.

2014 The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction
The dynamics of the El Niño Southern Oscillation (ENSO) are not consistently well captured in
general circulation models (GCMs) [1–6]. Furthermore, even if the output statistics (e.g. NINO3
period, amplitude, etc.) are reasonably well simulated, there is no guarantee that there are no
compensating errors in the model that lead to seemingly good results for the wrong reason (as
noted, for example, in [6]). As a result, even if the present climate is well simulated, then there is
no guarantee that changes in the dynamics with climate change will be correctly captured owing
to systematic errors not compensating anymore in the changed climate. It is thus important to
evaluate models at an individual process level, in addition to matching general output metrics
such as those based on NINO3 time series, for example. The same issue of compensating
model errors is relevant in any aspect of climate dynamics, e.g. for understanding multi-decadal
variability of ENSO, variability of the Atlantic meridional overturning circulation (AMOC), and
more. This issue is not restricted to climate variability modes, and models that fit the observed
global warming record of the twentieth century diverge in both prediction mode [7] and in trying
to simulate AMOC during the last glacial maximum [8]. This again indicates the possibility of
compensating errors and requires model validation by process rather than by output metrics such
as the globally averaged surface temperature.

We applied the transfer function as an additional tool to estimate the process dynamics of ENSO
[9] and to analyse AMOC variability [10]. Here, we (i) provide more detail on the transfer function
estimation and error bounds, as well as guidelines on its use, and (ii) extend the previous results
to consider additional processes involved in ENSO dynamics motivated by the delayed oscillator.
In addition to knowledge regarding the processes considered, these two goals illustrate different
features of transfer function analysis. In a related work, we have also considered a number of
processes based on the alternative recharge-oscillator ENSO description [11].

The term ‘transfer function’ is taken from the control engineering literature [12], and it refers
to the linear frequency-dependent input–output relationship between any pair of causally related
variables. This is equivalent to finding the output response to an input that is composed of a
time series of a single frequency, as a function of the input frequency. The transfer function can
be derived from the underlying differential equation relating the input and output variables,
or, as here, estimated from data or model time series of the input and output variables.
First, this can assess whether the underlying relationship is or is not frequency-dependent—
this should be an essential first step in any analysis of the relationship between any two
variables, before, for example, least-squares fitting (regression) of the relationship. Further,
even if there is no significant frequency-dependence, the transfer function can be used to
understand the frequency range over which the data can meaningfully describe an underlying
relationship. Finally, if the relationship is frequency-dependent, then the transfer function can
be used both to estimate or verify the underlying differential equation and to estimate values of
unknown parameters.

In MacMynowski & Tziperman [9], we considered two examples. First, the western boundary
reflection process relating westward-propagating Rossby waves and the reflected eastward-
propagating Kelvin waves. This relationship was considered as there are ample existing estimates
of the reflection coefficient to compare our results with. Second, the relationship between arriving
Kelvin waves in the eastern Pacific, and the resulting eastern Pacific sea surface temperature (SST)
anomaly (NINO3 index). These relationships were compared for TAO data from ocean buoys [13],
model output from the GFDL CM2.1 coupled GCM [2,14], and the Cane–Zebiak model of ENSO
[15]. The analysis suggested compensating errors in the GFDL model, and clearly indicated large
errors in the more idealized Cane–Zebiak model (see also [16]). Linz et al. [11] consider additional
ENSO processes motivated by the recharge oscillator description [17] in five CMIP5 models (the
Coupled Model Intercomparison Project Phase 5, [18]).

Here, we return to the delayed-oscillator ENSO description; this and Linz et al. [11] thus
provide complementary descriptions of ENSO dynamics. The two input–output relationships
already considered in MacMynowski & Tziperman [9] illustrate the utility of the transfer
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Figure 1. Schematic of the delayed oscillator ENSOmechanism. Each block (Tab) represents a physical process corresponding to
a causal relationship between the input (a) and output (b) signals, whereas the circles indicate delays. The feedback loop on the
right represents the eastern-Pacific physics where SST anomalies lead to wind changes that excite East Pacific Kelvin waves. The
feedback loop on the left represents the delayed effect including excitation of Rossby waves and western boundary reflection,
creating west Pacific Kelvin waves. Ke,c,w represent the Kelvin wave in the east, central and western basin; Rc,w are the Rossby
waves,Wr,k represent the wind forcing of Rossby and Kelvin waves; T is the East Pacific SST. Delays in Kelvin wave propagation
and between eastern Pacific thermocline anomalies and SST are indicated. External disturbances clearly influence the system
but are not explicitly shown.

function analysis, and the importance of estimating process dynamics, but they do not give a
complete picture of ENSO dynamics. Here, we present the transfer functions for a total of six
processes which span the entire delayed oscillator feedback loop [19,20] shown in figure 1. Each
block in this figure represents a process (i.e. relationship between two variables) which will be
analysed from appropriate model and data time series in §3. We present and analyse the six
transfer functions for TAO array observations and several models, including GFDL CM2.1 as in
MacMynowski & Tziperman [9] but using significantly more data, and also CCSM4 [21], and the
Cane–Zebiak model.

The transfer function approach represents a tool that may be useful in diagnosing process
dynamics, and which complements other approaches for analysing individual physical processes;
see a summary in Guilyardi et al. [22], Collins et al. [23] and other examples [24–31].

Transfer functions are also expected to be useful in identifying compensating model errors in
studies of other climate variability modes and climate change and we have made the required
code available on our web pages. Section 2 introduces the transfer function analysis tools, and the
application of these tools to ENSO is discussed in §3.

2. Transfer function estimates and error analysis
We start with a brief introduction to transfer functions following MacMynowski & Tziperman
[9], with an example to better illustrate its use, and additional information provided on the error
analysis in particular.

A key advantage of transfer functions is that their calculation provides information on the
differential equation describing the dynamics of the input–output relationship, even when it is not
known a priori. It is not unusual to see the application of analyses such as regression methods, that
ignore a possible frequency dependence, without an explicit justification. Consider for illustration
the following heuristic equation for the NINO3 temperature T as a function of the east Pacific
Kelvin wave amplitude Ke [17],

dT
dt

= Ṫ = μKe − εT, (2.1)
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Figure 2. Transfer function estimated from simulated input x(t) and output y(t) data for (2.10), showing (a) transfer function
magnitude, (b) phase and (c) coherence calculated with both the extra pathway from input to output for γ = 0.1 (black) and
γ = 0 (blue). Panel (d) illustrates the conversion from the error in the complex number Txy at any frequency (illustrated by
black circle) to the error inmagnitude and phase (illustrated by the dashed red region). For panels (a)–(c), the lowest frequency
shown is estimated by dividing the simulated 20 year record into 4 year time intervals (nine averages, with 50% overlap).
Red and dashed-magenta lines show the magnitude and corresponding phase of the transfer function T(s)= μ/(s + ε)
corresponding to (2.10), and T(s) + γ that matches the situation with non-zeroγ . The parametersμ and ε can be estimated
even from theγ = 0.1 case by focusing only on the low-frequency regime. Simulation parameters are chosen, so the coherence
in the high-noise case is comparable to the TAO array data for TKT .

where μ represents the effects of east Pacific Kelvin waves (Ke) on the SST (T) via both the
thermocline feedback [32] and advective feedback [25] and ε represents dissipation processes.
By taking the Fourier transform with a frequency f , we have

2π if T̂( f ) = μK̂e( f ) − εT̂( f ). (2.2)

The transfer function is now defined by

TKT(s) ≡ T̂(s)

K̂e(s)
= T̂(s)K̂∗

e(s)

K̂e(s)K̂∗
e(s)

= μ
1

s + ε
, (2.3)

where s = 2π if and T̂(s)K̂∗
e(s) may be interpreted as a cross correlation between the temperature

and Kelvin wave amplitude in spectral space. The transfer function thus depends on frequency
according to the differential operator in the relation between the input and output. The
transfer function is, in general, complex and both its magnitude and phase, Φ( f ), provide
useful information,

Txy( f ) = |Txy( f )| eiΦ( f ). (2.4)

Note that the phase of the system in (2.3) varies from 0◦ at low frequencies to −90◦ at high
frequencies (see also figure 2b).

The frequency-dependent transfer function can also be estimated from time series of the input
and output without knowledge of a corresponding differential equation ([33], section 6.2). Given
input and output time series x(t) and y(t) and their Fourier transforms x̂( f ) and ŷ( f ), (2.3) suggests
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that the transfer function can be estimated as the ratio of cross-correlation to the autocorrelation
in frequency space,

Txy( f ) =
〈
ŷ( f )x̂∗( f )

〉
〈
x̂( f )x̂∗( f )

〉 = Sxy( f )
Sxx( f )

. (2.5)

The auto- and cross-correlations Sxx( f ) and Sxy( f ) can either be estimated using multi-taper
methods [34] or through periodograms [35]. Here, we use the latter and (i) divide the time series
for x and y into n possibly overlapping segments of smaller length, xk(t) and yk(t); (ii) compute the
Fourier transforms x̂k( f ), ŷk( f ) of each of the windowed time series xk(t), yk(t) in the kth segment,
and calculate their products in each segment and (iii) average these products over the segments
to eliminate the uncorrelated parts of the response,

Sxy( f ) = 1
n

n∑
k=1

x̂k( f )ŷ∗
k ( f ). (2.6)

In general, any variable in the climate system may depend on many different inputs. With
sufficient averaging, the contribution owing to any part of the output signal that is not correlated
with the input signal will tend to zero, yielding an estimate due only to the correlated component.
However, increasing the averaging using a finite length time series by increasing the number of
segments results in shorter segments and thus smaller resolved frequency range. A compromise
we use here is to estimate the transfer function at different frequencies using different segment
lengths, thus the lowest frequency in our plots uses fewer averages, whereas higher-frequency
transfer function estimates are based on shorter segments and more averaging.

Because ‘windowing’ (gradual tapering of the time series to zero near their ends) is required on
each data segment to avoid the implicit discontinuity at the segment boundary, non-zero overlaps
between segments can be used to increase the number of averages without creating information
that was not present in the original data; see Welch [35] for a more detailed discussion. We apply
a Hamming window on each segment, and use a segment overlap of 50% (e.g. using 2 year data
segments would correspond to using years 0–2, 1–3, 2–4, etc., with a lowest resolved frequency
of 1/(2 years)).

The magnitude of the error in Txy( f ) that results from contributions to the output signal not
correlated with the input signal can be estimated from the coherence,

γ 2
xy( f ) = |Sxy( f )|2

Sxx( f )Syy( f )
, (2.7)

which estimates the fraction of the output variance that is correlated with the input. The
standard deviation of the estimation error in the transfer function magnitude and phase ([33],
equations 6.2.21 and 6.2.22) can then be approximated as

σ|Txy|( f ) �
(

1
2n

1 − γ 2
xy( f )

γ 2
xy( f )

)1/2

|Txy( f )| (2.8)

and

σΦxy ( f ) � tan−1

⎡
⎣( 1

2n

1 − γ 2
xy( f )

γ 2
xy( f )

)1/2
⎤
⎦, (2.9)

where the approximation is valid for small errors (figure 2d). In practice, there are rarely sufficient
data to make these errors negligible.

Nonlinear effects in the relationship between input and output variables will also reduce
coherence; information at one frequency in an input x(t) would in this case also result in signal
content at a different frequency in the output y(t), in general uncorrelated with the signal content
in x at that frequency. In many cases, it is difficult to distinguish between poor coherence caused
by nonlinearity, or by some other variable affecting the output. If the true relationship is nonlinear,
then the presumed linear relationship will also depend on the signal amplitude. The estimated
value will not in general yield the linearization of the relationship about x = 0, but will be closer
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to the average slope of the input–output relationship at the typical amplitudes of the input signal
in the data. Much greater detail on the effects of nonlinearity can be found, for example, in
Schoukens et al. [36] and Nordsjo & Wigren [37].

There are additional sources of uncertainty in the interpretation of the estimated transfer
function. A correlation between x and y may be due to the input x affecting the output y (the
presumed interpretation), owing to a closed feedback loop where the output y affects the input
x, or owing to some independent factor affecting both x and y. As an example, consider western
Pacific Rossby waves influencing the reflected Kelvin waves. A closed feedback loop effect exists,
because the reflected Kelvin waves, in turn, affect east Pacific SST, the SST influences winds, which
in turn excite Rossby waves again. An independent factor affecting both input and output could
be western Pacific wind anomalies that simultaneously excite both Kelvin and Rossby waves,
biasing the estimate of the western boundary reflection coefficient. The phase of the transfer
function can be useful in diagnosing these factors, by noting which signal leads the other, or
whether the two signals are in phase.

As an example of critically evaluating a transfer function estimate, consider the following
system, modified from (2.1) by the addition of a ‘leakage’ path where the output y(t) is directly
influenced by the input x(t), and also influenced by an uncorrelated noise ν,

Ṫ = μx − εT, y = T + γ x + ν. (2.10)

We set μ = 1 and ε = 4 (years−1). Assume that the input x is a known random Markov process with
an auto-correlation time four times larger than the time constant ε−1, and that ν is white noise,
which therefore dominates the response at high frequencies. The term γ x in the output corrupts
the estimate of the desired process. The transfer function is estimated from 20 years of simulated
data, comparable to the TAO record. Figure 2 shows the magnitude and phase estimates (with
error bars indicating two standard deviations), as well as the frequency-dependent coherence.
Two different cases are plotted, corresponding to γ = 0.1 and γ = 0. In each case, the lowest
frequency is estimated based on averaging over 4 year segments, and higher frequencies from
2 year, 1 year or six month segments.

As an example of how the transfer function phase may be used to critically evaluate the results,
note that with γ = 0 the phase corresponding to (2.10) should be −90◦ at high frequencies. This is
because our equations reduce in the absence of noise to ẏ = μx − εy. In Fourier space, this becomes
if ŷ = μx̂ − εŷ, and for high frequency, where f � ε, this may be approximated as if ŷ ≈ μx̂, and
the factor i = eπ/2 implying a 90◦ phase difference between the input x and output y. However,
introducing the additional pathway from input-to-output results in an average phase closer to 0◦,
indicating that the output at these frequencies is not dominated by the dynamics governed by μ

and ε in (2.10). Thus, the transfer function phase indicates that because of the leakage path, the
high-frequency information is not useful in understanding the dynamics associated with (2.10) at
lower frequencies. This is clear despite the high uncertainty at high frequencies (evident in the
coherence) owing to noise ν.

This example demonstrates how estimating the transfer function at each frequency is
immediately useful in understanding the underlying differential equation that relates the
variables. The transfer function estimates can also be used to estimate the parameters of the
differential equation, e.g. μ and ε in (2.10). In principle, these parameters could be identified
directly from the time domain data x(t) and y(t) either using least-squares in the case of fitting a
constant relationship, or by fitting an AR model. However, if some fraction of the frequency range
is dominated by noise or by other processes (as in the above example at high frequencies), then
this would bias the time-domain estimate. Such a problem should be immediately apparent in
the transfer function frequency response, and can then be taken into account either by choosing
which frequency range to use for estimating parameters, or by filtering the time-domain data
before fitting parameters of an AR model.

The fit of model parameters such as μ and ε in the above example also requires careful
treatment. Consider first the case where the assumed transfer function is a constant α over
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frequency, and we are trying to fit its value. Then, the best estimate of the constant α can be
obtained from a weighted least-squares, using the variance (2.8) to weight the quality of the
transfer function information Txy( f ) at each frequency,

α =
∑

i σ
−2
xy ( fi)|Txy( fi)|∑

i σ
−2
xy ( fi)

. (2.11)

Note that if the relationship involves a time-delay, then the phase will vary with frequency, and
the magnitude of the relationship is better estimated from just the magnitude of the transfer
function, rather than from its complex value.

The more general case of a frequency-dependent fit is illustrated by the transfer function (2.3).
Fitting the squared magnitude of the transfer function, the data at all N frequencies are related to
the unknown parameters μ and ε by,⎡

⎢⎢⎣
1 −|Txy( f1)|2
...

...
1 −|Txy( fN)|2

⎤
⎥⎥⎦
[
μ2

ε2

]
=

⎡
⎢⎢⎣

(2π f1)2|Txy( f1)|2
...

(2π fN)2|Txy( fN)|2

⎤
⎥⎥⎦. (2.12)

These equations can be solved using weighted least squares to estimate μ and ε, where each
measurement (information at each frequency fi) is weighted by the inverse of its variance. This
algorithm is used to obtain the fits in the following analysis of ENSO models and observations.

3. Application to El Niño Southern Oscillation

(a) Choice of transfer functions to evaluate
The first step in using transfer functions to diagnose the dynamics is to define appropriate input–
output variable pairs. Returning now to the schematic representation in figure 1, define the
following variables.

— T as the SST averaged over the NINO3 region,
— Wr and Wk as the central Pacific atmospheric wind stress projected onto the Kelvin and

Rossby meridional structure (as in [38]),
— Kc, Rc as the central Pacific Kelvin and Rossby waves excited by wind anomalies,
— Kw, Rw as the western Pacific Kelvin and Rossby wave amplitudes, and
— Ke as the eastern Pacific Kelvin wave amplitude.

Figure 1 can be used to motivate the following delay differential equation describing the dynamics
of ENSO [19,20],

Ṫ = αT − βT(t − δ). (3.1)

This yields an oscillatory response for the appropriate values of the delay and constants. However,
implicit in obtaining equation (3.1) from figure 1 is the assumption that only the relationship
between the eastern Pacific Kelvin wave and SST is prognostic, as in (2.1). All of the other input–
output relationships are assumed diagnostic, such that their transfer functions are constants,
independent of frequency. We see that this is not quite consistent with the data, though it may
be a reasonably good approximation.

The projection of data onto Kelvin and Rossby waves is done following Boulanger & Menkes
[38], Boulanger et al. [39], using a single baroclinic mode based only on the layer thickness
anomaly (and not currents) [39]. The atmospheric wind forcing on the Kelvin and Rossby waves
is computed as in Boulanger & Menkes ([38], equation A 7). For TAO data, the wind stress is
computed using the expression for friction velocity derived by Vera (unpublished manuscript,
1983) and published as Large et al. ([40], equation 8).
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Figure 3. Correlation betweenNINO3 index and Kelvinwave amplitudes (a) and betweenNINO3 andwind stress projected onto
Kelvin wave meridional structure (b). Upper plots are computed from TAO data, middle pair of plots are computed from GFDL
model output, and lower pair of plots are computed from the CZmodel. These plots are useful for understandingwhat longitude
to use in evaluating transfer functions.

The appropriate longitude ranges of ‘east’, ‘central’ and ‘west’ (figure 1) can be chosen through
correlation analysis, shown in figure 3 for the TAO array data, weekly averaged GFDL CM2.1
model output, and CZ model output. Similar correlation plots have been used by Zelle et al. [41]
to estimate time delays.

The left columns of figure 3 show the maximum influence of Kelvin waves on NINO3 to
occur east of 240◦, whereas the right columns of figure 3 show most of the influence of NINO3
on creating Kelvin waves to be west of 240◦. Hence this longitude can be used to understand
the influence of Kelvin waves on SST without a confounding feedback influence of SST on
Kelvin waves. The resulting transfer function is found to be not strongly dependent on the
chosen longitude.

Similar correlation plots indicate that most of the influence of SST on the forcing of ocean wave
modes occurs east of 156◦. Thus, this longitude can be used to evaluate the Rossby and Kelvin
modes near the western boundary in order to calculate the reflection coefficient TRK without
interference from the forcing of the waves by the atmospheric response to eastern Pacific SST.
This longitude also has the advantage of being sufficiently removed from land masses close to
the equator.

Finally, the peak excitation of winds by NINO3 is near 180◦ (in the GFDL model) and 190◦ (in
the TAO data and CZ model), and the latter is therefore used in evaluating the corresponding
transfer functions TTWk,r and TWrR, TWkK. In order to estimate the effect of wind on the oceanic
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Figure 4. Transfer functions evaluated from TAO data, including error bars computed from coherence, and the optimal fit to
the low frequency behaviour; see figure 1 for notation. (a) From western Pacific Rossby waves to western Pacific Kelvin waves
(reflection coefficient), (b) from eastern Pacific Kelvin waves to SST response (NINO-3 index), (c) from NINO-3 to central Pacific
wind stress projected onto the Kelvin mode spatial structure, (d) from NINO-3 to central Pacific wind stress projected onto the
Rossbymode shape, (e) frommid-Pacific wind stress projected onto Kelvin wave spatial structure, to the amplitude of resulting
eastern Pacific Kelvin waves and (f ) frommid-Pacific wind stress projected onto Rossby wave spatial structure, to amplitude of
the resulting western Pacific Rossby waves. (Online version in colour.)

Kelvin wave directly, without a confounding influence from wind causing Rossby waves that
reflect off the western boundary as Kelvin waves, it is necessary to subtract a delayed version
of the western Pacific Kelvin wave from the central Pacific Kelvin before computing the transfer
function TWkK.

(b) Results for El Niño Southern Oscillation transfer function estimates
Transfer function estimates for each of the six processes represented by the six boxes in figure 1
are computed from TAO data, GFDL CM2.1 and CCSM4 GCM output, and CZ model output,
and plotted in figures 4–6. As implied by figure 1, the analysis assumes that each process relates
scalar input and output signals described by a (forced) linear differential equation. This is an
approximation both because the relationship might not be linear, and perhaps more significantly
because the relevant state of the ocean at each point in the conceptual diagram of figure 1 cannot
be captured by a single scalar variable. Nonetheless, much insight can be gained through these
simplifications; indeed, the latter assumption is also implicit in simplified delayed-oscillator or
recharge oscillator descriptions of ENSO.
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Figure 5. Transfer functions evaluated from GFDL CM2.1 model (black) and CCSM4 (blue); cases (a)–(f ) as in figure 4.

The western boundary reflection coefficient and TKT (panels a and b of figures 4–6) were
discussed in MacMynowski & Tziperman [9]; calculations here with GFDL CM2.1 are updated
to use 500 years of model output rather than only 22 years. Transfer function estimates, and the
correlation estimates in figure 3, are based on weekly averaged TAO data from 1994 to 2013,
500 years of monthly averaged GFDL CM2.1 and CCSM4 model output simulated under pre-
industrial conditions, and 75 years of CZ model output, all with the seasonal cycle removed.
The GFDL model captures the general features of ENSO reasonably well but with too high an
amplitude and possibly too short a period [14]. Because the time scale of the processes estimated
here is short (weeks to a few months), the roughly 20 years of data available are sufficient to
reasonably constrain these transfer functions even if calculating ENSO event statistics generally
requires a longer record [42].

Consider first the TAO array estimates. Because of the relatively short data record, we use 2
years as the longest data segment for estimating transfer functions that depend on frequency only
weakly, and a 4 year maximum segment length for frequency-dependent transfer functions in
order to better resolve low-frequency characteristics. The western boundary reflection coefficient
is reasonably constant at low frequencies; the higher frequency content in figure 4a (and figure 5a)
is due to correlated excitation of Kelvin and Rossby waves from wind disturbances [9]. This can
be verified from the roughly constant phase at higher frequencies (figure 7), rather than from
the linearly increasing phase with frequency expected from a time delay. The magnitude of the
reflection coefficient is consistent with other estimates, e.g. 0.33–0.37 in Boulanger et al. [39]. Also
described in MacMynowski & Tziperman [9], the excitation of SST owing to eastern Pacific Kelvin
wave anomalies is consistent with (2.1), validating the form of the underlying dynamics for this
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Figure 6. Transfer functions evaluated from CZ model, using baseline parameters; cases (a)–(f ) as in figure 4. Note that the
error bars aremuch smaller here than in figures 4 and 5 owing to the longer time series used in estimating the transfer functions.
(Online version in colour.)

process. Fitting the transfer function yields estimates for both the feedback strength μ in (2.1) and
the dissipation ε; these are indicated in the figure.

The transfer function describing the forcing of wind anomalies projected on the Rossby and
Kelvin modes by East Pacific SST, TTWk,r , are given in panels (c) and (d) of figures 4–6 and show
that NINO3 anomalies produce a roughly proportional wind–stress anomaly (i.e. independent of
frequency). This is consistent with the short atmospheric response time of a few days.

However, an interesting result we obtain here is that the forcing of ocean waves from applied
wind perturbations (TWkK and TWrR, panels (e) and (f )) does involve some frequency dependence,
indicating a prognostic relationship between the two (i.e. they are related through an expression
involving a time derivative) which is normally ignored in the ENSO literature. The system
responds more strongly to low-frequency perturbations than to high frequencies. This frequency
dependence suggests (see examples in §2) a first-order differential equation of the form τ dR/dt =
gWr − R and therefore a corresponding transfer function TWrR = g(1 + τ s)−1. The time constant τ

weighting the time derivative term for generating Rossby waves is estimated to be approximately
five months and is fast enough that it may be a reasonable approximation to ignore it in simple
heuristic models of ENSO such as the delayed oscillator. However, based on the transfer function
shape, we can predict that the low-frequency relationship between the wind and the forced
Rossby waves will be underestimated if the time series (involving the full frequency content of the
signal) is used to naively estimate the value of an assumed frequency-independent relationship
between the wind and the forced Rossby waves. The time constant involved in generating Kelvin
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Figure 7. Phase of the transfer function fromwestern Pacific Rossbywave towestern Pacific Kelvinwave (thewestern boundary
reflection coefficient) evaluated from (a) TAO data, (b) GFDL CM2.1 model output, (c) CCSM4 model output and (c) CZ model
output. The dashed lines correspond to a linearly increasing phase with frequency owing to a time delay of five months for TAO
data and twomonths for themodels. The CZmodel has no external forcing, and reflection is the onlymechanism for generating
western Pacific Kelvin waves. For both the data and the two GCMs, the anti-correlated Kelvin and Rossby wave amplitudes for
frequencies higher than (1 per year) seem dominated by other processes such as western Pacific wind forcing rather than by the
reflection process. The lower frequency behaviour, where the Kelvinwave has a physical phase-lag relative to the Rossby, results
from the reflection process. (Online version in colour.)

waves is longer and difficult to reliably estimate from this data (and also from GFDL or CCSM
model output); the fit indicated in the figure only indicates the integral part of the relationship,
dK/dt = αWk and transfer function TWkK = α/s.

Next, consider the two GCMs analysed here, which have roughly similar characteristics for
all six transfer functions considered here. With longer model time series, the transfer functions
are more readily extended to lower frequencies (with monthly averaged data, 1/(two months)
is the highest frequency resolved). Both the GFDL and CCSM model appear to have slightly too
high a reflection coefficient; this may indicate other processes involved in creating low-frequency
correlations between the Kelvin and Rossby wave (whether the latter is causally forced by the
Kelvin wave or by other processes that influence both variables); in any case, this is not expected
to be dominant in ENSO dynamics [39]. Note that the value of the reflection coefficient differs
from that estimated in MacMynowski & Tziperman [9] owing to the inclusion of many more
years of model output here. Small errors in the excitation of NINO3 perturbations from Kelvin
wave anomalies in both the strength of the response and the dissipation are not likely significant
relative to the errors in estimating transfer functions from the short TAO data record in particular.

Additional compensating errors are found in the transfer functions considered here for the first
time: we find that both the GFDL and CCSM4 models simulate too weak a wind stress response
to NINO3 anomalies (transfer functions TTWk and TTWr ; figure 5c,d). This is again compensated
by another error of the model wind stress having too large an effect on ocean waves (transfer
functions TWkK and TWrR; figure 5e,f ), particularly for the excitation of Kelvin waves in both
models. The inertia effect in wave excitation (i.e. the time constant τ in TWrR in particular)
might be too strong, with high-frequency perturbations resulting in a smaller ocean response
than the corresponding process estimated from data; however, the uncertainty in estimating this
parameter is substantial.
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None of these process discrepancies corresponds directly to individual parameters that can be
modified in the GCM. However, understanding errors in individual processes is still invaluable
in tuning the model to improve the simulation of ENSO.

The CZ model western boundary reflection coefficient is specified in the model, and
MacMynowski & Tziperman [9] showed that the transfer function analysis successfully yields
close to the correct value of a theoretical perfect reflection of 0.41 (figure 6a). The NINO3 response
to Kelvin wave (thermocline) anomalies in the CZ model is more than a factor of two too large.
The ability to tune parameters in this model to improve the match between model and data
is illustrated in MacMynowski & Tziperman [9], where both the advective and thermocline
feedbacks are re-tuned in the model to improve the match of this process transfer function
with data.

We now proceed to other systematic CZ model errors that are revealed by the additional
transfer functions calculated here. The excitation of wind stress by NINO3 anomalies (transfer
functions TTWr and TTWk ) in the CZ model is 50% larger than in observations. The excitation of
Rossby waves by the winds (TWrR, compare figures 6f and 4f ) has both an incorrect frequency
dependence and again too strong an amplitude at the relevant low frequencies. There is also
a significant error in the frequency dependence of the Kelvin wave response to wind stress
anomalies, though the low-frequency amplitude is similar to the observed (TWkK, figures 6e
and 4e). Overall, the product of the three transfer functions involved in the East Pacific Kelvin
wave feedback (TKT × TTWk × TWkK) together corresponding to the feedback parameter α in (3.1)
is a factor of 3 larger than in TAO data. This is a significant difference, indicating the need for
observationally motivated model tuning.

Finally, the phase of the transfer functions also provides useful information, often allowing
us to evaluate the reliability of the amplitude estimate. An example is shown in figure 7 for
the phase of the transfer function between western Pacific Rossby waves and Kelvin waves,
corresponding to the western boundary reflection coefficient. The waves are estimated some
distance away from the boundary and therefore one expects some delay between the arriving
Rossby waves and the reflected Kelvin waves. In general, the input–output relationship may
therefore be written as K(t) = a×R(t − τ ). Taking the Fourier transform, the transfer function
is Txy(s) = a e−i2π f τ which has an amplitude equal to the reflection coefficient a, and a phase
increasing linearly with frequency, φxy( f ) = −2πτ f . This clearly fits the transfer function from
Rossby to Kelvin wave evaluated from the CZ model in figure 7c, with a time-delay of two months
corresponding to the wave propagation delay from 156◦W where the waves are estimated, to the
western boundary (124◦ in this model) and back. The frequency axis is plotted on a log scale,
hence the phase does not show as a straight line. As noted earlier, the corresponding transfer
functions evaluated from either TAO data or the GFDL model output show a constant phase
at higher frequencies (figure 7a,b), indicating that there is no time delay between the signals at
these frequencies, and suggesting that something other than wave reflection is involved. One
possibility is a simultaneous excitation of western Pacific Rossby and Kelvin waves by local
wind perturbations, leading to the waves having the same phase. The observational record is
not sufficiently long to confidently determine the time delay at lower frequencies owing to wave
travel from the longitude where the waves are estimated to the western boundary and back.
The apparently larger delay in observations than in the CZ model may be due to the dominant
reflection occurring further west than the CZ model boundary, differences in wave propagation
speed, other physical processes that result in Kelvin waves or simply insufficient data for a
reliable estimate.

4. Conclusion
Transfer functions are a useful tool for understanding the dynamics of processes involved
in ENSO, or potentially other aspects of climate variability. Using time series of input and
output signals, we can identify frequency–domain relationships between them, and use this both
to understand the underlying differential equations describing the dynamics, and to estimate
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parameters. Applying this to estimates of processes involved in ENSO using TAO data, the GFDL
CM2.1 and CCSM4 GCM models, and the CZ model, we are able to quantitatively compare
different individual processes between the observations and models, and therefore identify
several significant compensating errors in both models.

For both the GFDL-CM2.1 and the CCSM4 models, we find differences between the model and
observations indicating compensating model errors in processes involving the wind stress. The
wind stress induced by SST changes is too weak, and this is compensated by too large an ocean
wave response to a given wind stress perturbation. In addition, the response time involved in
the ocean response to applied wind stress may be too large in the models, although this is more
difficult to reliably estimate. These identified model errors are in addition to compensating errors
in the SST response to Kelvin wave (thermocline) anomalies that were found for the GFDL model
by MacMynowski & Tziperman [9].

Using the original values for all CZ model parameters, the process errors in this more idealized
model are found to be larger than in the GCMs examined here. The SST response to an arriving
Kelvin wave is too strong, the wind stress anomalies that result from SST anomalies are also
too strong, and these are partially compensated by a too weak ocean response to wind stress
anomalies. These process errors suggest that the seemingly realistic simulation of ENSO using
the original model parameters is likely influenced by compensating errors.

The first and perhaps most crucial step in a transfer function analysis is the choice of input
and output variables. Our choices were motivated by the delayed-oscillator mechanism. The
advantage of the methodology is that if the choice is wrong (say because this mechanism has
nothing to do with the dynamics of ENSO), then one obtains an immediate indication of this in
the results, as the transfer function will not be significantly different from zero. Thus, the method
can not only be used to quantify individual processes, but also to find out if a given mechanism
is consistent with the model output or observations. We find the transfer functions spanning
the entire delayed-oscillator ENSO mechanism are significant, and thus that this mechanism is
a viable description of the ENSO cycle. This does not exclude additional effects or alternative
descriptions such as the recharge oscillator [17] or others [43,44]; in companion work, we also
examine transfer functions corresponding to the recharge description of ENSO [11].

This analysis of ENSO models and observations here demonstrate that transfer functions can
be used to quantify individual physical processes in climate models in a way that allows the
identification of model errors and compensating errors. Given that such compensating errors are
a major concern for the reliability of model future predictions, we expect that this tool can be used
to study and improve climate models in general.
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