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ABSTRACT

Multidecadal variability in the Atlantic meridional overturning circulation (AMOC) is shown to differ

significantly between the 4 3 CO2 and preindustrial control simulations of the GFDL Earth System Model,

version 2M (ESM2M) general circulation model (GCM). In the preindustrial simulation, this model has a

peak in the power spectrum of both AMOC and northward heat transport at latitudes between 268 and 508N.

In the 43 CO2 simulation, the only significant spectral peak is near 608N. Understanding these differences is

important for understanding the effect of future climate change on climate variability, as well as for providing

insight into the physics underlying AMOCvariability. Transfer function analysis demonstrates that the shift is

predominantly due to a shift in the internal ocean dynamics rather than a change in stochastic atmospheric

forcing. Specifically, the reduction in variance from 268 to 458N is due to an increased stratification east of

Newfoundland that results from the shallower and weaker mean overturning. The reduced AMOC variance

that accompanies the reduced mean value of the AMOC at 4 3 CO2 differs from predictions of simple box

models that predict a weaker circulation to be closer to a stability bifurcation point and, therefore, be ac-

companied by amplified variability. The high-latitude variability in the 4 3 CO2 simulation is related to the

advection of anomalies by the subpolar gyre, distinct from the variability mechanism in the control simulation

at lower latitudes. The 4 3 CO2 variability has only a small effect on midlatitude meridional heat transport,

but does significantly affect sea ice in the northern North Atlantic.

1. Introduction

Variability in the Atlantic meridional overturning

circulation (AMOC) has been linked to variability in

Atlantic sea surface temperatures and associated cli-

mate impacts (Kushnir 1994; Delworth and Mann 2000;

Knight et al. 2005; O’Reilly et al. 2016). There has been a

significant number of studies aimed at understanding

model-simulated AMOC variability in preindustrial or

current climate conditions (Delworth et al. 1993;Greatbatch

and Zhang 1995; Yeager and Danabasoglu 2012); see also

the recent review by Buckley and Marshall (2016). Sev-

eral GCMs yield strong multidecadal peaks in the power

spectrum of AMOC variability under preindustrial condi-

tions (e.g., MacMartin et al. 2013;Muir and Fedorov 2015),

which correspond to significant autocorrelation and hence

potentially useful predictability (e.g., Griffies and Bryan

1997). This variability may be interpreted as either self-

sustained variability (e.g., te Raa et al. 2004) or as the result

of a relatively lightly damped system excited by broadband

atmospheric ‘‘noise’’ (Griffies and Tziperman 1995).
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However, there has been less attention to how this

variability might be altered by anthropogenic climate

change, and this is the purpose of the present work. The

theoretical framework introduced by the Stommel

(1961) box model has been used to speculate that be-

cause the mean AMOC is expected to weaken under

increased CO2 forcing (e.g., Stocker and Schmittner

1997; Cheng et al. 2013; Collins et al. 2013), it would shift

closer to a bifurcation point (Tziperman et al. 1994;

Tziperman 1997). If so, then the AMOC variance ought

to increase (Wiesenfeld and McNamara 1986; Ditlevsen

and Johnsen 2010); this has even been explored as a

possible precursor to detect bifurcation (Lenton 2011;

Lenton et al. 2012). However, it remains unclear

whether this indeed is the case. Results for CMIP5

models, for example, are shown in Fig. 12.35 of Collins

et al. (2013) and in Fig. 1b of Cheng et al. (2013), where

there is arguably decreased variability in several models

as CO2 increases. Both of these studies consider only

AMOC at 308N. We focus here on the GFDL Earth

System Model, version 2M (ESM2M) GCM, and com-

pareAMOCvariability between preindustrial and abrupt

4 3 CO2 simulations to better understand changes in

AMOC variability across a range of latitudes under in-

creased atmospheric CO2 concentrations.

Midlatitude preindustrial AMOC variability is domi-

nated by thermohaline dynamics in this GCM. We show

that this midlatitude AMOC variability is suppressed at

higher CO2, and is replaced by a limited-area high-latitude

AMOC variability that is driven by horizontal advection

in the subpolar gyre. We also show that the decrease in

midlatitude variability at higherCO2 is due to an increased

midlatitude ocean stratification in part due to the weak-

ened overturning. Finally, we show that our results are

not consistent with what might be expected from the

above-mentioned simple and commonlyused thermohaline

box models, as over the (nonequilibrium) time horizon

considered here the GFDL ESM2M GCM responds to

the increased CO2 concentration with a decrease in both

the mean AMOC and its variability.

2. Model simulations

We use 500 years of a preindustrial control simula-

tion and 300 years of an abrupt 4 3 CO2 simulation of

the GFDL ESM2M GCM (Dunne et al. 2012). The

AMOC time series from a 1%yr21 increase in CO2

(1% CO2) simulation are also shown in Fig. S2 in the

supplementary material to illustrate that the suppres-

sion of midlatitude variability is not a result of the

abrupt nature of the CO2 increase. Since the 1% CO2

simulation is far from a quasi equilibrium, we focus on

the abrupt 4 3 CO2 case for the remainder of the

analysis. For the 4 3 CO2 simulation we analyze only

the last 250 years of the 300-yr simulation to avoid most of

the initial transient response. However the abyssal ocean

has not completely equilibrated over this time horizon

(see Fig. 1), and previous results have indicated the possi-

bility of continued changes in the mean AMOC over lon-

ger time scales (Stouffer andManabe 2003) consistent with

the trend shown inFig. 1. The simulation is thus not directly

comparable to the equilibrium response of box models.

Our purpose is to present an interesting mechanism

for the suppression of AMOC variability rather than

estimate the likelihood of such a suppression, and we

therefore focus on the analysis of a single model rather

than examine, for example, multiple CMIP models as

was done in MacMartin et al. (2013). This focus on a

single model also allows an in-depth analysis of several

3D model fields, for two CO2 values, which is not

FIG. 1. AMOC strength at 268, 458, and 608N in the abrupt 4 3 CO2 simulation for GFDL ESM2M. The final 150 years of the

preindustrial simulation are also shown for comparison (43 CO2 starts in year zero of the plots). To minimize the impact of the initial

transient, the first 50 years of the 43CO2 simulation are discarded, and all subsequent analyses are conducted after removing the trend

of the remaining 250 years (indicated on the plots with dashed lines). The full time series for the preindustrial control is shown in Fig. S1; the

mean value of AMOC at 268, 458, and 608N in the control simulation is 22.4, 25.4, and 16.6 Sv (1 Sv [ 106m3 s21), respectively.
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straightforward to present for multiple models. There

are two reasons for focusing on GFDL ESM2M in

particular. First, this model exhibits a strong spectral

peak in AMOC variability, which is of particular in-

terest both because this potentially increases decadal

predictability (Msadek et al. 2010), and because it is

consistent with a lightly damped system where changes

in stability with rising CO2 could be important. And

second, the 4 3 CO2 simulation is long enough to ex-

plore the dynamics after many of the initial transients

have settled, allowing us to explore theAMOCvariability

changes in a higherCO2world.We choose a rather strong

4 3 CO2 increase scenario in order to maximize the

signal-to-noise ratio in the model response.

3. Characteristics of the variability

At each latitude, the AMOC strength is calculated as

the maximum over depth of the streamfunction. [All

analyses are conducted with the Ekman component of

the meridional streamfunction removed as in Hirschi and

Marotzke (2007), although this has a negligible influence

at the latitudes considered here.] As expected, the

mean AMOC is substantially weaker in the greenhouse

warming scenario relative to the preindustrial control

simulation (Fig. 1). In both simulations, the highest

midlatitude mean overturning circulation occurs at 458N
(see Figs. 3b,e described below).

The power spectrum of the AMOC at selected lati-

tudes is shown in Figs. 2a–c. For the preindustrial sim-

ulation, at latitudes between 268 and 508N the power

spectrum of AMOC variability exhibits a statistically

significant peak, relative to a red-noise hypothesis,

with a period of about 15 years. However, in the 43CO2

scenario, there is no spectral peak at 268N (roughly the

latitude of the RAPID array; Cunningham et al. 2007;

McCarthy et al. 2012), and the only strong (statistically

significant) spectral peak is farther north near 608N
(Fig. 2). The advective northward heat transport due to

the overturning circulation component is calculated as in

Bryan (1982) and Johns et al. (2011) and the associated

power spectrum is shown in Figs. 2d,f. The heat transport

spectrum is broadly similar to that of AMOC although the

spectral peaks are less prominent. While the preindustrial

AMOC variability leads to significant variability in mid-

latitude heat transport, the high-latitudeAMOCvariability

in the 4 3 CO2 simulation only impacts the rela-

tively smaller heat transport north of 558N. The mean

FIG. 2. Power spectrum of AMOC variability at (a) 268, (b) 458, and (c) 608N, for preindustrial control simulation (blue, 500 years), and

43CO2 (red, last 250 years of a 300-yr simulation); shaded bands represent 95%confidence intervals. Also shown is a variance-equivalent

red-noise (AR1) spectrum (black lines) and corresponding 95% confidence level (dotted), to test statistical significance of the spectral

peaks. This is plotted only for the preindustrial simulation for 268 and 458N and only for the 4 3 CO2 simulation for 608N. (d)–(f) The

power spectrum of northward heat transport at the same latitudes is shown; only the ‘‘overturning’’ heat transport component is shown

(Bryan 1982; Johns et al. 2011).
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overturning circulation in the 4 3 CO2 simulation is

strongest from 208 to 508N, therefore the higher-latitude

variability does not substantially affect the maximum

overturning, nor the ocean heat transport south of

roughly 558N. This northward shift in AMOC variability

at high CO2 could thus provide a mechanism by which

anthropogenic climate change could affect midlatitude

climate variability.

The pattern of the variability associated with the

spectral peak in both simulations can be examined by

creating a composite pattern averaged over years during

which the AMOC is at a maximum, minus years when

the AMOC is at a minimum, as illustrated in Fig. 3. For

the preindustrial case, we construct a composite based

on selected maxima and minima of AMOC at 458N,

while for the 43CO2 simulation we use AMOC at 608N
where the variability is strongest in order to better un-

derstand the high-latitude variability that arises in this

case. For each simulation, the AMOC index is first fil-

tered at a 5-yr period to focus on decadal variability, and

the 10 most prominent maxima and minima in each

simulation are retained for constructing composites

(prominence relative to neighboring minima ormaxima).

Figures 3b,e show the streamfunction averaged over

times of AMOC maxima (solid lines) and separately

averaged over times of minima (dashed lines). The pre-

industrial AMOC variability is characterized by changes

in the strength, the latitude, and the depth of the circu-

lation as shown in Figs. 3a,b, and is associated with vari-

ability in upper ocean heat content (Fig. 3c) and heat

transport (Fig. 2). The preindustrial AMOC variability

involves changes in maximum overturning strength and

depth at 408–508N (Fig. 3b) as well as a slight northward

shift of the streamfunction near 508N. The AMOC vari-

ability in the 4 3 CO2 case (Fig. 3e) primarily involves a

local variability in the northernmost extent of the over-

turning cell beyond 608N, well north of the latitude of

peak overturning circulation, rather thanmodulations to

its maximum value at midlatitudes. This explains the

relatively minor impact of the 4 3 CO2 AMOC vari-

ability on midlatitude northward heat transport. The

patterns of upper ocean heat content anomalies associ-

ated with the AMOC variability in both simulations

(Figs. 3c,f) illustrate that the variability in these anom-

alies is also shifted northward in the 43CO2 simulation.

Lag-correlation analysis shown in Fig. 4a indicates

that in the preindustrial case, the spectral peak is con-

sistent with a thermohaline oscillation (Delworth et al.

1993; Griffies and Tziperman 1995), where the temper-

ature and salinity in the sinking region (458–658N) play

FIG. 3. Composite pattern of AMOC variability for (top) preindustrial control and (bottom) at 4 3 CO2. (left) AMOC time series is

shown, with a darker line filtered at a 5-yr time scale to smooth high-frequency variability: (a) preindustrial control at 458N and

(d) 4 3 CO2 at 608N. Composite maps are created from the average over selected years when AMOC is at a maximum (black circles)

minus the average over selected years when AMOC is at a minimum (magenta squares). The resulting composite map of the over-

turning streamfunction is shown in the center column (in Sv), contours at maximum and minimum shown with solid and dashed lines,

respectively]: (b) for preindustrial and (e) for 43 CO2. The difference between ocean temperature averaged over the upper 1000m at

AMOC maxima and minima (8C) is shown for (c) preindustrial and (f) for 4 3 CO2.
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distinctly independent roles and lag one another as an-

ticipated by a simple linearized box model (Griffies and

Tziperman 1995). This result is equivalent to Fig. 8 in

Delworth et al. (1993) for an earlier version of the

GFDL model, where here we have slightly adjusted the

sinking region used in the calculation, consistent with

themean streamfunction for the current simulation.Transfer

function analysis (MacMynowski and Tziperman 2010;

MacMartin et al. 2013, and supplementary material) in

Fig. 4c complements this finding by showing that the phase

relationship between variables is consistent across a range

of frequencies: temperature and density anomalies lead

AMOC by 1/4 cycle (908), while salinity anomalies lag

AMOC by 1/4 cycle, not just at the spectral peak that

dominates the calculation of correlation, but across a

wide frequency band.

Figures 4b,d evaluate the same relationships relative

to AMOC variability at 608N in the 43CO2 simulation,

in order to explore whether or not the oscillatory be-

havior that arises there is due to the same mechanism as

in the preindustrial case. As noted earlier, the mean

sinking region associated with the mean overturning

circulation does not shift northward in the increased

CO2 simulation. We thus consider the same 458–658N
sinking region. Compared to the preindustrial case, the

phase relationships for the 43CO2 case (Figs. 4b,d) are

fairly distinct, indicating that the dynamics are different

from those of the preindustrial simulation of the same

model. This is clearest in the transfer function phase

(Fig. 4d), which indicates that temperature and salinity

still lead and lag AMOC, respectively, though not at all

frequencies, while the net density anomalies now lag

AMOC variability. Evaluating these relationships in

the 4 3 CO2 simulation for AMOC at 458N yields

roughly similar results (see Fig. S3 in the supplementary

material).

FIG. 4. Temperature–salinity phase relations characterizing AMOC variability are different in (left) preindustrial control and (right)

43CO2 simulations. (top) The lag-correlation plot (AMOC leads at positive lag) relating AMOC to itself (black line), to high-latitude

density (green, rtot), density due to temperature perturbations (red, rT), and density due to salinity perturbations (blue, rS); all

variables are filtered at a 5-yr period to focus on decadal variability. The phase relationships are clearer from transfer function analysis.

(bottom) The phase of the transfer function relating each variable to AMOC (AMOC leads at positive phase). For the preindustrial

simulation (c) the lead or lag phase relationships (roughly 1/4 cycle,6908) are maintained across a range of frequencies, and net density

anomalies lead AMOC changes. (d) For the 43 CO2 simulation, the density now lags AMOC, as do temperature anomalies at higher

frequencies (shorter periods). Temperature and salinity are averaged over the sinking region of 458–658N and upper 1000m in both

cases. Results for preindustrial are calculated based on correlation withAMOC at 458N and for 43CO2 with AMOC at 608N. (See also

Fig. S3 in the supplemental material where the 4 3 CO2 relationships are calculated with AMOC at 458N.)
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4. Mechanisms

We next examine whether the different AMOC be-

havior in the two simulations considered is due to a

difference in the atmospheric forcing or in the ocean

dynamics. MacMartin et al. (2013) found the response

to high-latitude surface fluxes to be a key factor in

distinguishing between those models with a spectral

peak in AMOC variability and those without. Sto-

chastic forcing from high-latitude wind stress in par-

ticular had a clear role in exciting multidecadal

AMOC variability, while for other surface fluxes such

as buoyancy forcing, distinguishing cause and effect is

less clear. Figure 5b shows the power spectrum of

high-latitude wind stress to be similar for the two

simulations. More important is the transfer function

between the high-latitude wind stress and the AMOC

at 268, 458, and 608N, shown in Figs. 5c,d,e for the

preindustrial (blue lines) and the 4 3 CO2 simulation

(red lines). These transfer functions represent the

dynamical ocean responses to the atmospheric forc-

ing, and are notably different between the two sim-

ulations, particularly at time scales of 10–20 years

associated with the AMOC spectral peak (Fig. 2).

While the shorter time series available for the 4 3 CO2

case results in larger error bars in transfer function es-

timates, the differences between the two simulations are

nonetheless larger than the estimation errors. We con-

clude that the shift in the characteristics of the AMOC

variability is not due to a change in atmospheric sto-

chastic forcing. We will show next that the change in

AMOC variability is due to a change in the underlying

ocean dynamics.

Specifically, the reduced midlatitude variability in

the 43CO2 simulations can be explained by a change

in background ocean stratification. Composite maps

of the 1000-m vertical velocity (corresponding to the

depth of the maximum AMOC; Figs. 3b,e) are shown

in Fig. 6 at times of maxima and minima of the MOC

index, along with the Brunt–Väisälä frequency for

FIG. 5. Indication that difference in AMOC variability between preindustrial and greenhouse scenario is due to different dynamics

rather than due to different atmospheric forcing. (a) The region over which the wind stress is averaged; (b) the corresponding power

spectrum and the transfer function (Sv per Nm22) to AMOC variability at (c) 268, (d) 458, and (e) 608N, for both the preindustrial control

(blue) and 43CO2 simulations (red). Error bars show6 1 standard deviations of the error estimate on the transfer functionmagnitude,

to give an approximate visual indication of statistical significance from where error bars do not overlap. Using a Student’s t test, the

differences in transfer function magnitude at 20-yr period (268 and 458N) or 15-yr period (608N) are statistically significant at the 95%

level. The power spectrum indicates that the external stochastic forcing is similar, while the transfer functions show that the dynamic

response to this forcing differs between the two simulations.
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preindustrial and 4 3 CO2 simulations. In the pre-

industrial simulation, the oscillation in overturning

circulation is primarily associated with variability in

vertical velocity that is spatially localized east of theGrand

Banks. The variability in vertical velocity at this location is

mostly due to cross-isopycnal flow, with the variability in

the along-isopycnal component about 4 times smaller

[see Fig. 7; the vertical velocity along the isopycnal is

calculated as u(›r/›x)/(›r/›z)1 y(›r/›y)/(›r/›z)]. As

the surface ocean warms due to the increased atmo-

spheric CO2, this warming signal propagates down-

ward (as a reduction in upward heat transport) to

1000-m depth due to the mean overturning circula-

tion. This in turn results in decreased upper ocean

density and increased stratification, particularly in

areas where the sinking velocity was highest in the

preindustrial simulation. The increased stratification

inhibits further mixing and damps cross-isopycnal

velocities that are a critical part of the AMOC vari-

ability. The midlatitude AMOC variability is thus

reduced at 43 CO2 over the multicentury time scales

considered here.

The above finding is in contrast to expectations from

box models, although there are a number of differences

between the scenario here and that typically considered

in box models: the result here is not for an equilibrated

deep ocean, and the dominant forcing that weakens the

mean AMOC strength is from heat fluxes rather than

freshwater flux (Gregory et al. 2005). Box models

suggest that as freshwater forcing at increased CO2

weakens the mean AMOC, the circulation is brought

closer to a bifurcation point where the circulation be-

comes unstable and may collapse (Tziperman et al.

1994). Being closer to this bifurcation point implies that

the less-damped AMOC ought to give rise to increased

variance (e.g., Ditlevsen and Johnsen 2010; Lenton

2011). While it has been shown that a previous gener-

ation version of the GFDL model becomes unstable at

weaker mean AMOC (Tziperman 1997), this does not

seem to be the case in the simulations examined here:

the mean AMOC is weakened at 4 3 CO2, but the

variance in midlatitude does not increase. One likely

reason for this difference is that the MOC in box

models (e.g., Stommel 1961) used to make these pre-

dictions does not depend on the vertical stratification,

but only on the large-scale meridional density gradi-

ents, while here the midlatitude AMOC variability has

decreased at 43 CO2 because of the increased vertical

stratification accompanying the change in mean circula-

tion. A partial AMOC recovery in subsequent centuries

FIG. 6. Vertical mass transport (kg s21) at 1000m averaged over years of AMOC (a),(d) maxima and (b),(e) minima for (top) pre-

industrial control and (bottom) 43CO2. Themaxima/minima are defined as in Figs. 3a,d. (c),(f) ThemeanBrunt–Väisälä frequency (s21)

at 1000-m depth for each simulation; while stratification is not uniformly increased, there is a significant increase east of the Grand Banks

in particular where there was large variation in the vertical velocity in the preindustrial simulation.
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as in Stouffer andManabe (2003) may offset some of this

increased stratification.

Finally, we consider the increase in AMOC vari-

ability at high latitudes in the 4 3 CO2 simulation.

Figure 8 shows composite maps of ocean temperature

for the 4 3 CO2 simulation, averaged over the upper

1000m from 7 years before to 8 years after an AMOC

minimum. The time evolution of the spatial pattern of

upper ocean heat content anomalies in this case is

suggestive of advection by the subpolar gyre (local

maxima and minima ‘‘rotate’’ about the center of the

gyre). The corresponding plot for the preindustrial

control simulation is shown in Fig. S3 in the supple-

mental material. An advection time scale for the

subpolar gyre can be estimated by (i) selecting the

location of minimum (or maximum) upper ocean heat

content anomalies in each year of the lagged com-

posite in Fig. 8, and (ii) calculating mean upper 1000-

m ocean currents at these locations. The resulting

roughly 1 cm s21 average currents in the 4 3 CO2 case

lead to an estimated 12–15-yr advection time around

the gyre, roughly consistent with the time scale of the

AMOC variability for this simulation (Fig. 2c). This

suggests that the advection of anomalies in the

subpolar gyre is strongly coupled with (possibly even

causing) the AMOC variability at 608N in the 4 3 CO2

simulation, but decoupled from the weaker AMOC

variability south of 508N. In the preindustrial simu-

lation, the subpolar gyre circulation is roughly twice

as strong (estimated either from ocean currents at the

same locations, or from the barotropic stream-

function). There is thus a large separation of time

scales between the subpolar advection and AMOC

variability, as the stronger subpolar gyre circulation is

characterized by twice shorter advection time scale.

We conclude that the AMOC variability at 608N in

the 4 3 CO2 case is likely linked to subpolar-gyre

advection, as found in control simulations of CCSM3

and GFDL CM2.1 (Tulloch and Marshall 2012);

however, this advection does not play a significant

role in midlatitude AMOC variability in the 1 3 CO2

simulation.

While the AMOC variability at 608N in the 4 3 CO2

case has a relatively small impact on midlatitude me-

ridional heat transport, it can have a significant effect

on climate via its link to the variability in sea ice con-

centration; Fig. S4 in the supplemental material shows

the composite of annual-maximum sea ice extent. We

find that salinity variations caused by the variations in

sea ice concentration have only a small impact on

ocean density and stratification relative to the tem-

perature variations. The sea ice may be passively fol-

lowing the thermal variability, it might also play a

dynamical role in the high-latitude AMOC variability

at 4 3 CO2 in this model through modulating air–sea

heat exchange.

5. Conclusions

There has been significant research toward un-

derstanding the role of the AMOC in multidecadal

climate variability using models and data. We focus

here on a specific mechanism that can lead to a sig-

nificant change in this variability under future in-

creased CO2, as demonstrated by a particular model,

GFDL ESM2M. We show that midlatitude AMOC

oscillations present in the preindustrial simulation are

largely absent in the 4 3 CO2 scenario, in which the

variability is located farther north near 608N and in-

volves changes to the northernmost extent of the

MOC cell rather than changes to its maximum am-

plitude at midlatitudes. Transfer function analysis

demonstrates that the differences in AMOC vari-

ability between the simulations are due to shifts in

internal ocean dynamics, rather than in atmospheric

forcing. Specifically, we find that the reduction in

midlatitude AMOC variability is due to an increased

FIG. 7. Total vertical velocity, and the component along iso-

pycnal [given by u(›r/›x)/(›r/›z)1 y(›r/›y)/(›r/›z)] for pre-

industrial control simulation, at the location of the maximum

variation in vertical velocity at 1000m depth, 458N and 3148E (see

Fig. 6a). Years corresponding to AMOC maxima and minima

(from Fig. 3a) are shown, as well as the average over those years.

Most of the variation in vertical velocity associated with AMOC

variability is cross isopycnal.
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stratification that is itself linked to a weaker and

shallower mean AMOC under the higher CO2.

We find that a high-latitude spectral peak in AMOC

variability at 4 3 CO2 likely arises from a different

mechanism from that in the preindustrial control, in-

volving the advection of anomalies by the subpolar gyre.

This result suggests thatmonitoring the subpolar gyre, as

proposed by the Overturning in the Subpolar North At-

lantic Program (OSNAP), might be key in understanding

and predicting high-latitude climate variability under

climate change.

Our findings are not consistent with the prediction

of simple MOC models according to which a weaker

overturning circulation brings the circulation closer

to a bifurcation point at which the AMOC becomes

unstable, which would have implied a larger variability

as the mean circulation weakens under a greenhouse

scenario. It is unclear whether this is a result of the

300-yr 4 3 CO2 simulation used here still being in a

transient state; box models have also typically been

forced with freshwater rather than thermal forcing.

Further work using a hierarchical modeling approach

and additional GCMs would be valuable to put these

results in perspective.
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FIG. 8. Compositemaps of the evolution of upper ocean heat content anomaly in the 43CO2 simulation. ‘‘AMOCmin’’ shows the heat

content averaged over AMOCminima (similar to Fig. 3f), while the remaining panels show the evolution prior to and after a minimum on

the same color scale. The oscillation is less regular than for the preindustrial simulation; panel ‘‘18’’ is similar to the heat content averaged

overAMOCmaxima. One contour of the barotropic streamfunction is added to illustrate that themaxima andminima of the heat content

are advected by the subpolar gyre.
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1 Supplemental figures

Several additional figures provide some useful details. Figure S1 shows the time response of AMOC at 26, 45,
and 60◦N from the preindustrial simulation, similar to Fig. 1 in the main text for the 4×CO2 simulation; the
oscillatory behavior at the lower latitudes is apparent. Figure S2 shows the time-response for a simulation
where CO2 is increased gradually at 1% per year rather than abruptly as in the 4×CO2 simulation to
evaluate whether the observed changes depend on the unrealistic abrupt nature of the forcing; there is no
corresponding quasi-equilibrium state in this simulation. Fig. S3 shows the evolution of upper ocean heat
content anomalies before and after an AMOC minimum for the preindustrial simulation, similar to Figure 6
in the paper. Figure S4 is similar to Figure 4 in the main text, except that where Figure 4 evaluated
relationships relative to AMOC at 45◦N for the preindustrial and 60◦N for the 4×CO2 simulations, Fig. S4
evaluates the relationships in both simulations for AMOC at 45◦N. While this is less useful for understanding
whether the “new” oscillation at 60◦ in the 4×CO2 simulation arises from a similar mechanism as the lower-
latitude oscillation in the preindustrial case, it is useful for illustrating that the differences apparent in
Figure 4 are not simply a result of having evaluating relationships at a different latitude. Finally, the effect
of AMOC variability on sea ice in the 4×CO2 simulation is shown in Fig. S5.

2 Brief review of transfer functions

The following text is based closely on MacMynowski and Tziperman (2010). The frequency-dependent
“transfer function” (e.g., Astrom and Murray, 2008) estimates the linear causal relationship between any
pair of variables. Thus, the relationship between an “input variable” (X) and an “output variable” (Y ) can
be written as Y = TXYX, with TXY the transfer function. It is convenient to first derive the (complex)
transfer function directly from an example of a differential equation describing the dynamics, although as we
will see below the knowledge of the governing equation is not required. For example, consider the following
equation,

Ẏ = µX − εY. (S1)

By taking the Fourier transform with a frequency f , we have

2πifŶ (f) = µX̂(f) − εŶ (f). (S2)

The transfer function is now defined by

TXY (s) ≡ Ŷ (s)

X̂(s)
=
Ŷ (s)X̂∗(s)

X̂(s)X̂∗(s)
= µ

1

s+ ε
, (S3)

where s = 2πif and Ŷ (s)X̂∗(s) is the cross correlation between the input X and output variable Y . As
this demonstrates, the transfer function depends on frequency according to the differential operator in the
relation between the input and output.
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Figure S1: AMOC strength at 26, 45, and 60◦N in the preindustrial or 1×CO2 simulation.

However, a key advantage of the approach considered here is that the equation describing the relation
between the input and output does not need to be known a priori, and indeed can be extracted from time
series of the two. Given input and output time series X(t) and Y (t) and their Fourier transforms X̂(f)
and Ŷ (f), the transfer function between them may be obtained as the ratio of the cross-correlation to the
auto-correlation in frequency space, as motivated by (S3) (e.g., Section 6.2, Swanson, 2000),

TXY (f) =

〈
X̂(f)Ŷ ∗(f)

〉
〈
X̂(f)X̂∗(f)

〉 =
SXY (f)

SXX(f)
, (S4)

where SXY (f) is calculated by dividing the time series into n segments and averaging the respective Fourier
transforms. This averaging eliminates contributions that are not related to the input X,

SXY (f) =
1

n

n∑
k=1

X̂k(f)Ŷ ∗
k (f). (S5)

Error estimates of the transfer function are calculated from the coherence (eq. 6.2.21, Swanson, 2000).
At any frequency, the transfer function is simply a complex number, with both the magnitude and phase

providing useful information about the relationship between the input and output variables.
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Figure S2: AMOC strength at 26, 45, and 60◦N comparing abrupt 4×CO2 simulation to 1% per year increase
in CO2 (red lines); the final 100 years of the preindustrial (1×CO2) simulation is shown for comparison.
While the 1% simulation is not in steady-state over this time-interval, the suppression of variability at 26◦N
is evident; the effect at 45◦ is less clear.
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Figure S3: Evolution of upper ocean heat content anomaly, preindustrial (1×CO2) simulation. Panel labeled
“AMOC min” shows the heat content averaged over AMOC minima (similar to Fig. 2(c)), remaining panels
show the evolution prior to and after the minimum on the same color scale. Panels “-7” and “+8” are similar
to the heat content averaged over AMOC maxima.
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Figure S4: Temperature-salinity phase relations characterizing AMOC variability, with AMOC evaluated
at 45◦N in both preindustrial (left column) and 4×CO2 (right column) simulations; panels (a) and (c) are
identical to Figure 4. Upper row: lag-correlation plot (AMOC leads at positive lag) relating AMOC to
itself (black line), to high-latitude density (green, ρtot), density due to temperature perturbations (red, ρT ),
and density due to salinity perturbations (blue, ρS); all variables are filtered at a 5-year period to focus on
decadal variability. Temperature and salinity are averaged over the sinking region of 45-65◦N and upper
1000 m in both cases.
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Figure S5: Sea ice concentration averaged over AMOC maxima (left), AMOC minima (middle) and the
difference (right) for preindustrial (top) and 4×CO2 simulations (bottom row). Compare with upper ocean
heat content in Fig. 3(c,f); here the sea ice responds to the pattern of temperature variation. While AMOC
variability in 4×CO2 has less effect on mid-latitude variables than the AMOC variability in the preindustrial
case, it can nonetheless be climatically important at high latitudes.
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