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ABSTRACT

Accurately capturing the observed mean period of ENSO in general circulation models (GCMs) is often
challenging, and it is therefore useful to understand which parameters and processes affect this period. A
computationally efficient simulation-based approach is used to extract both the dominant eigenvalues and
corresponding eigenvectors of the linearized model from the Zebiak–Cane intermediate-complexity model
of ENSO without having to directly construct the linearization. The sensitivity of the period to a variety of
parameters is examined, including atmosphere–ocean coupling, atmospheric heating parameterization, ther-
mocline depth zonal profile, western boundary reflection coefficient, atmospheric and ocean wave speeds
or Rossby radii of deformation, ocean decay time, and the strength of the annual cycle. In addition to the
sensitivity information, the spatial structures of the main fields (SST, thermocline thickness, and more) that
are involved in period changes are obtained to aid in the physical interpretation of the sensitivities.

There are three main time lags that together compose one-half of a model ENSO period: the Rossby-
plus-Kelvin wave propagation time for a wind-caused central Pacific disturbance to propagate to the west-
ern ocean and back, SST dynamics that determine the lag between eastern ocean thermocline anomalies and
eastern ocean SST anomalies, and the “accumulation” lag of integrating a sufficient delayed wave signal
arriving from the western ocean to cancel the eastern ocean anomalies. For any of the parameter changes
considered, the eigenvector changes show that the largest contributor to the period change is from changes
to the last of these three mechanisms. Physical mechanisms that affect this accumulation delay are discussed,
and the case is made that any significant change to ENSO’s period is in turn likely to involve changes to this
delay.

1. Introduction

ENSO’s period varies between 2 and 7 yr, with the
average being quite robust around 4 yr. Accurately cap-
turing the observed periodicity in GCMs nonetheless
still seems elusive (e.g., Timmermann et al. 1999;
Doherty and Hulme 2002; AchutaRao and Sperber
2002, 2006; Collins et al. 2005) and often requires tun-
ing parameters somewhat arbitrarily. It is thus valuable
to describe the sensitivity of the period to as many rel-
evant parameters as possible to enhance our under-
standing of which parameters and physical processes

are most important and to provide guidance on improv-
ing GCM ENSO simulations.

The observed irregular periodicity has been ex-
plained either as the result of self-sustained, possibly
chaotic behavior (Jin et al. 1994; Tziperman et al. 1994,
1995), such as the output of a damped stable system
driven by weather “noise” external to the ENSO dy-
namics excited through nonnormal growth (Kleeman
and Moore 1997; Penland and Sardeshmukh 1995;
Burgers 1999; Philander and Fedorov 2003; Wang et al.
1999; Thompson and Battisti 2000), or as a combination
of the two (Kirtman and Schopf 1998). In either case,
ENSO models have a dominant complex (oscillatory)
eigenvalue pair that is either stable (damped) or un-
stable (self-sustained behavior) and whose period is re-
lated to the observed ENSO periodicity. Understand-
ing the behavior of these dominant eigenvalues of the
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linearized system as a function of model parameters is
therefore useful in understanding the dynamics. If the
system is stable and forced by external noise, variations
in the eigenvalue can directly describe the variation
expected in the time series. In the self-sustained or cha-
otic cases, the behavior of the eigenvalues is still useful
in describing the output, although nonlinear effects will
certainly be relevant in this case and can also affect the
period (Münnich et al. 1991; Jin 1997a,b; Eccles and
Tziperman 2004).

The variation in the dominant eigenvalues of a lin-
earized ENSO model as a function of one or more pa-
rameters is a well-established approach that has proven
useful in understanding ENSO dynamics (Jin and Nee-
lin 1993a; Neelin et al. 1994; Jin et al. 1996; Thompson
and Battisti 2000, 2001; Dijkstra 2000; An et al. 2004;
Cane et al. 1990). These studies either considered rela-
tively simple ENSO models, in which the combined
effects of multiple physical processes are lumped to-
gether into a few key parameters, or considered only a
few parameters in more complex models.

Ocean–atmosphere coupling is a key parameter ex-
plored in bifurcation analysis of ENSO models as sum-
marized, for example, by Dijkstra (2000). Jin and Nee-
lin (1993a) considered a “stripped-down” version of the
Zebiak and Cane (1987) model (hereafter ZC model)
that retains the essential behavior but allows some ana-
lytical results to be generated. Eigenvalue behavior is
plotted (e.g., Neelin et al. 1994) as a function of the
wind stress coupling coefficient, the relative adjustment
time between oceanic wave dynamics and SST adjust-
ment, and a surface-layer parameter. Thompson and
Battisti (2000, 2001) used a linearized version of an
intermediate complexity model (Battisti 1988) similar
to the ZC model and considered the wind stress cou-
pling factor, the western boundary reflection coefficient
(WBRC), and the ocean damping time constant. Eigen-
value variation was also used by An et al. (2004) to
understand the influence of changes in the background
climate state on ENSO dynamics during the Last Gla-
cial Maximum (LGM). In addition, both Thompson
and Battisti (2000) and Van der Vaart et al. (2000)
plotted the eigenvector for standard parameter choices
in an intermediate complexity model.

In addition to these eigenvalue variation studies, sev-
eral studies describe impacts of variations of specific
parameters on ENSO. Zebiak and Cane (1987) ex-
plored some parametric sensitivities through time simu-
lations. Van der Vaart et al. (2000) illustrated that the
recharge oscillator of Jin (1997a) is a good metaphor
for the dominant mode in a ZC-type model and that the
spatial shape of this mode is strongly influenced by the
background climatology. One of the strongest influ-

ences on the period was found to be the ratio of atmo-
sphere and ocean Rossby radii of deformation. This
ratio affects the meridional structure of ocean Rossby
waves excited by the wind forcing, with the resulting
impact on ENSO’s period described in detail by Kirt-
man (1997). The importance of eastern Pacific ther-
mocline depth has been noted in numerous contexts
(e.g., Timmermann et al. 1999, 2005; Fedorov and Phi-
lander 2001; Philander and Fedorov 2003; Münnich et
al. 1991; Galanti et al. 2002). Philander and Fedorov
also noted the importance of the temperature gradient
across the thermocline. The importance of wave reflec-
tion coefficients (Kang and An 1998), vertical mixing
(Syu and Neelin 2000), and the background mean state
(Codron et al. 2001) have been studied.

The purpose of this paper is to obtain additional in-
sight into the factors determining and affecting ENSO’s
period. Our approach, similar to that of the above stud-
ies, is to explore both the eigenvalue and the eigenvec-
tor behaviors as a function of many different param-
eters in the ZC model. We introduce two novel ele-
ments into our analysis. First, we vary a combination of
more than one parameter to create a change to the
period of ENSO without changing the amount of damp-
ing of the ENSO mode. This allows us to try to under-
stand what affects ENSO’s period specifically. Second,
we explore the dependence of the period in the ZC
intermediate-complexity model on many more param-
eters than have previously been described by utilizing a
novel technique of efficiently extracting the desired
eigenvalue information from carefully constructed
simulations without having to explicitly construct the
linearization of the model. This technique can, in prin-
ciple, be extended to more complex models. This ap-
proach of using a set of short simulations to extract
relevant low-dimensional information from high-
dimensional numerical models has been extensively ex-
plored in the control engineering literature by Kevreki-
dis et al. (2003, 2004).

Using this technique, we find that changes to the
period of ENSO can result from changes to one of three
possible delays that affect it: the wave propagation de-
lay (Suarez and Schopf 1988; Battisti 1988), the accu-
mulation delay (Cane et al. 1990; Kirtman 1997), or the
SST dynamics delay in the eastern Pacific (Jin and Nee-
lin 1993a,b; Neelin and Jin 1993). Accumulation delay
is a term introduced by Cane et al. (1990) for the delay
in accumulating enough negative feedback from the de-
layed Rossby waves to eliminate the positive anomaly
that has developed in the eastern Pacific because of the
Kelvin waves. We find that changes to this accumula-
tion delay seem to be the main reason for the period
changes we identify in our experiments.
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The next section describes the relevant background
to the approach used here, including a brief summary of
the relevant aspects of the ZC model and the algo-
rithms used here for extracting both eigenvalues and
eigenvectors. The sensitivities to a change in a single
parameter at a time and then to a simultaneous change
in two parameters are described in sections 3a, b, re-
spectively, and we conclude in section 4.

2. Methodology

a. Zebiak–Cane model parameters

We use the intermediate-complexity coupled atmo-
sphere–ocean ZC model of the tropical Pacific, which
computes perturbations about a specified monthly cli-
matology. The model parameters that we vary to study
their effect on ENSO’s period are as follows:

• the drag coefficient R* that determines the wind
stress given the atmospheric wind speed, and hence
determines the strength of the ocean response to at-
mospheric winds;

• several parameters in the atmospheric heating pa-
rameterization, including
– �, which scales the atmospheric heating because of

SST-dependent evaporation, and
– �, which scales the atmospheric heating because of

large-scale atmospheric wind (and therefore mois-
ture) convergence;

• the specified mean thermocline depth zonal profile h;
only the eastern thermocline depth is changed here
while the (deeper) western thermocline depth is kept
fixed (the mean thermocline depth is also an effective
ocean–atmosphere coupling coefficient); a deeper
mean thermocline means that changes to the ther-
mocline depth due to wind anomalies have a weaker
effect on the SST, and therefore on the atmosphere;

• the ocean western boundary reflection coefficient
(amplitude of eastward-traveling Kelvin wave in re-
sponse to an incident westward-traveling Rossby
wave);

• the atmosphere Rossby radius of deformation or,
equivalently, the atmosphere wave propagation
speed ca;

• the ocean-layer depth used in computing ocean wave
propagation speeds [H in (A.6) of Zebiak and Cane
1987] or the equivalent depth hequiv;

• the ocean momentum damping time Tdecay; and
• the strength of the annual cycle, with two different

cases noted in particular:
– a coefficient that determines the amplitude of the

seasonal cycle relative to the annual mean state
and

– a coefficient that determines the amplitude of the
seasonal cycle relative to the state of permanent
July conditions (chosen because it is a highly un-
stable month).

With the standard values for the parameters used in
Zebiak and Cane (1987), given for reference in Table 1,
the background state is linearly unstable and the ENSO
variability is self-sustained and chaotic (Tziperman et
al. 1995). We examine the sensitivity of the period un-
der both this standard regime and a linearly damped
oscillatory regime.

b. Eigenvalue analysis

Let a state vector xk at time tk include all of the
prognostic variables required to determine the future
evolution of the ZC model. This includes the SST at
each grid point and the oceanic Kelvin and Rossby
wave amplitudes. In addition, although the atmosphere
is assumed to reach equilibrium rapidly and its time
derivatives are neglected in the model equations, the
iterative numerical solution starts from the previous
time step solution and does not necessarily converge at
each time step. Thus the atmospheric fields depend on
their value during the previous time step and are there-
fore part of the state vector of the ZC numerical model.
With the 78 � 116 ocean dynamics grid points and 30 �
34 SST and atmospheric dynamics grid points, this leads
to a total of Nstate � 32 903 state variables.

The nonlinear time stepping numerical model can be
written as

xk�1 � f�xk, m�, �1�

where m � 1, . . . , 12 determines the monthly back-
ground fields and therefore influences the dynamics.
Because this model computes perturbations about the
background state, the zero state x � 0 is a solution
(fixed point or equilibrium point) of the model equa-
tions. The ZC model uses 3 time steps per month, which
can be combined to give an iteration as above where k
is a monthly time index.

The time-periodic system can be converted to a time-
invariant system through Floquet analysis (Iooss and
Joseph 1990), as has been done for ENSO models by
Jin et al. (1996), Thompson and Battisti (2000), and

TABLE 1. Standard values of parameters in ZC model.

Parameter Value Parameter Value

R* 1.0 Tdecay 30 months
� 1.6 WBRC 1.0
� 0.75 ca 60 m s�1

h 50 m hequiv 0.86 m
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Samelson and Tziperman (2001). More simply put, we
can write an annual model as

xk�12 � gm�xk�, �2�

where gm is obtained by iterating (1) for 1 yr starting
from month m and relates the state at the end of one
month to the state 1 yr earlier. In this formulation, the
rhs does not depend on time explicitly (model is au-
tonomous).

The eigenvalues 	 and corresponding eigenvectors v
of the linearized model are defined to be those of the
appropriate Jacobian matrix of the nonlinear model
equations,

Jmv 

�gm

�x
v � �v. �3�

Furthermore, the eigenvalues of this annual model
propagator do not depend on the month m, although in
general the eigenvectors do. Because this is a discrete-
time system, the magnitude of the eigenvalue of Jm

determines the annual growth rate and stability (|	| � 1
being unstable; |	| � 1 being stable) and the phase of
the complex eigenvalue determines the period.

The least stable mode (which is a pair of complex-
conjugate eigenvalues) of the annual model is the most
important for describing the dynamics of ENSO, al-
though other modes may clearly be important because
of the potential for nonnormal growth (Penland and
Sardeshmukh 1995; Kleeman and Moore 1997; Thomp-
son and Battisti 2000, 2001). For the standard param-
eters used in the original ZC model, we find by using
the methodology outlined below that the least stable
mode has a period of roughly 3.4 yr and an annual
growth factor of 1.25; these are slightly different from
the values in Thompson and Battisti (2000) because of
different choices of parameters and details of the model
formulation.

The sensitivity analysis in this paper is based on the
linearized model, yet it is straightforward to show by
numerical simulations that for the standard parameters
in the ZC model, the sensitivity of the period and
damping of the full model is the same as that deduced
from the dominant eigenvalue of the linearized model.
We also note that the nonlinear phase-locking to the
seasonal cycle leads to potentially discontinuous period
changes in response to continuous shifts in model pa-
rameters (Fig. 15 in Neelin et al. 2000).

c. Eigenvalue/eigenvector calculation algorithm

The eigenvalue calculation algorithm used here is
based on running relatively short numerical simulations
and analyzing the output time series to extract the

eigenvalues without having to explicitly construct the
linearization. The method can, in principle, be applied
to much more complicated models, although it would
need to be extended to include the calculation of the
equilibrium state if that is nonzero. (Readers who are
interested in the sensitivity of ENSO’s period but not in
the algorithm used here are invited to skip to section 3.)

The algorithm is quite straightforward for the ZC
model because it is an anomaly model; that is, the equi-
librium state is zero. The only code modification re-
quired is to introduce a scale factor on the entire state
vector at each iteration. Thus, rather than integrating
the original nonlinear system xk�1 � f(xk, m), we inte-
grate the modified system

xk�1 � � f�xk, m�. �4�

Choosing an appropriate scale factor  guarantees that
the simulation is stable and thus that nonlinear effects
can be minimized by selecting sufficiently small initial
conditions. The eigenvalues of the scaled system are
related to those of the original system by the scale
factor

����� f�
�x �� ��� �f

�x�, �5�

and the eigenvalues of the annual system in (3) scale
with 12	. The scaling is therefore equivalent to adding
( � 1) or removing ( � 1) numerical damping, and it
can be used not just to stabilize the system but to
choose the system stability so that the dominant eigen-
mode is lightly damped and decays slowly. This helps
minimize the error in estimating the eigenvalues for a
given amount of computation. If this technique is ap-
plied to a system in which the equilibrium state is non-
zero, the scaling should be applied to the perturbation
about the equilibrium.

We calculate the dominant eigenvalues from the un-
forced time series model response to an initial pertur-
bation. The unforced response of a linear oscillatory
system with a single mode will simply be a sinusoid
decaying or growing with time. For a system with mul-
tiple modes, the response will eventually be dominated
by the least stable mode. Any initial condition x0 can be
expressed as a linear combination of eigenvectors of the
linearized Jacobian Jm (3), x0 � �N

1 �jvj, where Jmvj �
	jvj and 	j � |	j| e

i�j. For a (oscillatory) complex-
conjugate dominant eigenvalue pair, 	2 � 	*1 and v2 �
v*1 , and for a sufficiently large time k, all modes decay
except for the first, so that

xk � Jm
k x0 � |�1|k��1eki�1v1 � �*1e�ki�1v*1�. �6�

It is sufficient to estimate the eigenmodes of the sys-
tem using the time series of a scalar (or in general, some
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low M-dimensional) model output yk, which is a func-
tion of the full state vector rather than using the full
state, provided that the dynamics of interest are observ-
able in the chosen output. The estimation algorithm
converges using the minimum length of a model output
time series given an output variable yk, in which the
ENSO mode is most observable. We use for yk the
model-computed monthly Niño-3 index (scalar average
SST over 5°N–5°S, 150°–90°W of the equatorial eastern
Pacific, so that M � 1) because it clearly reflects the
behavior of the ENSO mode and the spatial averaging
reduces the contamination with high-spatial-frequency
dynamics.

We use an autoregressive (AR) model (also used to
fit the observed ENSO data by Burgers 1999) to fit the
model output data and evaluate the eigenvalues of the
AR model. The AR model assumes that the model
output yk at time tk can be described in terms of the
output at a finite number N of previous outputs, which
for the annual model takes the form of

yk � �
n�1

N

anyk�12n, �7�

with coefficients an that are the same regardless to
which month the index k corresponds, because the
eigenvalues of the annual evolution do not depend on
the month. The eigenvalues of the discrete-time system
(7) are the roots of the polynomial

p��� � 1 � a1� � a2�2 � . . . � aN�N. �8�

The coefficients ai (and therefore the eigenvalues) are
estimated from the model output time series using a
recursive formulation so that the convergence can be
monitored to avoid unnecessary extra simulation. The
algorithm details are provided in appendix A.

An example plot of a simulated time history and a
comparison with AR fit (7) is shown in Fig. 1. The AR
fit is clearly satisfactory, indicating that the extracted
eigenvalues (and eigenvectors whose calculation is de-
scribed below) may be expected to be reasonably accu-
rate. Note that the irregularity in Fig. 1 is associated
with the seasonal cycle, not with nonlinearities or ad-
ditional dynamics.

The estimation algorithm proceeds as follows: given
an initial guess for the estimated parameters ai, choose
the initial conditions and a scale factor , run a short
simulation, update the parameter estimate, extend the
simulation if needed, and iterate until converged.

Several issues affect the calculation accuracy and the
simulation length required to achieve a specified toler-
ance. For any linearizable system, nonlinear effects in
the response can be made sufficiently small by choosing
a sufficiently small initial condition. However, in prac-

tice, the amplitudes are limited by small-amplitude nu-
merical noise such as roundoff errors. Nonlinear effects
are minimized by choosing small-amplitude initial con-
ditions, choosing the scale factor so that the dominant
eigenvalue is lightly damped, and rescaling the initial
condition back into the desired range after each short
period of simulation. Once the calculation has started,
the desired scale factor can easily be estimated with
sufficient accuracy based on the current estimate of the
ENSO eigenvalue damping from (8) and the desired
damping [we use  values for each parameter regime
such that 12|	| � 0.95; see (5)]. Choosing an initial
condition as close as possible to the eigenvector of the
desired mode, if known, minimizes the contribution in
the response due to other modes; however, nonnormal
growth can always occur unless the initial condition is
exactly aligned with the eigenvector of the dominant
eigenvalue. Better accuracy is therefore obtained by
fitting a fourth-order AR model to calculate two modes
simultaneously; that is, we use N � 4 in (7) to obtain the
results shown below.

As evident from (6), after sufficient time the re-
sponse is dominated by the least- damped eigenvector.
Given a time history of the full state output x over an
integer number of ENSO periods, the eigenvector cor-
responding to the largest eigenvalue 	 can be estimated
from the weighted average

v �
1

m � 1 �
k�0

m

��kxk0 � k. �9�

Note that the second term in (6) involving the complex
conjugate of v yields zero when averaged over an inte-
ger number of ENSO periods.

FIG. 1. Representative time history of model Niño-3 index (dot-
ted every 3 months) and fourth-order fit (solid) used to calculate
the eigenvalues and eigenvectors of the linearized model.
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The eigenvector is only unique up to a complex scalar
factor rei�. We choose the phase � so that the real part
of the eigenvector corresponds to the state of the model
at the time of maximum Niño-3 index, by choosing k0 in
(9) to be at the time of a Niño-3 maximum. The eigen-
vector magnitude is normalized by r, which is set to the
inverse spatial RMS of the SST component of the
eigenvector. The eigenvector of the annual model de-
pends on the month, and plots shown here are for the
eigenvector averaged over 12 months, as obtained di-
rectly from the averaging in (9).

Each computed eigenvector includes all elements of
the state vector, but we plot below only four main vari-
ables defined on the sea surface grid: the SST anomaly,
the thermocline depth anomaly, the ocean zonal cur-
rent anomaly, and the resulting atmospheric zonal wind
anomaly. If desired, additional eigenvalues and eigen-
vectors could be calculated by first finding the domi-
nant eigenvalue/eigenvector, and then subtracting the
projection of this eigenvector from the initial condition.

There is one numerical detail that is especially rel-
evant in our subsequent analysis. The iterative solution
for the atmosphere in the original ZC code is occasion-
ally reset to start from a zero field to avoid converging
into spurious atmospheric states. The default strategy
for doing so resets the atmosphere initial guess when-
ever the computed Niño-3 index is sufficiently small,
resulting in a slightly different set of dynamics for the
(small amplitude) linearized model. The impact of the
atmosphere resetting algorithm on the linearization will
be discussed in section 3.

3. Sensitivity of ENSO’s period to model
parameters

We consider first a fairly straightforward description
of the sensitivity of the model to a perturbation in one
parameter at a time (section 3a). Next, to isolate pro-
cesses that affect ENSO’s period, we perform experi-
ments in which two parameters are varied simulta-
neously to create a change to the period only, with no
change to the damping of the ENSO mode (section 3b).
This last subsection explores some interesting insights
regarding ENSO’s period.

a. Single-parameter sensitivity experiments

The key parameters to which we explore the sensi-
tivity of model dynamics are listed in section 2a. Eigen-
values, eigenvectors, and root loci (plots of eigenvalues
as a function of model parameters) are computed in
four different regimes in parameter space:

Regime A: Baseline parameters in Zebiak and Cane
(1987), including the seasonal cycle, with the drag

coefficient (which may be viewed as an ocean–
atmosphere coupling parameter) set to R* � 1.
The basic background state is linearly unstable in
this case, and we set the scaling factor to  �
0.9774 (at each monthly time step) to stabilize the
model (5) and give a scaled eigenvalue magnitude
of 0.95.

Regime B: Reduced drag coefficient of R* � 0.75 so
that the linearization is stable. (The stability
boundary is roughly at R* � 0.79, so this guaran-
tees that the system is more than slightly stable.)

Regime C: Seasonal cycle turned off, with back-
ground fields replaced by the annual mean. The
linearization is stable in this case even with R* � 1.

Regime D: Seasonal cycle turned off, with back-
ground fields replaced by permanent July condi-
tions, giving a highly unstable system ( � 0.9458
gives 12|	| � 0.95).

Computing the parametric dependence of ENSO’s
period at these four different regimes helps to assess
the robustness of the parameter sensitivity results. In
particular, we can find out if the results depend on
whether the model is self-sustained/chaotic or damped
(stable) and on whether the model is time periodic
(nonautonomous, first two regimes above) or time in-
variant (last two regimes).

The eigenvalue period and growth rate are plotted as
a function of parameter values around these four loca-
tions in parameter space in Fig. 2. The period is ob-
tained from the phase of the complex eigenvalue, while
the growth rate is the magnitude of the eigenvalue, with
magnitude one giving the boundary between stable and
unstable responses. Note that the scales are different
for each regime. Each 5% variation in parameter value
is marked on the curves, so the period sensitivity is high
for those parameters whose curves are mostly horizon-
tal and have large spacing of line markers. Figure 2
illustrates that the general trends of eigenvalue shifts
with parameter changes do not depend on which of the
four parameter regimes is considered, although the de-
tails certainly do (such as the quantitative extent to
which changing the atmosphere–ocean friction R* af-
fects the period). For small perturbations, the change in
eigenvalue is linear in the perturbation.

As mentioned in section 2c, the linearization results
depend somewhat on the approach used for resetting
the atmospheric solver. We have chosen to use the
original ZC approach (atmosphere is reset whenever
Niño-3 is in the range �0.1° to �0.1°) for consistency
with other published literature. Because our initial con-
ditions are chosen with a small amplitude, Niño-3 is
always in this range and the resetting happens every
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time step, unlike in the standard ZC model run. Alter-
natively, if the atmosphere reset is only performed
when the Niño-3 index crosses between positive and
negative values, then the linearization in the absence of
a seasonal cycle is unchanged, but the linearization in
the presence of the seasonal cycle exhibits much stron-
ger phase-locking to the seasonal cycle. We considered
several additional resetting alternatives and concluded
that overall this issue does not seem to affect our main
findings. Note that in the figures, some phase-locking is
still apparent. This is seen where, as a model parameter
is varied, the period remains fixed to a value T such that
T/1 yr � p/q, where p and q are integers: for example,
T � 3, 4, or 3.5 yr (Tziperman et al. 1995).

For some parameter choices, the ENSO mode is not
the dominant eigenvalue and an (approximately) 11-
month mode appears (Mantua and Battisti 1995;

Tziperman et al. 1997). This affects the calculated
eigenvalues, and the few such points in parameter space
where this occurs are not included in our root locus
plots. This arises in particular for the annual mean case
(Fig. 2b) in which the shift in background climatology
that stabilizes the ENSO mode does not similarly sta-
bilize the 11-month mode. As a result, several of the
parameter changes explored for the other regimes are
not plotted for this regime.

The variation of the eigenvalues as a function of the
strength of the seasonal cycle is not plotted in Fig. 2
because it is not as smooth as for the other parameters.
As the seasonality amplitude is reduced toward the an-
nual mean or toward permanent July, the eigenvalue
changes from the value in regime A to the values in
regimes B and D, correspondingly.

The nondimensional damping and period sensitivity

FIG. 2. Root locus plots of the linearized model eigenvalues. The growth rate (eigenvalue magnitude) and period (2�/eigenvalue
phase) are plotted. The colored lines show the eigenvalue variation as a function of different model parameters, with markers placed
for every 5% change in the parameter value. For each variable, the % change is also indicated for the final point plotted. (a) Variation
around standard parameter values used in the ZC model. (b) Around the annual mean background state. (c) For reduced drag
coefficient of R* � 0.75 resulting in a damped model behavior. (d) Around a permanent July background state.
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(% change in period due to a % change in parameter)
are given in Table 2, based on the small change in the
parameter part of the results plotted in Fig. 2. We can
now make the following general observations regarding
parameter sensitivity, based on all of the cases consid-
ered (we will later try to physically interpret the com-
puted sensitivities to obtain physical intuition about the
dynamics):

• R*: This parameter primarily affects the damping,
with a weak effect on the period that depends on the
regime used for the sensitivity study (and therefore is
not a robust result).

• �: Its effect is identical to changes in R*, with a re-
duction in � making the system more stable. Note
that in the small-amplitude regime in which the at-
mospheric response to an SST anomaly is linear, the
amplitude of the wind stress on the ocean resulting
from an SST perturbation �T is (AR*�)�T for some
A representing the effect of the atmospheric dynam-
ics; hence the identical effect of � and R*.

• �: The eigenvalue is relatively insensitive to changes
in �, with a slightly higher sensitivity for the perma-
nent July regime.

• Mean eastern Pacific thermocline depth: A decrease
in the eastern Pacific thermocline depth is destabiliz-
ing, with an increase in the period.

• Western boundary reflection coefficient: Decreasing
WBRC increases stability and increases the period.

• Atmospheric Rossby radius deformation: Increasing
ca results in a significant increase in the period.

• Ocean equivalent depth: Increasing hequiv results in a
significant decrease in the period.

• Ocean momentum damping (Tdecay): Increasing the
decay time is destabilizing, with a decrease in the
period.

• Strength of annual cycle: Inconsistent results are ob-
served across parameter regimes. For example, the

case with permanent July conditions is less stable and
has a longer period than the seasonal case; the annual
mean case is more stable but also has a longer period
than the seasonal case.

Model parameters may influence the dynamics
through multiple processes; thus the physical interpre-
tation of the impact of changing a given parameter is
not always obvious. An instantaneous feedback adjust-
ment can influence the stability or damping of an oscil-
lation, while a parameter perturbation that introduces
or changes a delay in the system may be expected to
change the period.

Parameters that amplify the ocean–atmosphere cou-
pling, or the response of either of the two, may be
expected to affect the stability of the oscillation. This
includes R* and �, the thermocline depth, the western
boundary reflection coefficient, and the ocean decay
time. Reducing the coupling makes the system more
stable, as expected from Neelin et al. (1994), Tziperman
et al. (1994), Thompson and Battisti (2000), or with the
delayed-oscillator model of Suarez and Schopf (1988).

Parameters that affect the delay between the creation
of an SST and a wind anomaly and the resulting effect,
which eventually reduces the SST anomaly, should af-
fect the oscillation period. This delay includes both
ocean wave propagation times (Suarez and Schopf
1988; Battisti 1988) and SST adjustment time (Jin and
Neelin 1993b,a; Neelin and Jin 1993). Thus, for ex-
ample, changing the atmospheric Rossby radius of de-
formation affects the meridional scale of the wind
anomaly and which ocean equatorial Rossby modes get
excited, and therefore their travel time (Gill 1982; Kirt-
man 1997); the linearized period is most sensitive to this
parameter. The oceanic equivalent depth affects the
period for the same reason. However, the shift in
ENSO’s period because of changes in the wave propa-
gation delay is significantly larger than the changed
wave delay itself (e.g., Kirtman 1997) for reasons dis-
cussed in the next section.

The picture, of course, is not simple because most
parameters result in changes to both the damping and
the period. It is well known from simple models (e.g.,
Suarez and Schopf 1988) that the ocean–atmosphere
coupling also affects the period of ENSO and may even
affect the speed of propagation of coupled wave modes
(Hirst 1986).

It is clear from the sensitivities that not all of the
parameters that affect the ocean–atmosphere coupling
affect the period in the same way. An additional factor
that influences the model ENSO period can be illus-
trated by an example. Decreasing the atmosphere–
ocean coupling (� or R*) reduces the amplitude of both

TABLE 2. Nondimensional sensitivity of the eigenvalue period
and damping to parameter changes, expressed as % increase in
period or growth rate per % increase in parameter value. The
strongest sensitivities to period and growth rate are set in
boldface.

Parameter
Period

sensitivity
Growth rate

sensitivity

R*, � �0.54 1.3
� �0.15 �0.1
h �0.9 �2.6
Tdecay �0.07 0.3
WBRC �0.9 1.25
ca 1.7 �0.5
hequiv �1.3 �1.35
SEASC �0.1 �0.2
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the eastward-propagating oceanic Kelvin wave and the
westward-propagating Rossby waves that are excited
through the atmospheric response to an SST perturba-
tion. Thus, both the eastern Pacific anomaly caused by
the Kelvin component and the canceling effect from the
reflected Rossby waves decrease proportionally. The
primary effect is to reduce the (Bjerknes) feedback
strength and thus increase the damping, without a sig-
nificant change in any of the time constants. In contrast,
decreasing the western boundary reflection coefficient
affects both the damping and the period. A reduction in
the reflection coefficient reduces only the reflected
wave. It therefore takes more time to accumulate a
sufficient delayed Rossby wave signal to cancel the
eastern Pacific SST perturbation (Cane et al. 1990).
Dissipation by a reduced reflection coefficient at the
western boundary also reduces the net energy in the
system, and thus also increases the damping of the os-
cillation.

A similar argument appears to be responsible for the
period sensitivity of the thermocline depth, described in
more detail in the subsequent subsection. A shallower
eastern Pacific thermocline leads to higher sea surface
temperature sensitivity to thermocline depth perturba-
tions, and therefore greater amplification of anomalies.
While this is the main effect of the thermocline depth
on the model ENSO, the ENSO period is also in-
creased. In what follows, we illustrate that this is again
due to the accumulation delay: the greater amplifica-
tion of the warm Kelvin wave perturbation in the east-
ern Pacific requires a greater accumulation of cancel-
ing, cold Rossby wave perturbations, which take a
longer time to cancel the warm anomaly.

b. Period-only and damping-only two-parameter
sensitivity experiments

The above sensitivity experiments set the stage for
our main objective here, which is to examine factors
that affect ENSO’s period. For this purpose, we con-
ducted experiments in which two parameters are
changed relative to the standard parameters (marked 1
and 2 in Fig. 3), such that the resulting ENSO has a
different period but an unchanged damping. Similarly,
the experiments marked 3 and 4 in Fig. 3 are charac-
terized by a change to the damping with no related
change to the period. The hope is that examining the
modification to the eigenvector structure in these ex-
periments relative to the standard case may lead to
some insights on physical mechanism(s) that lead to
changes in ENSO’s period as model parameters are
changed.

The eigenvector associated with the dominant ENSO
eigenvalue is shown in Fig. 4 for the standard ZC model

parameters. The characteristics are broadly similar to
the eigenvector information given in Thompson and
Battisti (2000; see also Van der Vaart et al. 2000). The
imaginary component of both the SST and the atmo-
sphere responses is small compared to the real part.
This has to do with the aforementioned choice of the
complex amplitude factor used to normalize the eigen-
vectors such that the real part of the SST vector repre-
sents the peak ENSO event. The imaginary part there-
fore represents the transition between El Niño and La
Niña (as in Thompson and Battisti 2000). The small
imaginary SST amplitude at this time indicates that the
SST response is largely in phase throughout the basin.

The imaginary components of the thermocline depth
variation and ocean currents are comparable to their
real parts, indicating that these fields have a significant
signal during the transition. This is expected from the
delayed oscillator–recharge oscillator mechanism, ac-
cording to which the eastern Pacific equatorial ther-
mocline depth anomaly leads the SST anomaly by a
fraction of a cycle, as does the eastward-propagating
equatorial Kelvin wave (Suarez and Schopf 1988; Bat-
tisti 1988; Jin 1997a; Van der Vaart et al. 2000; Dijkstra
2000).

FIG. 3. Eigenvalue growth rate and period illustrating the si-
multaneous variation of multiple parameters in order to obtain a
pure period change without a change in the damping and a pure
damping change without a change in the period. Squares indicate
the nominal (N) and two experiments that increase the period
without changing the damping (1 and 2) and that increase the
damping without changing the period (3 and 4). Solid lines indi-
cate varying R*, h, and ca with respect to nominal parameters. For
experiments 1 and 2, the open-dotted line indicates an increase in
R*, with ca increased by a factor of 1.2, and the crossed line
indicates a decrease in R* with h decreased by 11.5%. For experi-
ments 3 and 4, the open-dotted line indicates a decrease in ca, with
R* decreased by a factor of 0.7, and the crossed line indicates a
decrease in the western boundary reflection coefficient, with h
increased by 11.5%.
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After projecting the oceanic eigenvector onto the
Kelvin, Yanai, and first few Rossby modes (Fig. 5), as in
Gill (1983), Battisti (1988), or Tziperman et al. (1998),
it is clear that at the Niño-3 peak (real part of eigen-
vector) there is a positive Kelvin wave signal in the
eastern Pacific created by the wind anomaly and a
negative Rossby wave signal in the western Pacific, as
expected. The first Rossby wave has the highest ampli-
tude, with the amplitudes decreasing with increasing
symmetric mode number (the asymmetric Rossby
modes are of lower amplitude).

Now consider the eigenvectors corresponding to the
experiments that vary two model parameters simulta-
neously to yield either a pure change in the period with

no change in damping (experiments 1 and 2 in Fig. 3) or
a pure change in damping with no change to the period
(experiments 3 and 4 in Fig. 3). Our interest here is the
processes that determine ENSO’s period, and we there-
fore concentrate on the analysis of experiments 1 and 2.
There is no significant difference in the SST component
of the eigenvector for any of the parameter-pair
changes considered, and therefore there is no easily
discernible significant difference in the zonal wind
anomalies. The differences in the thermocline depth
and zonal current anomaly components of the eigen-
vectors are more significant and are shown in Figs. 6, 7;
in each figure, the two plot pairs correspond to the two
experiments in which the period is changed. Each field

FIG. 4. Eigenvector of the linearized model at standard parameter values for parameter regime A, which are the standard ZC
parameter values. The drag coefficient is set to R* � 1, and the seasonal cycle is included. The lhs shows the real part of the eigenvector,
and the rhs shows the imaginary part. From top to bottom, the pairs of plots are the eigenvector associated with the SST anomaly
(contour interval � 0.05°C), the thermocline depth anomaly (contour interval � 0.5 m), the depth-integrated zonal current anomaly
(contour interval � 1 cm s�1), and the zonal wind anomaly (contour interval � 5 cm s�1).
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is normalized by its spatial RMS value before taking the
difference.

It should be mentioned that in addition to the plotted
change in normalized spatial structure, there is also a
change in the relative amplitude between thermocline
anomalies, SST anomalies, and current anomalies

within the calculated eigenvectors. Specifically, there is
a smaller ocean response for a given SST response in
the cases with increased period, but not in the cases
with increased damping.

A most interesting result is the robustness of the nor-
malized spatial structure changes of the eigenvector for
the experiments in which only the period changes. A
comparison of the eigenvector anomaly structure ob-
tained by varying different pairs of parameters (cf. the
top pair with the bottom pair in both Figs. 6, 7) shows
that the change in the structure of the eigenvector does
not depend on which model parameters were changed.
The eigenvector change therefore seems to depend
only on the degree to which the period changes, rather
than on which model parameters were modified to ob-
tain the period change. This suggests that the same
physical mechanism is behind the change in period, re-
gardless of which parameters are changed to alter the
period.

As we show next, the dominant feature of the eigen-
vector shift for the cases with increased period is that
there is greater lag in the ocean thermocline depth re-
sponse to the SST and atmospheric winds. The time lag
tmin(x) of the equatorial thermocline minimum at a lon-
gitude x relative to the maximum of the Niño-3 SST
index can be directly obtained from the phase of the
eigenvector (see appendix B). Figure 8 shows tmin(x) as
a function of longitude x for several different experi-

FIG. 6. Comparison of normalized thermocline depth anomaly eigenvector perturbation for two parameter
combinations giving a pure shift in period. (top) Experiment 1, involving changes to ca and to R*; (bottom)
experiment 2, involving changes to the mean thermocline depth and to R*. The lhs plots are the difference in the
real part of the eigenvector, and the rhs plots show the imaginary part. Contours are �0.05 and �0.15 with regions
above �0.05 shaded.

FIG. 5. Projection of the real part of the eigenvector shown in
Fig. 4 (corresponding to the linearized solution at the time of
Niño-3 maximum) onto ocean Kelvin and Rossby modes for stan-
dard parameter values in regime A. Only the symmetric modes
have significant response; the first four symmetric Rossby modes
are plotted with dots, circles, squares, and crosses.
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ments. Much of our insight comes from this figure and
its analysis below. The plotted horizontal lines corre-
spond to the time of the Niño-3 minimum (i.e., T/2).

In the western Pacific, the thermocline anomaly

minimum occurs shortly after the Niño-3 maximum
(which is at time � 0 in Fig. 8); the anomaly continues
to build up until the atmospheric winds have already
begun to slacken. The delay between the SST peak and
the minimum thermocline anomaly is determined by
the propagation time for the Rossby waves to travel
from the midlongitude region where they are created to
the western boundary. In the eastern Pacific, however,
the thermocline anomaly minimum occurs shortly be-
fore the Niño-3 minimum, because it is the decrease in
the magnitude of the thermocline anomaly beyond its
peak that begins to reverse the SST anomaly. The delay
between the eastern thermocline minimum and the
Niño-3 minimum is associated with SST dynamics (Jin
and Neelin 1993a,b; Neelin and Jin 1993).

It is important to note that the delay between the
western thermocline anomaly minimum and the eastern
thermocline anomaly minimum is a result of the Kelvin
wave propagation time plus the time it takes to accu-
mulate a sufficient deepening signal in the eastern Pa-
cific. This accumulation delay, which is significantly
larger than the wave propagation time, is described in
detail for a simple model by Cane et al. (1990). There
are therefore three factors that together determine de-
lay and hence ENSO’s period: the wave propagation
delay (see Suarez and Schopf 1988; Battisti 1988), the
accumulation delay (Cane et al. 1990), and the SST
dynamics delay in the eastern Pacific (Jin and Neelin

FIG. 8. The time lag between the thermocline minimum peak at
a longitude x relative to the peak of Niño-3, as a function of x, for
several experiments, as reconstructed from the eigenvector analy-
sis. Results are plotted for the baseline parameters of regime A
(solid) and for the two cases with an increased period (open
circles and squares). The period for each case is shown with hori-
zontal lines. The time delays �wave � �RW � �KW, �accum and �SST

are described in the text.

FIG. 7. Comparison of the normalized zonal current anomaly eigenvector perturbation for two parameter
combinations giving a pure shift in period. (top) Experiment 1, involving changes to ca and to R*; (bottom)
experiment 2, involving changes to the mean thermocline depth and to R*. The lhs plots are the difference in the
real part of the eigenvector, and the rhs plots show the imaginary part. Contours are �0.1 with regions above �0.1
shaded.
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1993a,b; Neelin and Jin 1993). Changing any combina-
tion of these factors will affect the ENSO period.

Figure 8 plots the time lag between the thermocline
minimum peak at a longitude x relative to the peak of
Niño-3 for several experiments: the standard case in
regime A, which is also the standard ZC parameters
(solid line), and the two cases with an increased ENSO
period (experiments 1 and 2 in Fig. 3, circles and
squares). The three sources of delay noted above are
marked with �wave � �RW � �KW, �accum, and �SST for the
standard parameter case of regime A. The Kelvin wave
propagation time �KW is computed from its wave speed.
The important conclusion from this figure is that there
is an increase in the length of time it takes for the
eastern Pacific equatorial thermocline anomaly to de-
velop in experiments 1 and 2, and this accumulation
delay is the most significant contributor to the in-
creased ENSO period for these two sensitivity experi-
ments.

The increased period case from experiment 1 (Fig. 3)
involved an increase in the atmospheric wave speed
model parameter. This experiment results in a signifi-
cant additional delay between the Niño-3 peak and the
arrival of the peak in the western Pacific thermocline
anomaly (i.e., �RW is larger for the curve with circles in
Fig. 8). This occurs because the change in the atmo-
spheric wave speed changes the atmospheric Rossby
radius of deformation, resulting in the excitation of
higher Rossby waves in the ocean and correspondingly
longer Rossby wave propagation times. This can be
verified by projecting the eigenvectors onto the oceanic
Kelvin, Yanai, and first few Rossby waves (Fig. 9). The
smaller increase in �RW for experiment 2 appears to be
due to an eastward shift in the centroid of the equato-
rial wind at the Niño-3 peak; the increased travel time
for the Rossby waves is consistent with the increase in
�RW.

Figure 9 plots the amplitude of the first few symmet-
ric Rossby modes integrated over the western half of
the basin (west of 210°E). The increased period case in
which h was changed (experiment 2 in Fig. 3) does not
show a significant shift in the relative amplitude of dif-
ferent Rossby components. The increased period case
in which the atmospheric wave speed was increased
(experiment 1 in Fig. 3) results in roughly 10% higher
amplitude for the higher symmetric Rossby modes as
compared with the standard case.

The additional delay of the arrival of the reflected
“cold” Kelvin wave in the eastern Pacific in experiment
1 has allowed the warm anomaly there to grow stron-
ger. A greater negative feedback signal due to delayed
Rossby waves is therefore required to eliminate this
stronger signal; hence the longer wave delay can in-

crease the accumulation delay as well (Cane et al.
1990).

We have examined a simple delayed oscillator model
of the type used by Cane et al. (1990), with multiple
Rossby modes included, and found that the sensitivity
of the period to changes in the amplitude distribution
among the Rossby modes is roughly similar to that
found here. This confirms that the period indeed
changed in experiment 1 because of the changed distri-
bution of energy among the Rossby modes.

The second two-parameter sensitivity experiment
with a pure increased period (experiment 2 in Fig. 3) is
also plotted in Fig. 8. Here, the period is modified
through changes to the mean eastern thermocline depth
and to the drag coefficient R*, such that the net damp-
ing effect vanishes because of the canceling effects of
the thermocline depth and the drag coefficient on the
coupling strength. The decreased mean depth in the
east Pacific increases the growth rate of SST anomalies
in the eastern Pacific. This therefore also requires an
increase in the time it takes to accumulate a sufficient
negative delayed Rossby wave signal to cancel the
anomaly. Once again, the dominant change in the pe-
riod, reflected in the change in the eigenvector, results
from changes in the accumulation delay.

The atmosphere–ocean coupling can, in principle,
also influence the wave propagation speeds (Hirst
1986); however, we calculated the propagation speeds

FIG. 9. Amplitude of the projection of the eigenvectors onto
symmetric ocean Rossby modes for the eigenvector at the stan-
dard parameter values of the ZC model (black) and two at two
other parameter choices corresponding to an increased period.
Experiment 2 (gray) corresponds to changes to h and R*; experi-
ment 1 (white) corresponds to changes to ca and R*. The wave
amplitudes are integrated over the western Pacific (west of 210°E)
and are normalized by the amplitude of the Kelvin wave in the
eastern Pacific (east of 210°E).
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of the Kelvin and first few Rossby modes numerically
for different coupling strengths and found that these
changes are negligible here.

We conclude that the physical mechanism respon-
sible for the period change in experiments 1 and 2 in
Fig. 3 is actually different despite the similarity of the
eigenvectors. While both experiments predominantly
affect the period through increases in the accumulation
lag, changes in h and R* affect the relative strength of
the immediate growth rate and the delayed restoring
effect, while changes in ca and R* affect the wave
propagation time. The two experiments are similar in
the sense that the accumulation delay is responsible for
the changed period in both cases, which the similar
eigenvectors reflect.

While we have demonstrated the importance of the
accumulation delay using two specific experiments in
which only the period varied, the point we are making
is more general. The accumulation delay is the longer
of the three involved in setting ENSO’s period, and
therefore it is likely to play a dominant role in any
significant period changes. Additional experiments we
have carried out varying other parameters in the ZC
model confirm this. Furthermore, as we have demon-
strated in the above discussion, changes to the SST de-
lay or wave travel time delay will also affect the accu-
mulation delay. Hence, relatively small changes to
these other delays may result in a much larger change
to the period, via their effects on the accumulation de-
lay.

4. Conclusions

We have explored the effects of many key param-
eters in the Zebiak–Cane intermediate-complexity
model to obtain insight as to what controls ENSO’s
period. We evaluated the eigenvalues and eigenvectors
of the linearized model, and given that the phase of the
eigenvalue sets the linear period in a model, we study
how this period changes with the different model pa-
rameters. Changes in the eigenvector structure that ac-
company the eigenvalue change are used to understand
what determines the period.

Any individual parameter change results in changes
in both damping and period, complicating the analysis
of parameter perturbations. We therefore introduced
sensitivity experiments that involve changing pairs of
parameters, chosen to produce changes in the ENSO
period with no change in damping, or vice versa.

Our results are best understood by keeping in mind
that three different delays together are responsible for
ENSO’s period: the delay due to the ocean wave propa-
gation times (Suarez and Schopf 1988; Battisti 1988),

the delay required to accumulate a sufficient cold
Rossby wave signal in the eastern Pacific to cancel the
warm Kelvin wave signal (Cane et al. 1990), and the
delay in the SST response to thermocline depth changes
in the eastern Pacific (Jin and Neelin 1993a,b; Neelin
and Jin 1993). We are able to calculate these separate
delays explicitly from the linearized eigenvector analy-
sis.

The key observation from our sensitivity experiments
is that all of the parameter choices that affect the period
result in an increase in the accumulation delay: the time
lag between the peak thermocline anomaly in the west-
ern Pacific and the peak thermocline anomaly in the
eastern Pacific. This delay is much larger than the
Kelvin wave propagation delay and results from the
need to accumulate a sufficient Rossby wave ther-
mocline shoaling signal to cancel the eastern Pacific
deep thermocline anomaly during an El Niño event
(Cane et al. 1990). This is the largest time lag within the
modeled ENSO cycle for the standard parameters in
the ZC model. The observed shifts in the eigenvector
structure indicate that variations in this time lag are
responsible for most of the variation in ENSO’s period
with parameter changes.

The accumulation delay may change because of dif-
ferent physical processes and mechanisms. In our sen-
sitivity experiments these mechanisms depend on which
parameters are changed. One example is an increase in
the Rossby wave propagation delay, due to changes in
the atmospheric Rossby radius. This causes higher and
slower equatorial ocean Rossby modes to be excited
and therefore allows the eastern Pacific anomaly to
grow to larger amplitudes before the Rossby signal
starts arriving. The larger warming signal in the east
Pacific, in turn, requires a larger accumulation of the
cold Rossby wave effect and therefore a longer accu-
mulation delay and a longer period. A second example
involves a decrease in the specified mean depth of the
eastern Pacific thermocline depth. This results in an
increase in the sensitivity of the eastern Pacific SST to
thermocline depth perturbations. This greater sensitiv-
ity again results in a larger east Pacific warming signal
before the Rossby waves start arriving and therefore
also requires a longer accumulation delay and a longer
period.

We have demonstrated that the accumulation delay
may change because of changes in the SST delay and
the wave travel time delay. Thus, small changes to these
two latter delays may have a larger effect on ENSO’s
period via the indirect effects of these two delays on the
accumulation delay. These conclusions regarding the
dominant role of the accumulation delay are more gen-
eral than the specific sensitivity experiments we have

MAY 2008 M A C M Y N O W S K I A N D T Z I P E R M A N 1583



carried out and provide an interesting insight into
ENSO’s period.

The insight obtained as well as the methodology used
here can, in principle, be applied to more complex gen-
eral circulation models as well. It would be interesting
to compare the accumulation delay in such GCMs and
in observations as a tool for improving the simulation of
ENSO’s period in GCMs.

Acknowledgments. We thank Ben Kirtman and an
anonymous reviewer for their helpful comments. This
work was supported by the James McDonnell Founda-
tion. ET is also supported by NSF Climate Dynamics
program, Grant ATM-0351123.

APPENDIX A

Algorithm for Identifying the Eigenvalues

The coefficients of the AR model in (7) can be esti-
mated from the model output time series as follows.
Here, we consider the more general case in which the
output vector yk is not necessarily scalar but of dimen-
sion M, typically small relative to that of the full state
vector, Nstate.

Define a � [a1 a2 . . . aN]T and let âk be the best
estimate of a, given the output information up to time
step k. We use a recursive formulation of the AR model
fit so that we can test for convergence and use only the
minimum simulation time needed to achieve a desired
accuracy.

At each time step, define the relevant previous time
history as the M � N matrix

�k � �yk�12 yk�24 · · · yk�12N�, �A1�

and update the estimate â for the AR parameters using
the prediction error from Eq. (7) as

âk�1 � âk � Kk�yk � �kâk� �A2�

for an N � M gain matrix Kk to be defined below. The
recursive model fit is formulated as a stochastic “system
identification” (cf. Kalman filter, e.g., Gelb 1974). De-
fine P as the covariance of the error in estimating AR
parameters; it is initially large. While the AR param-
eters are assumed not to change throughout the simu-
lation, each simulation output will not perfectly match
(7) even with the perfect estimation â � a because of
noise resulting from nonlinearities, numerical roundoff
error, and the nonzero contributions due to other
eigenvector components in the response. Assume this
noise to be random with a covariance of

Rk � �k
T�k � �, �A3�

where the noise is assumed to have a part that is pro-
portional to the amplitude (giving rise to the first term
on the rhs) and another that is independent (second
term). The actual estimation is quite robust to the as-
sumed form. The appropriate Kalman filter gain in
(A2) that minimizes the expected estimation error is
then

Kk � P�k��k
TP�k � Rk��1, �A4�

and the updated covariance of the estimation error is

Pk�1 � �I � Kk�k
T�Pk. �A5�

The advantage of the recursive AR formulation over a
straightforward least squares formulation is simply that
the convergence can be monitored to avoid unneces-
sary extra simulation.

The overall algorithm, starting from the ZC model, is
summarized below. The initial steps are to

1) modify the ZC code to include a scale factor  on
the state vector at each time step;

2) modify the ZC code to explicitly allow variation in
the desired parameters;

3) choose  so that the solution from an arbitrary initial
condition is stable and lightly damped; and

4) choose an initial condition “close” to the ENSO
eigenvector by running the simulation for a moder-
ate number of cycles (until other eigenvectors de-
cay) and scale so that the amplitude of Niño-3 is
roughly �0.1°C and the simulations are in the linear
regime.

Then, for any choice of parameter value, iterate as fol-
lows:

1) run simulation for a short period of time (we used 50
yr);

2) estimate â and 	 as described above;
3) exit if converged (sufficiently small change in 	);
4) otherwise, rescale the initial condition and use the

estimate of |	| to set  so that 	12|	| � 0.95.

APPENDIX B

Calculating the Timing of the West Pacific
Thermocline Minimum

Let the eigenvector of the thermocline depth along
the equator be he(x) � hr

e(x) � ihi
e(x) � |he(x)|ei�(x) and

the imaginary part of the main ENSO eigenvalue be
�r � 2�/T. Ignoring the damping at a time t after the
Niño-3 maximum, which corresponds to a phase � �
2�t/T of the ENSO cycle with respect to the Niño-3
maximum, the thermocline anomaly at the equator is
therefore h(x, �) � Re[he(x)ei�rt] � Re{|he(x)|ei[�(x)��]}.
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This reaches its minimum at � � �(x) � �. The time lag
of the equatorial thermocline minimum at a longitude x
relative to the maximum of the Niño-3 SST index is
thus tmin(x) � [�(x) � �]T.
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