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ABSTRACT

The nonlinear dynamics leading to the generation of superinertial internal waves in the ocean, in the wake

of a cyclonic storm, is investigated by means of theoretical arguments and of numerical integration of the

hydrostatic Boussinesq equations in a simplified, realistic, open-ocean setting. The velocity fields are first

decomposed into internal baroclinic modes, and then the energy transfer across modes and at different fre-

quencies is calculated analytically. The energy transfer across modes is dominated by the advection of high-

modemwaves by the second- and third-mode waves (n5 2 or 3), which are themost energetic, and this results

in the excitation of the l 5 m 2 2 or m 2 3 mode wave at the double-inertial frequency. The analyzed

nonlinear interactions lead to a transfer of energy from near-inertial waves, directly excited by the storm, to

superinertial waves, which typically propagate faster and farther than their lower-frequency parents and can

lead to internal mixing even at large distances from the region of large air–sea momentum fluxes. Energy is

found to flow from large to small scales as well. Thus, the double-inertial peak formation is thought to

represent a small but fundamental intermediate step in the energy cascade toward dissipation.

1. Introduction

Internal waves are ubiquitous in the ocean and show

almost universal spectral features described by the em-

pirical spectrum developed by Garrett and Munk (1972,

1975, 1979). The physical processes responsible for the

observed spectrum are still to be fully understood, but

the waves are forced mostly by atmospheric forcing

(Rubenstein 1994; Nilsson 1995) and tide–topography

interactions (Sjöberg and Stigebrandt 1992), and the

spectrum is believed to be the result of nonlinear

interactions.

Internal waves are important among other reasons

because they play a nonnegligible role in ocean interior

mixing, which is known to be very spatially in-

homogeneous (Polzin et al. 1997; Whalen et al. 2012;

Waterhouse et al. 2014) but still not yet fully understood

(Ledwell et al. 1993; Munk and Wunsch 1998; Ledwell

et al. 2000; Heywood et al. 2002; Eden 2011, 2012; Olbers

and Eden 2013; Griesel et al. 2015).

Internal waves propagate from their forcing regions

into the interior of the ocean, where they can interact

nonlinearly (Olbers 1976; McComas and Bretherton

1977; Ripa 1981; Müller et al. 1986) and, when they

become unstable, finally break. With their breaking,

they contribute to the vertical diapycnal mixing of heat,

salt, and dissolved chemical species (Olbers 1974, 1976;
Corresponding author: AgostinoN.Meroni, a.meroni9@campus.

unimib.it

AUGUST 2017 MERON I ET AL . 1961

DOI: 10.1175/JPO-D-16-0232.1

� 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:a.meroni9@campus.unimib.it
mailto:a.meroni9@campus.unimib.it
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


Hibiya et al. 1996) and, since they transport energy

and momentum, they can induce mean flow changes

(Staquet and Sommeria 2002).

Among the atmospheric sources of oceanic internal

waves, there are both the climatological winds and the

more intermittent and nonuniformly distributed intense

wind events, such as tropical cyclones. Estimates of the

annual-mean, upper-ocean thermal diffusivity resulting

from the passage of tropical cyclones are O(1025) or

O(1024) m2 s21 (Korty et al. 2008; Sriver andHuber 2007),

at least 10 times larger than the observed background

tropical thermocline thermal diffusivity (Ledwell et al.

1998). This happens because momentum fluxes depend

nonlinearly on wind intensity, and it means that, even if

intermittent and localized, tropical cyclones’ contribu-

tion to the upper-ocean mixing is nonnegligible.

Geisler (1970) showed in his linear analysis that if the

hurricane speed is greater than the eigenspeed of the

wave (in terms of the internal mode decomposition, as

clarified in what follows), the baroclinic response of the

ocean is excited. In a continuously stratified ocean, this

means that the storm has a three-dimensional, near-

inertial, internal wave wake. Instead, if the hurricane is

too slow, there is no wake. Tropical cyclones usuallymove

with a speed that ranges from 1 to 10m s21, and the

eigenspeeds are typically smaller than 3ms21, which

means that tropical cyclones are generally effective

sources of internal waves. Geisler (1970) also showed

that the pressure anomaly of the tropical cyclone

induces a deformation in the free-surface height but

has a very small effect on the baroclinic oscillating re-

sponse. In fact, by writing the equation for the baroclinic

mode he explicitly showed that the forcing due to the

pressure low is negligible compared to the forcing due to

the wind stress. Another linear solution to the equations

of motion in the ocean forced by a moving cyclone was

given by Gill (1982, chapter 9), who found a resonant

behavior in the energy of the vertical velocity oscilla-

tions as a function of the translation speed of the hur-

ricane. In particular, if the residence time of the storm

(the ratio of its typical length to its translation speed) is

close to the local inertial period (the inverse of the

Coriolis parameter), the coupling between the forcing

and the inertial currents is very efficient and the tropical

cyclone can transfer energy to the ocean optimally. The

sensitivity of the response to the hurricane translation

speed was further studied byGreatbatch (1984), Samson

et al. (2009), and Mei et al. (2012) with both numerical

simulations and data analysis. A detailed theoretical

description of the energy transfer from a translating

hurricane to the ocean was given by Nilsson (1995).

Many other works focused on the dynamical and

thermodynamical response of the ocean to hurricanes

(Price 1981; Chang andAnthes 1978; Sanford et al. 2007;

D’Asaro et al. 2007; Black and Dickey 2008) and their

consequence on the global climate and meridional heat

transport (Pasquero and Emanuel 2008; Jansen and

Ferrari 2009; Jansen et al. 2010). The focus of this paper

is on the generation mechanism of superinertial waves,

that is, waves with a frequency equal to the double (or

higher multiple) of the local Coriolis parameter. They

were first found by Price (1983) in his numerical study of

the internal wave wake but no explanation of their

generation was given. The main interest in studying

these superinertial waves is that they can propagate

further than the near-inertial ones (Niwa and Hibiya

1997; Zedler 2009) and thus they can supply energy to

the local internal wave field far from their generation

region. In fact, the lower limit of the range of frequency

of internal waves is determined by their latitude, and the

upper one is determined by the local stratification. In

particular, the Coriolis parameter sets the minimum

value of frequency of an internal wave that can be sus-

tained by the system. Thus, if a wave is traveling pole-

ward and if its frequency v 5 f0 1 « is close to the

Coriolis parameter f0 at the initial latitude f0 (a near-

inertial internal wave), it may reach a latitude f1 at

which the Coriolis parameter f1 equals the frequency of

the wave f1 5 f0 1 «. At higher latitude (f2 . f1, with

f2. f1), the wavewould have a frequency that falls out of

the admissible frequency range for internal waves, and

thus it experiences internal reflection at the critical lat-

itude f1 (Kroll 1975; Munk 1981; Garrett 2001), unless

in presence of an appropriatemean flow (Gerkema et al.

2013; Xie et al. 2016). It is clear that superinertial waves

are less prone to critical latitude reflection and can

therefore propagate farther than near-inertial ones.

Niwa and Hibiya (1997) analyzed the superinertial

wave field using an internal baroclinic mode de-

composition of a uniformly stratified ocean. With such

analysis, low modenumbers correspond to large vertical

scales, and high modenumbers correspond to small

vertical scales. They discovered that the most prominent

superinertial waves appear in the lowest mode, and in

particular they studied with a bispectral analysis the

high-mode, near-inertial waves that interact to give the

first-mode, double-inertial waves. They found that some

couples of modes contribute to the formation of the first-

mode, double-inertial waves, while others subtract

energy from them. Thus, the energy flows in both di-

rections, and this might suggest that the formation of the

double-inertial peak plays a role in the energy cascade

toward the small scales. The limit of their explanation is

that the stratification is uniform, which means that a

realistic oceanic vertical structure (mixed layer and

thermocline) is not included. Their analysis is simplified
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because the baroclinic modes of a uniformly stratified

ocean are sinusoidal functions, and therefore the mod-

enumber is directly proportional to the vertical wave-

number. The case of nonuniform stratification is much

harder to treat with the bispectral approach because

there is no direct relation between a vertical wave-

number and an internal baroclinic mode.

Danioux and Klein (2008) generalized Niwa and

Hibiya’s (1997) results to a nonuniform stratification

profile using a perturbation approach. They considered a

zonal barotropic jet U 5 U(y) and showed that a neces-

sary condition for nonlinear interactions that generate

waves at 2f is that the relative vorticity of the mean flow

z 5 2dU/dy has a nonzero Fourier component at the

wavenumber that corresponds to the double-inertial

wave k2f. They showed that the generation mechanism

is local in wavenumber space and is driven by the eddy

relative vorticity field acting at the right wavenumber

k2f through a resonant mechanism due to the advec-

tive terms. They also proved that a single internal

mode can interact with itself and generate super-

inertial motion.

Zedler (2009) used a numerical study over an ocean

region with a realistic initial density profile, showing that

the nonlinear interactions take place in the region of the

mixed layer and the upper thermocline (first 200m in her

setup) and then are radiated to the interior through

vorticity conservation as a linear mode. This seems to be

in conflict with Niwa and Hibiya’s (1997) result, which

states that nonlinear interactions take place throughout

the entire water column. But since a thorough de-

scription of the vertical structure of the stratification

down to the bottom of the ocean was not included in the

work, it is hard to explain whether the differences with

respect to Niwa and Hibiya’s (1997) results are an effect

of the different stratification. This would be the in-

terpretation in a WKB scaling, in which the energy

scales with the stratification (Gill 1982). In fact, the en-

ergy exchanges would dominate the region of maximum

N 5 N(z), the buoyancy frequency, which is the upper

ocean in the case of Zedler (2009) and the entire water

column in the case of Niwa and Hibiya (1997).

In this paper, Niwa and Hibiya’s (1997) normal-mode

analysis is extended to a nonuniformly stratified ocean

to give a detailed and quantitative description of the

exchange of energy between the waves excited by the

tropical cyclone. The nonlinear hydrostatic Boussinesq

equations are solved with two numerical simulations,

and an analytical theory is developed to describe the

nonlinear interactions of the linear solutions, with a

slightly simplified set of equations. In particular, a set of

coefficients that measure the energy transfers between

modes is derived analytically.

In section 2, the numerical model and the equations of

motion used in the theoretical analysis are introduced.

Section 3 describes how to decompose the nonlinear

equations on the normal modes, and in section 4, the

analytical theory that introduces the energy transfer

coefficients in the spectral domain is developed. Sec-

tions 5 and 6 are devoted to the presentation of the re-

sults and the conclusions.

2. Numerical model and equations of motion

The problem is studied by solving numerically the

fully nonlinear set of hydrostatic Boussinesq primitive

equations on an f plane. This is accomplished with two

simulations run with the Regional Ocean Modeling

System–Adaptive Grid Refinement in Fortran (ROMS_

AGRIF) in a simplified realistic setup. ROMS is a three-

dimensional, free-surface, split-explicit ocean model

(Penven et al. 2006; Debreu et al. 2012).

Themain difference between the two simulations is the

horizontal extent of the domain. In the simulation called

D4000, the flat basin is 4000km 3 4000km wide with a

horizontal resolution of 20km, while in the simulation

D8000, the sides of the square basin are 8000km and the

horizontal resolution is 40km. The numerical ocean is

5km deep (H5 5000m), and is discretized on a grid with

44 vertical levels, with different thicknesses, ranging from

7m at the top to 500m at the bottom. Turbulent vertical

mixing is accomplished via the nonlocal K-profile pa-

rameterization (KPP; Large et al. 1994), the horizontal

diffusion is set to zero, and open boundary conditions on

all sides allow thewaves to propagate outside of the basin,

significantly reducing their reflection.

The initial conditions are set analytically. The initial

velocity field and the initial free-surface height are zero

everywhere. The potential temperature vertical profile,

independent of the horizontal position, is chosen to

have a climatological mixed layer depth Hmix 5 50m

and then an exponential decaying profile, with a length

scale l 5 400m, namely,

u(z)5

(
u
s

for 2H
mix

, z# 0

u
d
1Due(Hmix1z)/l for 2H, z,2H

mix

,

(1)

where us 5 228C is the surface temperature, ud 5 28C is

the temperature at depth, and Du5 us 2 ud. The salinity

has a constant value everywhere equal to 35psu, so that

variations in density come directly from variations in

temperature through the nonlinear equation of state

implemented in the model [with the split equation of

state (SPLIT_EOS) option activated]. This equation is

described by Shchepetkin and McWilliams (2003) and
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is a modified version of the one described by Jackett and

McDougall (1995).

Momentum, temperature, and salinity fluxes are de-

fined as top and bottom boundary conditions. In the

simulations, the bottom stress, the freshwater flux, and

the heat flux are zero. No pressure low associated with

the tropical cyclone is considered becauseGeisler (1970)

showed that it does not influence the internal wave

wake, which is the object of this study. The only nonzero

forcing is the surface wind stress, which is modeled as a

radially symmetric vortex. In a reference frame moving

with the storm, the wind stress is only tangential, it in-

creases linearly with the distance for small radii, and

then has a Gaussian-like decay (Nilsson 1995). In polar

coordinates fr, ug such a vortex with the center in the

origin of the reference frame is defined as

trs 5 0, tus 5 t
o
(r/R)e(12r2/R2)/2 , (2)

where the constant to is the maximum value of the wind

stress, attained at the distance R from the center (see

Fig. 1). The values are chosen to be R5 200km and to5
1Pa. In a short, initial phase, starting when the vortex

center is still out of the domain, the amplitude of the wind

stress increases from zero to the maximum value to 5
1Pa. Then, it moves at constant speed U 5 5ms21 from

east towest on a horizontal line in themiddle of the basin,

which is itself centered at 158 latitude north on an f plane,

where the inertial frequency is f/2p ’ 6 3 1025 s21,

which corresponds to a period of roughly 46h. The

duration of the simulations is chosen so that they begin

when the storm center is one diameter (400 km) out of

the eastern edge of the domain, and they end when the

storm center is one diameter out of the western edge.

With respect to the set of equations integrated by the

numerical model, a slightly simplified set is introduced

here to develop the analytical theory. First, it is assumed

that the equation of state is linear. This means that since

salinity is uniform and constant, the adiabatic equation

for density can replace the temperature equation. Then,

vertical diffusivity is set to zero, and the wind stress,

instead of imposing the momentum flux at the surface,

acts as a body force over the entire mixed layer depth.

Thus, the analytical theory is built on the following

equations:

›u

›t
1

�
u
›

›x
1 y

›

›y
1w

›

›z

�
u2 f y

52
1

r
o

›p

›x
1

1

r
o

txs
H

mix

s(z) , (3)

›y

›t
1

�
u
›

›x
1 y

›

›y
1w

›

›z

�
y2 fu

52
1

r
o

›p

›y
1

1

r
o

tys
H

mix

s(z) , (4)

›p

›z
1 rg5 0, (5)

›u

›x
1

›y

›y
1

›w

›z
5 0, and (6)

g

r
o

�
›r

›t
1

�
u
›

›x
1 y

›

›y
1w

›

›z

�
r

�
2wN2 5 0. (7)

The usual symbols are used: f is the Coriolis parameter;

u, y, andw are the velocity components; txs and tys are the

Cartesian components of the surface wind stress; and

r and p are the density and the pressure anomalies with

respect to the reference profiles ro 1 r̂(z) and p̂(z),

which are in hydrostatic balance and with jrj, jr̂j � ro
and jpj � p̂. The profile ro 1 r̂(z) is defined so that its

vertical derivative is equal to the adiabatic vertical de-

rivative of the total density in its unperturbed state. This

means that the density anomaly r plays the role of a

locally referenced potential density, and it is suitable for

calculating the squared buoyancy frequency profile:

N2 52
g

r
o

›r

›z
, (8)

where g is the acceleration due to gravity (Shchepetkin

and McWilliams 2003). The depth of the mixed layer is

denoted with Hmix, and the step function is s(z) 5 1

if 2Hmix , z , 0 and s(z) 5 0 otherwise.

At the flat bottom z52H, the boundary condition is

w 5 0, and, since the baroclinic modes are found in the

rigid-lid approximation (Gill 1982), at the surface z5 0,

the condition w 5 0 holds as well.

FIG. 1. Radial profile of the wind stress considered, as defined in

Eq. (2).
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3. Internal mode decomposition

The internal modes have largely proved to be a

valuable tool to describe the vertical structure of the

response of the ocean to wind forcing (Pollard 1970; Gill

1982, 1984; Kundu and Thomson 1985; Shay et al. 1989;

Nilsson 1995). In this section, the nonlinear equations,

Eqs. (3)–(7), are projected on the internal modes.

Following the notation used by Nilsson (1995), the

internal baroclinic modes hn(z) and the correspondent

eigenspeed cn, with n 2 N, n$ 1, are the solutions of the

Sturm–Liouville problem

h
nzz

N2
1

h
n

c2n
5 0 with h

n
(0)5h

n
(2H)5 0, (9)

where the subscript z denotes derivation with respect to

the vertical direction, and N is the buoyancy frequency

profile considered.

Since the normal modes are defined up to a multipli-

cative constant, a normalization condition has to be

imposed, and a common choice is hnz(0) 5 1. The

buoyancy frequency corresponding to the unperturbed

anomaly density profile obtained from the numerical

simulations (both shown in Fig. 2) is used to numerically

calculate the internal baroclinic modes of the problem

by solving Eq. (9). The first four modes are shown in

Fig. 3 together with their vertical derivatives. Themodes

calculated in this way are used both in the analysis of the

simulations and in the analytical part of this work.

The complete theory of normal modes includes also

the barotropic one. However, at least since Geisler

(1970), it is known that there is no barotropic

contribution to the wave wake. Moreover, as in the

present study, direct calculations show that the role of

the barotropic mode is negligible; only the baroclinic

modes are considered here.

The dynamical variables can be projected on the in-

ternal modes as

w5 �
1‘

l51

w
l
h
l
, (10)

[u, y, p/r
o
,s]5 �

1‘

l51

[u
l
, y

l
,p

l
,s

l
]h

lz
, and (11)

2r/r
o
5 �

1‘

l51

h
l
h
lzz

, (12)

where hl and their vertical derivatives hlz and hlzz
contain all the dependence on the depth z, and the

expansion coefficients are a function of (x, y, t). By

exploiting the orthogonality of the internal modes (Gill

1982, chapter 6), the expansion coefficients can be

found as

w
l
5

ð0
2H

dzN2h
l
wð0

2H

dzN2h2
l

,

[u
l
, y

l
, p

l
,s

l
]5

ð0
2H

dz h
lz
[u, y, p/r

o
,s]ð0

2H

dz h2
lz

,

h
l
5p

l
/g ,

FIG. 2. (left) The unperturbed density anomaly vertical profile

r and (right) the squared buoyancy frequency N2, as defined in

Eq. (8).

FIG. 3. First four baroclinic modes hn(z) and their vertical de-

rivatives hnz(z) for n5 1, . . . , 4. The thickness of the lines decreases

with increasing modenumber.
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with the last equality given by the hydrostatic equation.

These integrals are calculated directly with the outputs

of the simulations to find the projections of the fully

nonlinear solutions.

Using the decomposition introduced above [Eqs.

(10)–(12)], it is well known that the linearized gov-

erning equations for a stratified ocean can be replaced

by an infinite set of linear, shallow-water equations

(Gill 1982, chapter 6). In particular, hl plays the role of

the free-surface height, and with the definitions of

equivalent depth Hl 5 c2l /g and equivalent forcing

depth HF
l 5Hmix/sl, the dynamics is described by the

linear, shallow-water equations in the variables ul, yl,

and hl. This linear problem was solved by Gill (1982,

chapter 9), who showed that the energy of the waves is

concentrated in a peak around the nondimensional

frequency

v
Gl

f
5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 c2l /U

2
p , (13)

where cl is the eigenspeed of the mode considered, and

U is the storm translation speed. Then, Shay et al. (1989)

solved the problem by finding its Green’s function, fol-

lowing Geisler’s (1970) approach. Finally, Nilsson

(1995) used the linear solution written in the spectral

space to calculate analytically the energy flux from a

traveling tropical cyclone to the oceanic internal

wave field.

However, in this work the focus is on nonlinearities,

and it is shown that they break the analytical equiva-

lence between a stratified ocean and the infinite set of

shallow-water systems. Equation (6) projected on the lth

internal mode gives

w
l
52

�
›u

l

›x
1

›y
l

›y

�
. (14)

The advective term can be brought to the right-hand

side of Eq. (3) and then projected on the lth mode as

follows:

2

�
u
›

›x
1 y

›

›y
1w

›

›z

�
u5 �

1‘

n51

�
2h

nz

�
u
n

›

›x
1 y

n

›

›y

�
1 h

n

�
›u

n

›x
1

›y
n

›y

�
›

›z

�
�
1‘

m51

(h
mz
u
m
)

5 �
1‘

n,m51

�
2h

nz
h
mz

�
u
n

›

›x
1 y

n

›

›y

�
1 h

n
h
mzz

�
›u

n

›x
1

›y
n

›y

��
u
m
. (15)

Now the products 2hnzhmz and hnhmzz can be decom-

posed on the basis of the modes for the horizontal ve-

locity fhlzgl2N, so that

2h
nz
h
mz

5 �
1‘

l50

a
nml

h
lz

and h
n
h
mzz

5 �
1‘

l50

b
nml

h
lz
,

with the expansion coefficients given explicitly by

a
nml

52

ð0
2H

dz h
nz
h
mz
h
lzð0

2H

dz h2
lz

, and (16)

b
nml

5

ð0
2H

dz h
n
h
mzz

h
lzð0

2H

dz h2
lz

. (17)

The same coefficients appear while projecting on the

modes the y velocity component equation [Eq. (4)], so

that the advective terms in the momentum equations

are

2

�
u
›

›x
1 y

›

›y
1w

›

›z

�
u5 �

1‘

n,m,l51

U
nml

h
lz
, and (18)

2

�
u
›

›x
1 y

›

›y
1w

›

›z

�
y5 �

1‘

n,m,l51

V
nml

h
lz
, (19)

with

U
nml

5

�
a
nml

�
u
n

›

›x
1 y

n

›

›y

�
1b

nml

�
›u

n

›x
1

›y
n

›y

��
u
m
,

(20)

and

V
nml

5

�
a
nml

�
u
n

›

›x
1 y

n

›

›y

�
1b

nml

�
›u

n

›x
1

›y
n

›y

��
y
m
.

(21)

Considering now the density equation [Eq. (7)], divided

by the squared buoyancy frequency N2, the coefficients
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l
nml

52
c
l

c
m

ð0
2H

dzN2h
nz
h
m
h
lð0

2H

dzN2h2
l

, and (22)

m
nml

52c
l
c
m

ð0
2H

dz h
n
h
mzzz

h
lð0

2H

dzN2h2
l

(23)

are defined, so that one can write

2
g

r
o
N2

�
u
›

›x
1 y

›

›y
1w

›

›z

�
r5 �

1‘

n,m,l51

R
nml

h
l

c
l

, (24)

with

R
nml

5

�
l
nml

�
u
n

›

›x
1 y

n

›

›y

�
1m

nml

�
›u

n

›x
1
›y

n

›y

��
gh

m

c
m

.

(25)

The anml, bnml, lnml, and mnml coefficients are calcu-

lated directly using their integral definitions introduced

in Eqs. (16), (17), (22), and (23). They represent the

geometrical equivalent of the well-known triangle con-

dition for the vertical wavenumber

jk0
z 6 k00

zj5 k000
z , (26)

which is one of the necessary conditions for a triad in-

teraction to be resonant. A triad is resonant, that is, it

implies efficient energy exchange among the waves in-

volved, when the conditions k06 k005 k000 and v06v00 5v000

are satisfied (Phillips 1966; Thorpe 2005; Olbers et al.

2012). Appendix A shows that in the case of constant

stratification the only nonzero coefficients are on the

lines jn 6 mj 5 l, which strictly correspond to Eq. (26)

since modenumbers are directly proportional to vertical

wavenumbers.

By computing the above coefficients (not shown) it

is clear that the effect of the variation of N with depth

is to allow resonant interactions also out of the lines

jn6mj5 l (Pomphrey et al. 1980), which is consistent

with the fact that in the case of depth-varying strat-

ification the local wavenumber of mode l varies

with depth as N(z)/cl, and thus there is no one-to-

one correspondence between vertical wavenumbers

and modenumbers. This, in turn, implies that the

condition of Eq. (26) can be respected locally even if

jn 6 mj 6¼ l.

Another interesting feature that characterizes the

geometrical coefficients of the above is that only

the anml ones are symmetrical under the exchange of

the indices n andm, while all the others are not. This is

part of the reason why also the Unml, V nml, and Rnml

terms introduced above are not symmetrical under the

n, m exchange. Thus, in the entire following discus-

sion, one should keep in mind that the nth mode wave

advects the mth mode one, and their roles are not

interchangeable.

By introducing the variable rl 5 ghl/cl, the set of

governing equations [Eqs. (3)–(7)] can be projected on

the lth internal mode as

›u
l

›t
2 f y

l
1 c

l

›r
l

›x
5 txl 1 �

1‘

n,m
U

nml
, (27)

›y
l

›t
1 fu

l
1 c

l

›r
l

›y
5 tyl 1 �

1‘

n,m
V

nml
, and (28)

›r
l

›t
1 c

l

�
›u

l

›x
1

›y
l

›y

�
5 �

1‘

n,m
R

nml
, (29)

together with the diagnostic equations pl 5 clrl and

wl 52(›ul/›x1 ›yl/›y).

It is known that the response of the ocean is steady in

the frame of reference of the storm (Price 1981; Gill

1982), and thus, introducing the coordinate j 5 x 1 Ut,

for a storm moving in the negative x direction, the de-

rivatives change according to

›

›x
5

›j

›x

›

›j
5

›

›j
and

›

›t
5

›j

›t

›

›j
5U

›

›j
.

The set of Eqs. (27)–(29) becomes

U
›u

l

›j
2 f y

l
1 c

l

›r
l

›j
5 txl 1 �

1‘

n,m
U

nml
, (30)

U
›y

l

›j
1 fu

l
1 c

l

›r
l

›y
5 t

y
l 1 �

1‘

n,m
V

nml
, and (31)

U
›r

l

›j
1 c

l

�
›u

l

›j
1

›y
l

›y

�
5 �

1‘

n,m
R

nml
, (32)

with the appropriate replacements in the Unml, V nml,

and Rnml terms as well.

While l varies from 1 to infinity, a small finite number

of modes explains the majority of the total energy

transferred to the ocean from the passing storm. To

compare the relative importance of a single mode, the

total energy of the initial set of equations [Eqs. (3)–(7)]

is integrated vertically from the bottom to the top and

decomposed as

ð0
2H

dz
1

2

�
u2 1 y2 1

g2r2

N2r2o

�
5 �

1‘

l51

1

2
(u2

l 1 y2l 1 r2l )khlz
k2 ,
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which applies because of the orthogonality of themodes.

The squared norm khlzk2 arises naturally in the solution

of the Sturm–Liouville problem [Eq. (9)], and it is de-

fined as

kh
lz
k2 5

ð0
2H

dz h2
lz . (33)

The fields u, y, r are the ones obtained from the nu-

merical simulations, and they are steady in the frame of

reference of the storm; thus, they depend on (j, y, z)

only. By introducing the 2D Fourier transform with

wavenumbers kx and ky associated with the coordinates

j and y, respectively, the spectral energy density for each

mode can be defined. In particular, in the spectral do-

main, the steadiness condition for a storm moving in the

negative x direction is

v52k
x
U , (34)

which is a direct link between the frequency of the wave

and the along-track wavenumber.

Since the Fourier transform [denoted with a hat (^)]

is a linear operator, then the spectral fields û, ŷ, and r̂/ro
can also be expanded in the usual way

[û, ŷ]5 �
1‘

l51

[û
l
, ŷ

l
]h

lz
, r̂/r

o
5 �

1‘

l51

ĥ
l
h
lzz

,

which leads to a similar decomposition on the modes for

the power spectrum

ð0
2H

dz
1

2

 
jûj2 1 jŷj2 1 g2jr̂j2

N2r2o

!

5 �
1‘

l51

1

2
(jû

l
j2 1 jŷ

l
j2 1 jr̂

l
j2)kh

lz
k2 5 �

1‘

l51

Ê
l
kh

lz
k2 . (35)

The spectral energy density for the lth mode,

Êl(kx, ky)5 (jûlj2 1 jŷlj2 1 jr̂lj2)/2, is the spectral corre-

spondent of the energy associated with the linear set of

Eqs. (30)–(32). The above expression shows how energy

is partitioned both in horizontal wavenumbers and in

modenumbers. By denoting with a tilde the spectral

variables integrated along the across-track wave-

number, namely,

~E
l
(k

x
)5

ð1‘

2‘

dk
y
Ê

l
(k

x
,k

y
),

one can introduce the functions ~Elkhlzk2, shown in the

left panel of Fig. 4 for the first three modes. To study the

stationary wake in the frame of reference of the storm

starting from the numerical simulations, the projections

of the wake on the internal modes are averaged by su-

perimposing the center of the cyclone in the origin of

the new frame of reference (j, y) at any given time. This

reduces the transient response, which is not stationary in

the frame of reference of the storm.A simple 2DFourier

transform is then applied to the steady wake. The near-

inertial peak of the lth mode is around the Geisler

wavenumber, which corresponds to the blue-shifted

frequency of Eq. (13) through the steadiness condi-

tion [Eq. (34)]. From Fig. 4, it is clear that the most

prominent blue shift appears in the first mode,

as described by Gill (1982, chapter 9) in his linear

theory.

The integral of the power spectrum around the near-

inertial peak of the other modes (l $ 2) monotonically

decreases with the modenumber. This is equivalent to

the near-inertial energy

NIE(l)5

ð
I( f /U)

dk
x
~E
l
kh

lz
k2 (36)

decreasing monotonically except for the first mode, as

shown in the right panel of Fig. 4. On the other hand, for

the energy around the double-inertial peak,

DIE(l)5

ð
I(2f /U)

dk
x
~E
l
kh

lz
k2 , (37)

the first mode is the most energetic. The intervals

of integration are chosen to be I( f /U)5fkx 2 R:

0:8f/U, kx, 1:6f /Ug and I(2f /U)5fkx 2 R : 1:8f /U, kx
, 2:2f /Ug, and they are shown as horizontal bars

in the left panel of Fig. 4. Results are not sensitive

to small changes in the choice of the intervals of

integration.

The important point to emphasize is that, for NIE(l),

the second mode dominates, tightly followed by the

third mode, while for DIE(l) it is the first one that has

most of the energy. Therefore, because of the fast de-

crease of the DIE(l), the analysis is limited to consid-

eration of the first three:

l 5 1, 2, 3.

4. Analytical spectral decomposition

By writing down the nonlinear projected equations

in the spectral domain, it is possible to quantify ana-

lytically the relative contribution of the linear forcing

and the nonlinear advection terms to the energy

around the double-inertial frequency of the first three

modes.

In Fourier space, Eqs. (30)–(32) become
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ik
x
Uû

l
2 f ŷ

l
1 ik

x
c
l
r̂
l
5 t̂xl 1 �

1‘

n,m
Û

nml
, (38)

ik
x
Uŷ

l
1 f û

l
1 ik

y
c
l
r̂
l
5 t̂

y
l 1 �

1‘

n,m
V̂

nml
, and (39)

ik
x
Ur̂

l
1 c

l
(ik

x
û
l
1 ik

y
ŷ
l
)5 �

1‘

n,m
R̂

nml
, (40)

which can be rewritten in matrix form as Ax̂5 b̂ with

A5

2
64
ik

x
U 2f ik

x
c
l

f ik
x
U ik

y
c
l

ik
x
c
l

ik
y
c
l

ik
x
U

3
75, x̂5

0
B@

û
l

ŷ
l

r̂
l

1
CA,

b̂5 b̂
o
1 �

1‘

n,m

Û
nml

V̂
nml

R̂
nml

0
BB@

1
CCA, b̂

o
5

t̂xl

t̂
y
l

0

0
B@

1
CA . (41)

With this notation, it is straightforward to calculate the

spectral energy density for the lth mode as

Ê
l
5

1

2
(jû

l
j2 1 jŷ

l
j2 1 jr̂

l
j2)5 1

2
[b̂*T(AA*T)21b̂] , (42)

where the star * denotes the complex conjugate, and the

superscript T denotes the transpose. With the definition

of the matrix C5 (AA*T)21, one finds

Ê
l
5

1

2
(C

11
jb̂

1
j2 1C

22
jb̂

2
j2 1C

33
jb̂

3
j2)1RefC

12
b̂
1
*b̂

2

1C
13
b̂
1
*b̂

3
1C

23
b̂
2
*b̂

3
g .

(43)

The coefficients Cij are polynomials in the variables kx,

ky, and they are explicitly written in appendix B. By

replacing the forcing vector b of Eq. (41) in Eq. (42),

the spectral energy density becomes

FIG. 4. (left) The first three weighted power spectra khlzk2 ~El(kx) with l 5 1, 2, 3 obtained from the simulation

D8000. The tilde is used to denote spectral variables integrated along the across-track wavenumber, and the

squared norm of the mode is the weight needed to correctly compare the contribution of each mode. (right) The

horizontal bars show the intervals of integration used to define the near-inertial energy NIE(l) of Eq. (36), and

the double-inertial energy DIE(l) of Eq. (37), shown as a function of the modenumber. It is important to notice

that the second and the third mode are the most energetic in terms of NIE(l), but it is the first one that contains

most of the DIE(l).

AUGUST 2017 MERON I ET AL . 1969



Ê
l
(k

x
, k

y
)5C0

l 1 �
1‘

n,m51

C1
nml 1 �

1‘

q,s,n,m51

C2
qsnml, (44)

where

C0
l (kx

, k
y
)5

1

2
(C

11
jt̂xl j2 1C

22
jt̂yl j2)1RefC

12
(t̂xl )*t̂

y
l g

(45)

contains no advection term,

C1
nml(kx

, k
y
)5Ref[C

11
(t̂xl )*1C

12
* (t̂yl )*]Ûnml

g
1Ref[C

12
(t̂xl )*1C

22
(t̂yl )*]V̂ nml

g
1Ref[C

13
(t̂xl )*1C

23
(t̂yl )*]R̂nml

g (46)

contains advection terms to the first power, and

C2
qsnml(kx, ky)5

1

2
(C

11
RefÛ

qsl
* Û

nml
g1C

22
RefV̂

qsl
* V̂

nml
g

1C
33
RefR̂

qsl
* R̂

nml
g)1RefC

12
Û

qsl
* V̂

nml

1C
13
Û

qsl
* R̂

nml
1C

23
V̂

qsl
* R̂

nml
g

(47)

contains products of two advection terms.

To focus on the energy exchanges involving the double-

inertial frequency range, one canmakeuse of the steadiness

condition [Eq. (34)] that relates directly the along-track

wavenumber to the frequency. Denoting with a tilde the

functions integrated along the ky axis, one obtains the

power spectrumdensity and its components as a function of

the along-track wavenumber only, namely,

~E
l
(k

x
)5 ~C0

l 1 �
1‘

n,m51

~C1
nml 1 �

1‘

q,s,n,m51

~C2
qsnml. (48)

These integrals are defined as the Cauchy principal

value, as explained precisely in appendix B.

FIG. 6. The dashed line shows the linear spectrum ~C0
l (kx) with

l5 1. The solid lines show the truncated energy spectral density
~E
(M)
l (kx), as in Eq. (55), for various values of M. The peak near

kxU/f 5 2 increases with increasing M. The circles show the total

energy spectral density ~El(kx) obtained from the simulation D4000

and the crosses from the simulation D8000. The horizontal double

line marks the interval of integration I(2f/U) of Eq. (53).

FIG. 5. Steady wave wake of the y velocity component projected

on the first internal mode. The contour lines go from 20.15 to

0.15m s21 with interval of 0.02m s21. Solid contours are for posi-

tive values, and dashed contours are for negative ones. The along-

track distance from the center of the storm is normalized by the

inertial wavelength 2pU/f, while the across-track distance is nor-

malized by the wavelength associated with the baroclinic radius of

deformation, that is, 2pcl/f.
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The final step to have a simple measure of the relative

importance of a certain interaction of waves in the

generation of the double-inertial energy peak of the lth

wave is to integrate the previous equation around the

value kx 5 2f/U. In particular, the following coefficients

can be defined:

«
l
5

ð
I(2f /U)

dk
x
~E
l
, (49)

f0
l 5

1

«
l

ð
I(2f /U)

dk
x
~C0
l , (50)

f1
nml 5

1

«
l

ð
I(2f /U)

dk
x
~C1

nml, and (51)

f2
qsnml 5

1

«
l

ð
I(2f /U)

dk
x
~C2
qsnml , (52)

where

I(2f /U)5 fk
x
2 R: 2f /U2Dk

x
# k

x
# 2f /U1Dk

x
g ,
(53)

with an appropriate Dkx. As for the calculation of the

DIE(l) of Eq. (37),Dkx5 0.2f/U, and it was checked that

the results are not sensitive to small changes in the

choice of this value, as far as only the double-inertial

peak is included in the integrals. Thanks to these defi-

nitions, Eq. (48) becomes

15f0
l 1 �

1‘

n,m51

f1
nml 1 �

1‘

q,s,n,m51

f2
qsnml, (54)

and each of the three addenda express the relative

contribution of linear, first-order advection and second-

order advection terms to the energy of mode l in the

double-inertial range.

To show the results, all the series that appear in Eqs.

(48) and (54) are stopped at a certain modenumber M,

so that the truncated energy spectral density is defined as

~E
(M)
l (k

x
)5 ~C0

l 1 �
M

n,m51

~C1
nml 1 �

M

q,s,n,m51

~C2
qsnml, (55)

which leads to the definition of the truncated double-

inertial energy

«
(M)
l 5

ð
I(2f /U)

dk
x
~E
(M)
l (56)

FIG. 7. The f
1(M)
nml coefficients for M 5 10, n, m 2 [1, 10], and l 5 1. The minus denotes

negative values.
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and the truncated coefficients f
0(M)
l , f

1(M)
nml , and f

2(M)
qsnml.

Those are defined as in Eqs. (50)–(52) with «
(M)
l instead

of «l, which means that Eq. (54) holds even for these

coefficients.

5. Results

The quantities shown in this section are calculated

analytically, starting from the linear solutions obtained

by transforming the spectral variables

x̂5A21b̂
o

(57)

back to the physical space, as explained in detail in ap-

pendix C. The truncated coefficients f
0(M)
l , f

1(M)
nml , and

f
2(M)
qsnml, that satisfy

15f
0(M)
l 1 �

M

n,m51

f
1(M)
nml 1 �

M

q,s,n,m51

f
2(M)
qsnml (58)

thus measure the energy transfer between modes due to

the nonlinear interactions of the linear solutions. In

particular, they measure the energy exchanged between

the lth-mode, double-inertial peak and the qth, sth, nth,

and mth waves.

The analytical solutions are computed on a bigger

grid compared to the one used in the numerical simu-

lation to have a finer wavenumber step. The grid is 643
103 km long in the longitudinal direction and 24 3
103 km in the latitudinal one, with grid spacing Dx 5
Dy 5 80 km. Figure 5 shows the wave wake for the first

projection of the y field calculated analytically (upper

panel) and obtained from the numerical simulation

(lower panel). Once the linear ul, yl, rl are known for

many l, one can compute the advection terms of Eqs.

(20), (21), and (25) and then the spectral functions of

Eqs. (45)–(47). The integrals along ky (as explained in

appendix B) and the integrals around the double-

inertial peak are finally performed to find the trun-

cated coefficients of Eq. (58).

As shown in Fig. 6, the net effect of nonlinear in-

teractions is to add energy to the double-inertial

range. In the same figure, one can also see that the

variation of M in the range [6, 10] does not influ-

ence the position of the double-inertial peak. Its

height changes because more and more interactions

are taken into consideration, and, in the analytical

solution, they are all certainly happening. Thus,

compared to the numerical spectra, the analytical

solution gives an upper bound to the height of the

FIG. 8. Thef
2(M)
qsnml coefficients forM5 10, q, s 2 [1, 6], n,m2 [1, 6], and l5 1. Theminus denotes

negative values.
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double-inertial peak in the case that all possible in-

teractions among the waves in the wake behind the

storm are exchanging energy. The peaks in the D8000

spectrum are higher than the D4000 ones both because

the domain is larger (the D8000 domain is twice as

large as the D4000 one) and because more wave in-

teractions happen and bring energy to the double-

inertial peak.

To quantify the role of the single interaction of

waves in the generation of the double-inertial peak,

the coefficients f
1(M)
nml are shown in Fig. 7 for M 5 10,

n, m 2 [1, 10], and the coefficients f
2(M)
qsnml in Fig. 8 for

M 5 10, n, m 2 [1, 6], and q, s 2 [1, 6]. Positive values

correspond to nonlinear interactions that bring energy

to the lth-mode, double-inertial peak from the inter-

acting waves, while negative values correspond to in-

teractions that take energy away from the lth-mode,

double-inertial peak. There is no balance between the

sum of all the positive coefficients and the negative

ones because that would correspond to a zero net

contribution of the nonlinear interactions in the gen-

eration of the double-inertial peak and to an energy

spectral distribution decaying as ~C0
l (kx), that is, with

no double-inertial peak. A total zero sum could be

expected if the coefficients under study were energy

exchange rates and not integrated energy transfer, as

they are in the present work.

The following figures, Figs. 9–12, confirm the de-

scription of the energy exchanges between near-

inertial and double-inertial waves of different modes

by showing the same coefficients f
1(M)
nml and f

2(M)
qsnml for

l5 2 and l5 3. In this way, some general features can be

drawn. First of all, the geometrical constraint due to the

structure of the anml, bnml, lnml, and mnml coefficients,

that is, the triangle condition on the modenumbers,

appears in all the cases. In particular, the dominant

coefficients in Figs. 7–12 are always the one with (n5 2

or 3 andm5 l1 n) or (q5 2 or 3, s5 l1 q, n5 2 or 3,

and m 5 l 1 n). It was proved that the entire interpre-

tation of the mechanism does not depend on the value

ofM, as far as it is high enough to capture the dominant

interaction for the selected mode. This means that for

the first three modes, the Figs. 7–12 are qualitatively the

same for M 2 [6, 10], in the sense that the relative im-

portance of the coefficients with respect to one another

is independent of M.

The same coefficients of Figs. 7–12 were calculated

using the waves simulated inD4000 andD8000, and very

small differences with the coefficients shown here were

found, of the order of a few percentage points (not

FIG. 9. As in Fig. 7, but for l 5 2.
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shown). This means that the presence of some energy

in the double-inertial range of the interacting waves

does not influence the picture of the mechanism outlined

above.

6. Discussion and conclusions

The generation mechanism of the double-inertial

frequency waves is analyzed using the internal mode

decomposition and defining analytically the coefficients

of Eqs. (51) and (52) that measure the relative impor-

tance of the contribution of the interacting modes (qth,

sth, nth, andmth) to the double-inertial frequency range

of the power spectrum of the reference mode l. The

analytical theory developed in this work describes

the nonlinear interactions of the linear solutions of the

problem, which are compared to the fully nonlinear

solutions obtained from two numerical simulations. This

gives a more detailed view of the process compared to

previous works (Niwa and Hibiya 1997; Danioux and

Klein 2008; Zedler 2009) in a realistic setting with a

nonuniform oceanic stratification profile, and it high-

lights the role played by superinertial waves to ocean

interior mixing.

First of all, let us comment on the apparent discrep-

ancy between Niwa and Hibiya’s (1997) and Zedler’s

(2009) identification of the depth at which nonlinear

interactions take place. In the present work, it is found

that the relatively dominant interactions that bring en-

ergy to the low-modenumber, double-inertial range

waves generally involve a second- or third-mode wave

(n5 2 or 3). This suggests that nonlinear interactions are

important where the second and third modes peak, that

is, in the range 1000–2500m for the hn modes and in the

region of 500–750m for the hnz modes (see Fig. 3). As

pointed out in the introduction, according to a WKB-

like scaling, the energy should scale vertically as the

buoyancy frequency profile and thus most of the en-

ergy exchanges would take place at the base of the

mixed layer (see Fig. 2). Thus, the present analysis

supports the idea that Niwa and Hibiya (1997) and

Zedler (2009) interpretations of the depths at which

nonlinear interactions take place is different simply

because they use different vertical buoyancy frequency

profiles but also that a simple WKB-like scaling would

underestimate the depth at which nonlinear interac-

tions are important.

Moreover, concerning the first mode (l 5 1), which

contains most of the double-inertial frequency energy,

Fig. 8 proves that high-mode, near-inertial energy is

transferred to the first-mode, double-inertial peak,

which is consistent with the results of Niwa and Hibiya

(1997). As shown in appendix D, this corresponds to a

faster lateral energy propagation speed and must be

FIG. 10. As in Fig. 8, but for l 5 2.
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taken into account when studying the radiation of en-

ergy from a wake excited by a tropical cyclone. In par-

ticular, in appendix D a sufficient condition for having

an increase of the lateral energy propagation speed

during the transfer of energy from a high-mode, near-

inertial wave to a low-mode, double-inertial one for an

exponential stratification,N(z)5Noe
z/lwith z2 [2H, 0],

is derived. Such a sufficient condition states that the

cyclone translation speed U must exceed the threshold

value U2,1 ’ lNo 3 1021. Considering as upper bound

the values No ’ 1022 s21 and l ’ 103m (Pickard and

Emery 1990), one findsU2,1 ’ 1ms21, which means that

for nearly all the tropical cyclones that generally move

with a translation speed between 1 and 10ms21, the

transfer of energy from a high-mode m near-inertial

range to a low-mode l double-inertial range corresponds

to an increase of the lateral energy propagation speed.

Since, considering l5 1, 2, 3, this kind of transfer is very

common (in correspondence of all the positive values of

Figs. 7–12), nonlinearities account for an increase of the

lateral energy propagation speed from the wake excited

by a tropical cyclone.

On the other hand, the presence of negative values in

Figs. 7–12 (in particular in Figs. 7, 9, and 11) shows en-

ergy flowing from the double-inertial range of mode l to

some higher-mode n, m . l. This is in agreement with

the possibility of a parametric subharmonic instability

mechanism acting in the wave wake (McComas and

Müller 1981), and since this energy is going toward high

modes, these figures explicitly show a step in the cascade

toward small scales, where the mixing happens.

Thus, the complete underlying mechanism that is

found and that is in full agreement with the recent re-

sults of Wagner and Young (2016) can be summarized

in a few steps:

d the wind stress inputs energy in the near-inertial range

of all vertical modes;
d nonlinear interactions bring part of this energy toward

the double-inertial range (which means that the waves

are less likely to undergo critical latitude reflection) of

the lowest modes (which have a higher horizontal

group speed); and
d the double-inertial energy, which has been brought

farther and faster compared to a purely linear system,

is transferred back to the near-inertial range of some

high vertical mode, that is, energy flows toward the

small mixing scales.

In the present work, the temporal evolution of the

nonlinear interactions has not been analyzed, as the

FIG. 11. As in Fig. 7, but for l 5 3.
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focus has been on the equilibrated oceanic response. It

would be interesting to study in a future work the time

constant for such equilibrated state to be reached.
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APPENDIX A

Constant Stratification

The solutions of the Sturm–Liouville problem [Eq.

(9)] in the case of constant stratification, that is, when

N 5 No, are

h
n
(z)5

H

np
sin
�np
H

z
�
, and

h
nz
(z)5 cos

�np
H

z
�
,

which means that the vertical wavenumber is directly

proportional to the modenumber. The eigenspeeds are

given by cn5HNo/np, whichmeans that cn; n21. Then,

for n,m, l $ 1, the definitions from Eqs. (16), (17), (22),

and (23) give analytically

a
nml

52
1

2p
(d

n1m,l
1 d

n2m,l
1 d

2n1m,l
), (A1)

b
nml

5
1

2p

m

n
(d

n1m,l
2 d

n2m,l
2 d

2n1m,l
), (A2)

l
nml

5
1

2p
(2d

n1m,l
1 d

n2m,l
2 d

2n1m,l
), and (A3)

m
nml

5
1

2p

m

n
(d

n1m,l
1 d

n2m,l
2 d

2n1m,l
), (A4)

where the Kronecher delta appears, and it imposes that

the nonzero coefficients are only on the lines n 5 m 6 l

and n 5 2m 1 l. These relations, since the vertical

wavenumber is directly proportional to the mod-

enumber, represent simply the triangle condition for the

vertical wavenumber [Eq. (26)]. That is why the anml,

bnml, lnml, andmnml coefficients can be interpreted as the

FIG. 12. As in Fig. 8, but for l 5 3.
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geometrical equivalent in the modenumber space of the

triangle condition [Eq. (26)].

APPENDIX B

Power Spectrum Matrix

The matrixC5 (AA*T)21 appears in Eq. (43). SinceA

is anti-Hermitian, it follows that C 5 2(AA)21 holds as

well. To find the inverse of 2AA, one first writes the

determinant of 2AA with the Binet theorem,

det(2AA)5 det(2I)[det(A)]2

5 k2
xU

2[k2
x(U

22 c2l )2k2
yc

2
l 2 f 2]2, (B1)

where I is the identity matrix, and then, with the co-

factors method, the entries of the inverse matrix are

C
11
(k

x
,k

y
)5

1

k2
xU

2
1

f 2 1 c2l k
2
x

k2
xU

2
W1 2(f 2 1 c2l k

2
x)W

2 ,
(B2)
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22
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2
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2
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2 ,
(B3)
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c2l (k
2
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2
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with

W(k
x
, k

y
)5

1

U2k2
x 2 f 2 2 c2l (k

2
x 1 k2

y)
2 R . (B8)

As Nilsson (1995) explains very well, the locus of

wavenumbers defined by the zero of the denominator of

the above function selects the waves that can move

steadily with the storm. This, in the present work, means

that only waves whose wavenumber (kx, ky) belongs to

the hyperbola

U2k2
x 5 f 2 1 c2l (k

2
x 1 k2

y) (B9)

are considered in the energy exchanges. As a conse-

quence, this excludes that the second harmonic peak is

phase locked to the fundamental peak, which is the one

centered on the Geisler wavenumber

k
Gl
5

 
fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

U2 2 c2l
p , 0

!
. (B10)

In fact, the wavenumber of a second harmonic phase-

locked wave is the double of the Geisler wavenumber

k2,p.l. 5 2kGl, which one can easily verify that does not

belong to the hyperbola of the above.

Then, both when finding the solutions of the linear

problem, as in appendix C, and when integrating Eqs.

(45)–(47) along the across-track wavenumber ky, the

zeros in the denominator of the functionW(kx, ky) make

it necessary to regularize the integrals by taking their

Cauchy principal value, denoted with a P in front of

them. The general form of such integrals is then

P

ð‘
2‘

ds f (s)
sg

Dn
with

D5 (s2 x)(s1 x)(s2 x*)(s1 x*), (B11)

where x 2 C is a first-order pole, and f(s) is a smooth

regular function that decays fast enough as s increases,

so that the Jordan’s lemma and the residues theorem can

be applied. Note that the fact that Imfxg 6¼ 0 is a con-

sequence of the introduction of a small imaginary pa-

rameter that mimics some form of dissipation in the

equations of motion. This is necessary only while cal-

culating the linear analytical solution in order to over-

come the famous mathematical ambiguity discussed in

appendix D (Lighthill 1978, chapter 3). Back to the in-

tegrals of Eq. (B11), remember that the real function

f(s) of a real variable s can always be decomposed as a

sum of its even part and its odd one, that is,

f (s)5 fE(s)1 fO(s), with fE(s)5 [f (s)1 f (2s)]/2 and

fO(s)5 [ f (s)2 f (2s)]/2. This means that in the integral

(B11) only one of the two gives a nonzero contribution

according to the parity of f(s)sg. The ranges of param-

eters needed in this work are g 2 [0, 6] � N and n 2
[1, 2] � N and come from the structure of the Cij

polynomials introduced above.

By Fourier transforming along s, which corresponds to

decompose the function on the Fourier basis feiskgk2R,
and by extending the integral in the complex s plane, the

path of integration can be correctly closed in the upper

half plane or in the lower one following the Jordan’s

lemma. With the definition of

f (s)5
1ffiffiffiffiffiffi
2p

p
ð1‘

2‘

dk eiksf̂ (k) (B12)

and a little algebra, the residues theorem gives
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ds f (s)
sg

Dn
5 2i

ffiffiffiffiffiffi
2p

p ð1‘

0

dk f̂ (k)�
UP

Res

	
sgeiks

Dn



,

(B13)

whereUP denotes the upper half plane corresponding to

Imfsg . 0. The advantage of this approach is that the

residues that appear in the last equation can be calcu-

lated analytically, while the form of the function f(s)

may not be known analytically.

APPENDIX C

Linear Analytical Solution

While solving the linear problem, a famous mathe-

matical ambiguity arises. It comes from the fact that the

mathematical problem includes wave solutions coming

from infinity, but the physical problem describes waves

excited by the forcing acting in the domain considered.

This ambiguity can be solved by adding an imaginary

part to the wavenumber kx (in this problem this is

achieved by replacing kx with kx 2 id, d . 0) before

inverting the Fourier integrals and then by taking the

limit where the imaginary part goes to zero (Lighthill

1978, chapter 3). Formally, using the symbols of

Eq. (41), the linear solutions are

x5

0
B@

u
l

y
l

r
l

1
CA5 lim

d/0

1

2p

ð ð‘
2‘

dk
x
dk

y
ei(kxj1kyy)x̂(k

x
2 id, k

y
),

(C1)

where

x̂(k
x
2 id,k

y
)5 (A21b̂

o
)
��
kx5kx2id

. (C2)

While inverting the Fourier integral of the above, the

technique introduced in appendix B is used. As an ex-

ample, the linear solution for yl is written as

y
l
(j, y)5

1ffiffiffiffiffiffi
2p

p
ð1‘

2‘

dk
y

8<
: 1

U2 2 cl2
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2
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;, (C3)

with

J(j, k
y
)5

ð1‘

0

dqFTfeikxjImf̂txl (kx
, k

y
)gg 1

a
sin(qa), and

(C4)

Y(j, k
y
)5

ð1‘

0

dqFTfieikxjImft̂yl (kx
, k

y
)gg cos(qa),

(C5)

where FT denotes the Fourier transform along the kx
direction, namely,

FTff (k
x
)g(q)5 1ffiffiffiffiffiffi

2p
p

ð1‘

2‘

dk
x
e2iqkx f (k

x
) , (C6)

and a is given by

a5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 1 c2l k

2
y

U2 2 c2l

s
. (C7)

As already mentioned, this approach makes it possi-

ble to find the linear steady solution even in the case

where the wind stress is not known analytically. Thus,

in principle, the wind forcing could be given by

observations.

APPENDIX D

Energy Propagation Speed

A sufficient condition to have an increase in the lateral

energy propagation speed during the transfer of energy

from a high-mode, near-inertial wave to a low-mode,

double-inertial wave for an exponential stratification is

here derived.

First of all, for lth-mode waves, the dispersion re-

lation is

v
l
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 1 c2l (k

2
x 1 k2

y)
q

, (D1)

and the magnitude of the group speed as a function of

frequency is

jc
gl
(v

l
)j5 c

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

f 2

v2
l

s
. (D2)

Therefore, at the Geisler frequency vl 5 vGl of Eq. (13)

and at the double-inertial frequency vl 5 2f,

jc
gl
(v

Gl
)j5 c2l

U
, and (D3)

jc
gl
(2f )j5 c

l

ffiffiffi
3

4

r
. (D4)
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Considering now the ratio of the magnitude of the group

speed of the mth mode at the near-inertial frequency

vGm to themagnitude of the group speed of the lthmode

at the double-inertial frequency, one writes

Q
m,l

5
jc

gm
(v

Gm
)j

jc
gl
(2f )j 5

c2m/U

c
l

ffiffiffiffiffiffiffi
3/4

p 5
U

m,l

U
, (D5)

withUm,l 5 2c2m/cl
ffiffiffi
3

p
. If the conditionQm,l, 1 is fulfilled,

the transfer of energy from the mth-mode, near-inertial

range to the lth-mode, double-inertial range results in an

increase of the propagation velocity of the energy itself.

The same condition can be written as U.Um,l. An ana-

lytical expression of Um,l can be found in the case of ex-

ponential stratification of a deep ocean, that is,N(z)5 No

ez/l with z 2 [2H, 0] and withH/l� 1. In such a case, the

eigenspeeds are given by the implicit condition

J
o
(lN

o
/c

l
)5 0, (D6)

where Jo(x) is the zeroth-order Bessel function of the

first kind. Thus, ifXl denotes the lth zero of the function

Jo(x), the eigenspeeds are

c
l
5

lN
o

X
l

, (D7)

and, in turn,

U
m,l

5
2ffiffiffi
3

p X
l

X2
m

lN
o
. (D8)

Since the zeros of the Bessel function Jo increases with l,

one finds immediately that Um,l #U2,1"m. l; thus, the

condition on the ratio of the group speeds introduced

above, Qm,l , 1, becomes U.U2,1 ’ lNo 3 1021.
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