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ABSTRACT

This paper presents a methodology for performing complex wavenumber ray tracing in which both wave

trajectory and amplitude are calculated. This ray-tracing framework is first derived using a scaling in which the

imaginary wavenumber component is assumed to be much smaller than the real wavenumber component. The

approach, based on perturbation methods, is strictly valid when this scaling condition is met. The framework is

then used to trace stationary barotropic Rossby waves in a number of settings. First, ray-traced Rossby wave

amplitude is validated in a simple, idealized system for which exact solutions can be calculated. Complex

wavenumber ray tracing is then applied to both solid-body rotation on a sphere and observed climatological

upper-tropospheric fields. These ray-tracing solutions are compared with similarly forced solutions of the

linearized barotropic vorticity equation (LBVE). Both real and complex wavenumber ray tracings follow

trajectories matched by LBVE solutions. Complex wavenumber ray tracings on observed two-dimensional

zonally asymmetric atmospheric fields are found to follow trajectories distinct from real wavenumber Rossby

waves. For example, complex wavenumber ray tracings initiated over the eastern equatorial Pacific Ocean

during boreal summer propagate northward and northeastward into the subtropics over the Atlantic Ocean,

as well as southeastward into the Southern Hemisphere. Similarly initiated real wavenumber ray tracings

remain within the deep tropics and propagate westward. These complex wavenumber Rossby wave trajec-

tories and ray amplitudes are generally consistent with LBVE solutions, which indicates this methodology can

identify Rossby wave effects distinct from traditional real wavenumber tracings.

1. Introduction

Ray tracing is often used to explore the propagation of

Rossby waves with stationary or near-stationary phase

speeds. These ray trajectories indicate how information

is communicated through the atmosphere over large

distances, as well as the time scales over which this in-

formation is conveyed. Rossby wave ray tracing has

provided insight into the atmospheric response to steady

thermal and orographic forcing (Hoskins and Karoly

1981), the response to low-frequency forcing (Li and

Nathan 1994), tropical–extratropical interactions (Hoskins

and Karoly 1981), interactions within the extratropics

(Wang et al. 2007), and propagation within the tropics of

easterly waves (Sobel and Bretherton 1999).

Heretofore, investigations have been restricted to

Rossby waves with real wavenumbers. However, ther-

mal or orographic forcing of the atmosphere will in

theory produce large-scale waves with both complex and

real wavenumbers. Rossby waves with complex wave-

numbers will possess amplitudes that are modified, as

they propagate, by the imaginary component of their

wavenumber. Previous work has suggested that such mod-

ulated waves, given either a slowly decaying amplitude
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or growth through instability or interaction with the

mean flow, may persist and be of importance for the

communication of information over large distances within

the atmosphere (Dickinson and Clare 1973).

Complex wavenumber ray tracing (CRT) has been used

in other fields to describe phenomena such as caustic

shadows (Kravtsov 2005), radio wave propagation and

attenuation in the ionosphere (Budden and Terry 1970;

Jones 1970), the diffraction of Gaussian beams (Keller

and Streifer 1962), and the excitation of surface waves

(Keller and Karal 1960). The utility of CRT lies in its

ability, at times, to represent separate additional behav-

iors not captured by real wavenumber ray tracing (RRT).

In particular, in situations where CRT and RRT behav-

iors diverge, CRT and RRT together provide a more

complete description of wave response to a given forcing

than either CRT or RRT alone. Alternatively, one may

consider CRT as inclusive of RRT; that is, RRT is merely

CRT where the imaginary component of the wave-

number equals zero (i.e., ki 5 0). From this perspective,

CRT provides a more comprehensive set of wave packet

solutions for a given forcing.

A number of approaches have been proposed and de-

veloped for carrying out CRT (Brillouin 1914; Sommerfeld

1914; Censor and Gavan 1989; Muschietti and Dum 1993;

Kravtsov and Orlov 1999). These approaches typically

approximate the ray equations for complex waves, as

CRT of the full ray equations produces movement into

complex space, which can be challenging to represent and

interpret. Here we present a new method for tracing both

the trajectory and amplitude of complex wavenumber

waves. This approach is developed using perturbation

methods and is then applied to the tracing of complex

wavenumber barotropic Rossby waves in a zonally asym-

metric two-dimensional environment. The method is

appealing because of its relative simplicity, the intro-

duced scaling formalism that retains an appropriate ad-

ditional term in the ray-tracing equations, and the fact

that CRT solutions replicate solutions of the full wave

equation not captured by RRT.

In section 2 we provide theoretical context for the

CRT of wave trajectories using perturbation methods.

We expressly derive equations for ray-tracing two-

dimensional stationary barotropic Rossby waves with

complex wavenumbers in section 3. In section 4 we apply

this complex Rossby wave ray tracing to a simple, ide-

alized environment and show that the amplitude derived

through ray tracing matches exact analytic solutions for

the wave amplitude. We then perform both CRT and

RRT on a sphere in solid-body rotation and compare

these tracings to forced solutions of the linearized baro-

tropic vorticity equation (LBVE) (section 5). CRT and

RRT are then performed on realistic two-dimensional

atmospheric flows and compared with forced solutions of

the LBVE (section 6). Section 7 presents a comparison of

our perturbation method with an alternate approach to

CRT. Section 8 presents discussion.

2. Ray tracing with complex wavenumbers

a. Ray equations

The tracing of wave trajectories follows the general

theory of ray tracing in an anisotropic medium (Whitham

1974; Lighthill 1978). Specifically, we consider a two-

dimensional, approximate plane wave solution with

slowly varying amplitude, wavenumber, and position of

the form A exp[if(x, y, t)], where A is the wave ampli-

tude, and the wave phase f can be expressed locally as

f(x, y, t) ’ kx 1 ly 2 vt, (2.1)

where v(x, y, t) 5 2›f/›t is the slowly varying fre-

quency, and k(x, y, t) 5 ›f/›x and l(x, y, t) 5 ›f/›y are

slowly varying wavenumbers in the zonal and meridio-

nal directions, respectively. Per Wentzel–Kramers–

Brillouin–Jeffries (WKBJ) theory, the length scale of

the wave disturbance is short (i.e., there is rapid phase

variation; Bender and Orszag 1978). Equality of the

mixed partial derivatives then implies that the changes

in k and l must satisfy

dk

dt
5 2

›v

›x
, (2.2a)

dl

dt
5 2

›v

›y
, (2.2b)

along wave rays defined by

dx

dt
5 ug 5

›v

›k
, (2.3a)

dy

dt
5 yg 5

›v

›l
, (2.3b)

where the group velocity vector cg 5 (ug, yg) and d/dt 5

›/›t 1 cg � $. With a dispersion relation v0 5 v(k, l; x, y)

determined from the local dynamics, Eqs. (2.2) and (2.3)

provide a complete set of ODEs for (x, y, k, l) from

which the propagation of wave energy along a ray may

be traced.

Typically, to perform stationary wave tracing, rays are

initiated at some location (x, y) with a prescribed integer

zonal wavenumber k, and the initial meridional wave-

number l is then solved for using the dispersion relation

[i.e., v(k, l, x, y) 5 v0 5 0]. Depending on the dispersion

relation this procedure may yield multiple initial values
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for l, some of which may be complex. Ray tracing is

usually only performed for real initial meridional wave-

number solutions; however, waves with complex dis-

persion relations, complex wavenumbers, and complex

group velocities have been analyzed in fields such as

geometric optics (Keller and Streifer 1962; Kravtsov

2005) and plasma physics (Budden and Terry 1970;

Jones 1970) and have been used in geophysical fluid

dynamics to describe convective and absolute insta-

bilities of baroclinic eddies (Merkine 1977; Merkine and

Shafranek 1980).

Muschietti and Dum (1993) and Sonnenschein et al.

(1998) examined the propagation of waves in dissipative

media, where the solution is also decaying, as it may be

in dispersive media such as the inviscid rotating atmo-

sphere considered here. Their approach was to let

wavenumbers vary in the complex domain but restrict

variations of the ray coordinates to real coordinate space

by considering only the real part of the group velocity.

This approach, based on saddle point analysis, is similar

to the handling suggested by Sommerfeld (1914) and

Brillouin (1914) for light traveling in absorptive me-

dium, as well as the analysis of Merkine and Shafranek

(1980) for the temporal and spatial evolution of unstable

baroclinic disturbances.

b. Implications and interpretation of complex
wavenumber waves

Before proceeding with our analysis, some reflection

is warranted to consider what exactly a complex wave-

number wave constitutes. For these waves, the ray Eqs.

(2.3) produce complex group velocities and, consequently,

excursions of the rays into complex space. Many in-

vestigators have grappled with the physical interpreta-

tion of CRT, complex group velocity, and movement in

complex space (Brillouin 1914; Connor and Felsen 1974;

Censor and Gavan 1989; Muschietti and Dum 1993; Poli

et al. 2001). These issues of interpretation, which are not

generally resolved or agreed upon, have, perhaps, led to

an underuse of CRT.

Kravtsov et al. (1999) defend CRT and discuss the

difficulty of interpreting complex rays:

Although complex rays have been shown to be useful
in the analysis of a variety of wave problems, their ap-
parent intangibility has meant that they have sometimes
been viewed negatively. Ironically, a moment’s reflection
shows that real rays have a similarly tenuous connection
to the physical world; both real and complex rays are no
more than convenient analytical frameworks for studying
wave phenomena (p. 5).

Ultimately, the connection of complex wavenumber

and group velocity waves to the real world is still a

subject of debate (Censor and Gavan 1989; Kravtsov

et al. 1999; Poli et al. 2001). Their interpretation and

utility depends on the physical phenomenon being stud-

ied and the approximations used to estimate the complex

wave behavior.

Censor and Gavan (1989) argue that movement into

complex space obviates any notion of a real group ve-

locity, representing wave packet and energy propaga-

tion, and that only the signal of the waves holding to the

real plane can sensibly be considered part of a wave

packet with an understandable, perceivable group ve-

locity. Budden and Terry (1970) suggest that a complex

ray is a Riemann surface in complex coordinate space.

These authors, and others, have used CRT to describe

the reflection and attenuation of radio waves in lossy

media, such as the ionosphere (Budden and Terry 1970;

Jones 1970).

Others have noted that complex waves can arise when

an input signal or forcing has a complex amplitude de-

pendence (Connor and Felsen 1974). CRT permits de-

scription of the spatial and temporal variations of the

wave amplitude of the resulting waves, even in lossless

media. Such propagation in lossless media of complex

rays can describe evanescent wave phenomena such as

the dark side of caustics, or growth due to spatial in-

stabilities. Because complex wavenumbers are neither

purely real nor purely imaginary, these waves are in

essence mixed-propagating and evanescent phenomena.

A typical (real wavenumber) wave is one in which the

real wave phase gradient is orthogonal to the imaginary

part—that is, the wave packet decays in space orthogo-

nally to the direction of propagation. For complex

wavenumber waves, that angle between the real and

imaginary phases is acute, so there is decay or growth in

the direction of propagation (Kravtsov et al. 1999).

c. A scaled approach to CRT

For this work, we derive a framework for CRT using

perturbation methods and a scaling of the imaginary

and real components of the wavenumber. For a one-

dimensional system with real wavenumber k, Eq. (2.2a)

simplifies to

dk

dt
5

›k

›t
1 cg

›k

›x
5 2

›v

›x
. (2.4)

Suppose now that k is complex, such that k 5 kr 1 iki.

The dispersion relation and thus the group velocity

will consequently be complex. The imaginary com-

ponent of the wavenumber is readily interpretable as

a modulation of plane wave amplitude [i.e., A exp(2kix)

exp(ikr x 2 vt)]; however, the complex group velocity

leads to an imaginary trajectory, or characteristic, for

which the physical interpretation is less clear.
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When k is complex, but x is required to remain real,

the one-dimensional analog of Eq. (2.4) devolves into

a pair of equations for the real and imaginary parts of k:

›kr

›t
1 ugr

›kr

›x
5 2

›v

›x

����
r

1 ugi

›ki

›x
, (2.5a)

›ki

›t
1 ugr

›ki

›x
5 2

›v

›x

����
i

2 ugi

›kr

›x
, (2.5b)

where the subscripts r and i indicate real and imaginary

parts, respectively. It can be seen by cross-differentiating

the first and last terms of Eqs. (2.5a) and (2.5b) to elim-

inate ki in favor of kr that this pair of equations has an

essentially elliptic character, and thus cannot be solved

exactly along real characteristics.

Our goal is to find an approximate solution to Eq. (2.5)

along real characteristics, despite the elliptic character of

the full equations. Both the real and imaginary wave-

number equations (2.5) are expressed as an equality of the

local change in time of the wavenumber plus the advection

of the wavenumber by the real group velocity (lhs terms)

with the local gradient of either the real [Eq. (2.5a)] or

imaginary [Eq. (2.5b)] wave frequency plus the advection

of the wavenumber by the imaginary group velocity (rhs

terms). The first three terms of these equations are iden-

tical in form to Eq. (2.4) and represent the change in the

wavenumber along the real characteristic. However, the

last terms, which give the advection of the wavenumber by

the imaginary group velocity, are new.

As we do not wish to follow ray paths that stray into

complex space, we must eliminate or otherwise determine

these last two terms. To do so we assume, per perturbation

theory, that ki isO(a) relative to kr, where a� 1, and that

kr is O(1). Physically, this assumption implies a slow

variation of the wave amplitude on a scale much longer

than the wavelength. In addition, by assuming ki� kr,

we are assuming that the angle between the real and

imaginary phase gradients is nearly orthogonal.

The first three terms of Eq. (2.5a) are then O(1), but

the last term isO(a2) and can be dropped, which reduces

this equation to the form of Eq. (2.4). However, all four

terms of Eq. (2.5b) areO(a), so none can be eliminated.

We therefore need to find an explicit way of describing

the last term of this equation. To do so, we need an

expression for ›kr/›x. Such an expression can be derived

by taking the gradient of the O(1) terms in Eq. (2.5a).

d. Wavenumber gradient equations

We now develop an additional expression that repre-

sents the evolution of ›kr/›x along the ray. Taking the

partial derivative of Eq. (2.5a) with respect to x after ne-

glecting theO(a2) term and while holding t fixed, we obtain

›

›t

›kr

›x
1 ugr

›

›x

›kr

›x
1

›ugr

›x

›kr

›x
5 2

›

›x

›v

›x

����
r

(2.6)

and then make the additional approximations

›ugr

›x
5

›

›x

›v

›k

����
r

’
›2v

›x›k

����
r

1
›2v

›k2

����
r

›kr

›x
(2.7)

and

›

›x

›v

›x

����
r

’
›2v

›x›k

����
r

›kr

›x
1

›2v

›x2

����
r

, (2.8)

in which O(a, a2) terms are neglected in the chain-rule

expressions involving the complex k(x). The first two

terms of Eq. (2.6) are the derivative d(›kr/›x)/dt along

the real ray dx/dt 5 ug, while the rest can be written in

terms of quantities evaluated on the ray.

Thus, our approximate complex wavenumber ray-tracing

equations are the extended set

dkr

dt
5 2

›v

›x

����
r

, (2.9a)

dki

dt
5 2

›v

›x

����
i

1 ugi

›kr

›x
, (2.9b)

d

dt

›kr

›x

� �
5 2

›2v

›k2

����
r

����›kr

›x

����2 2 2
›2v

›k›x

����
r

›kr

›x
2

›2v

›x2

����
r

, (2.9c)

dx

dt
5 ugr 5

›v

›k

����
r

. (2.9d)

In Eq. (2.9d), only the real part of the group velocity ap-

pears, giving a real ray trajectory, as the instantaneous value

of the imaginary group velocity along the ray path is utilized

in Eq. (2.9b) but does not directly contribute to determining

the ray path. The critical approximation that allows the

formulation (2.9) and solution along the real ray is the ne-

glect of the last term in Eq. (2.5a) to obtain Eq. (2.9a).

e. Two-dimensional form

When k and l are complex, but x and y are required to

remain real, the two-dimensional ray-tracing equations

(2.2) devolve into a similar form as Eqs. (2.5):

dkr

dt
5

›kr

›t
1 ugr

›kr

›x
1 ygr

›kr

›y

5 2
›v

›x

����
r

1 ugi

›ki

›x
1 ygi

›ki

›y
, (2.10a)

dlr
dt

5
›lr
›t

1 ugr

›lr
›x

1 ygr

›lr
›y

5 2
›v

›y

����
r

1 ugi

›li
›x

1 ygi

›li
›y

,

(2.10b)
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dki

dt
5

›ki

›t
1 ugr

›ki

›x
1 ygr

›ki

›y
5 2

›v

›x

����
i

2 ugi

›kr

›x
2 ygi

›kr

›y
,

(2.10c)

dli
dt

5
›li
›t

1 ugr

›li
›x

1 ygr

›li
›y

5 2
›v

›y

����
i

2 ugi

›lr
›x

2 ygi

›lr
›y

.

(2.10d)

As for the 1D system, when ki and li areO(a) with a� 1

we can neglect the last two O(a2) terms of Eqs. (2.10a)

and (2.10b), but we cannot drop the last two terms of

Eqs. (2.10c) and (2.10d). As before, we derive explicit

expressions for ›kr /›x, ›kr /›y, ›lr /›x, and ›lr /›y, using

the O(1) terms of Eqs. (2.10a) and (2.10b):

dkr

dt
5

›kr

›t
1

›v

›k

����
r

›kr

›x
1

›v

›l

����
r

›kr

›y
5 2

›v

›x

����
r

, (2.11a)

dlr
dt

5
›lr
›t

1
›v

›kr

����
r

›l

›x
1

›v

›l

����
r

›lr
›y

5 2
›v

›y

����
r

. (2.11b)

Specifically, ›/›x of Eq. (2.11a) gives

d

dt

›kr

›x

� �
5

›

›t

›kr

›x

� �
1 ugr

›

›x

›kr

›x

� �
1 ygr

›

›y

›kr

›x

� �

5 22
›2v

›k›x

����
r

›kr

›x
2

›2v

›k2

����
r

����›kr

›x

����2 2 2
›2v

›l›k

����
r

›lr
›x

›kr

›x

2 2
›2v

›l›x

����
r

›lr
›x

2
›2v

›l2

����
r

����›lr
›x

����2 2
›2v

›x2

����
r

,

(2.12)

where the relation ›k/›y 5 ›2f/›y›x 5 ›l/›x has been

used. Equation (2.12) is the approximate equation for

the zonal gradient of k along the ray [Eq. (2.3)]. All of

the terms on the right-hand side of Eq. (2.12) can be

evaluated along the ray.

Three more equations are needed to completely

define the wavenumber gradients needed for the ad-

ditional terms in the 2D imaginary wavenumber

equations [Eqs. (2.10c) and (2.10d)]. These three re-

maining wavenumber gradient equations are derived

similarly, by taking ›/›y of Eq. (2.11a) and ›/›x and ›/›y of

Eq. (2.11b):

d

dt

›kr

›y

� �
5 2

›2v

›k›l

����
r

›lr
›y

›kr

›x
1

›kr

›y

›kr

›y

� �
2

›2v

›k2

����
r

›kr

›y

›kr

›x
2

›2v

›l2

����
r

›lr
›y

›lr
›x

2
›2v

›y›x

����
r

2
›2v

›k›x

����
r

›kr

›y
2

›2v

›l›x

����
r

›lr
›y

2
›2v

›k›y

����
r

›kr

›x
2

›2v

›l›y

����
r

›kr

›y
, (2.13)

d

dt

›lr
›x

� �
5 2

›2v

›k›l

����
r

›lr
›x

›lr
›x

1
›kr

›x

›lr
›y

� �
2

›2v

›k2

����
r

›kr

›x

›lr
›x

2
›2v

›l2

����
r

›lr
›x

›lr
›y

2
›2v

›x›y

����
r

2
›2v

›k›y

����
r

›kr

›x
2

›2v

›l›y

����
r

›lr
›x

2
›2v

›k›x

����
r

›lr
›x

2
›2v

›l›x

����
r

›lr
›y

, and (2.14)

d

dt

›lr
›y

� �
5 22

›2v

›k›y

����
r

›kr

›y
2

›2v

›k2

����
r

›kr

›y

›kr

›y
2 2

›2v

›l›k

����
r

›lr
›y

›kr

›y
2 2

›2v

›l›y

����
r

›lr
›y

2
›2v

›l2

����
r

›lr
›y

›lr
›y

2
›2v

›y2

����
r

. (2.15)

Equations (2.12)–(2.15) are the four wavenumber

gradient equations needed to solve for the last two terms

of Eqs. (2.10c) and (2.10d). The approximate ray-tracing

equations for the two-dimensional complex waves are

then Eqs. (2.11), (2.10c),(2.10d), (2.12)–(2.15), and (2.3).

The dynamics of the waves will be controlled by the

form of the dispersion relation v0 5 v(k, l, x, y), where

v0 is the wave frequency.

f. Amplitude evolution for stationary complex
wavenumber waves

Wave amplitude along a ray is not constant but varies,

per conservation of wave action density, with the

convergence or divergence of rays within a ray tube or

bundle, as described in Bretherton and Garrett (1969),

Buehler (2009), and others. Conservation of wave

action density, however, is distinct from the decay, or

even growth, of a given ray due to a complex wave-

number, which can arise because of dissipation within

the media or merely in the case where a wave has or is

initiated with a complex amplitude dependence

(Connor and Felsen 1974), as is the case here.

In the presence of dissipation, typically only decaying

complex wavenumber waves are considered physically

meaningful (Budden and Terry 1970; Jones 1970; Kravtsov

2005); however, in this study the ray-traced medium is to
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be treated as inviscid and complex relationships arise

naturally from the dispersion relation. It is possible, though

by no means definitive, that growing modes, if reasonably

confined, represent spatial instabilities. For instance, CRT

may have application in the ocean for describing the spa-

tial instabilities that arise when waves cross the Gulf

Stream front (Hogg 1988). Such changes in wave behavior

in space (i.e., transitioning from a real or slowly decaying

wave to a ray that grows or decays more precipitously)

may be analogous to the use of CRT to describe light in

and around caustics and caustic shadows (Kravtsov and

Orlov 1999).

This conceptual framework is consistent with appli-

cations of CRT to geometric optics and radio waves in

lossy media. In these applications the amplitude of the

wave is explained partly by attenuation due to dissipa-

tion (i.e., the imaginary wavenumber–imposed decay of

amplitude) and partly by conservation of wave action

density (ray convergence) (Budden and Terry 1970;

Kravtsov 2005). In this work, we are putting aside am-

plitude changes due to conservation of wave action

density and only considering the changes that arise from

the imaginary component of the wavenumber.

For stationary waves, which have v0 5 0, the local

amplitude variation of the wave packet near a point x0 5

(x0, y0) is described approximately by

jA(x)j 5 jA(x0)j exp[ki(�x) � (x 2 x0)], x ’ x0,

where k 5 (k, l), x 5 (x, y), and � � 1. Note that � is

distinct from a, which provides a relative scaling of ki

and kr; rather, � is an arbitrarily small number such that

1/� represents a large length scale. The local change in

wave amplitude is then

djAj
dx

(x) 5

�
ki(�x) 1 �

dki

dx
(�x) � (x 2 x0)

�
jA(x)j,

x ’ x0. (2.16)

As x0 is arbitrary in space and the term proportional to �

in Eq. (2.16) is arbitrarily small near x0, we may integrate

Eq. (2.16) along the ray to obtain

jA(x)j’ jA(0)j exp

�ðx

0
ki(�x9) � dx9

�
. (2.17)

This expression may give either wave decay or wave

growth, where the latter may indicate instability of the

background flow.

In effect, we are exploring the case where �� a� 1;

that is, there are two different length scales, and the

WKBJ length scale 1/� is larger than the 1/a (complex

wavenumber) length scale. Physically, this means that the

exponential amplitude variation given by the imaginary

wavenumber component is well defined (i.e., the

variation looks exponential on the WKBJ local scales

L , 1/�, where k and v are treated as constant). That

is, we consider the case in which the exponential

amplitude variation is assumed to dominate. Note

that if a 5 0 (i.e., ki 5 0, etc.), then Eq. (2.17) de-

generates to a constant amplitude on the WKBJ local

scale.

3. Barotropic Rossby waves

Equations (2.10c), (2.10d), and (2.11)–(2.15), along

with

dx

dt
5 ugr 5

›v

›k

����
r

and (3.1a)

dy

dt
5 ygr 5

›v

›l

����
r

, (3.1b)

provide the complete set of two-dimensional CRT equa-

tions for this approximation. For two-dimensional baro-

tropic Rossby waves the dispersion relation is

v(k, l, x, y) 5 uMk 1 yMl 1
l›q/›x 2 k›q/›y

k2 1 l2
, (3.2)

where

(uM, yM) 5
(u, y)

cosu

is the Mercator projection of the time-mean zonal and

meridional winds, u is latitude,

q 5 2V sin(u) 1 =2c

is the time-mean absolute vorticity, and V is the rotation

rate of the earth.

Using this dispersion relation and Eq. (2.11) gives the

following ray-tracing equations for the real parts of the

wavenumbers:

dkr

dt
5 Re 2k

›uM

›x
2 l

›yM

›x
1

k›2q/›x›y 2 l›2q/›x2

k2 1 l2

� �
,

(3.3a)

dlr
dt

5 Re 2k
›uM

›y
2 l

›yM

›y
1

k›2q/›y2 2 l›2q/›x›y

k2 1 l2

� �
,

(3.3b)

along the real rays [from Eq. (3.1)]:
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dx

dt
5 ugr

5 Re
›v

›k

� �

5 Re

"
uM 1

(k2 2 l2)›q/›y 2 2kl›q/›x

(k2 1 l2)2

#
, (3.4a)

dy

dt
5 ygr

5 Re
›v

›l

� �

5 Re

"
yM 1

2kl›q/›y 1 (k2 2 l2)›q/›x

(k2 1 l2)2

#
. (3.4b)

The imaginary group velocity cgi is evaluated locally as

ugi 5 Im
›v

›k

� �
5 Im

"
uM 1

(k2 2 l2)›q/›y 2 2kl›q/›x

(k2 1 l2)2

#
,

(3.5a)

ygi 5 Im
›v

›l

� �
5 Im

"
yM 1

2kl›q/›y 1 (k2 2 l2)›q/›x

(k2 1 l2)2

#
.

(3.5b)

The expressions needed to piece together Eqs. (2.12)–

(2.15) are provided in appendix A. Using those compo-

nent expressions we can form the ray-tracing equations for

›kr/›x, ›kr/›y, ›lr/›x, and ›lr/›y, and thus also Eqs. (2.10c)

and (2.10d) for ki and li.

4. Analytical example: Amplitude variation

We next apply this two-dimensional complex wave-

number Rossby wave ray tracing to a simple, idealized

setting for which an exact analytic solution of wave

amplitude can also be calculated. We employ an infinite

b plane that for the region 0 , y , Y additionally has

bottom topography bT. Thus, there are three regions:

y , 0, 0 , y , Y and y . Y (I, II, and III, respectively).

Conditions are imposed such that the first and last re-

gions (I and III) only support real Rossby waves; the

middle section (region II), given a specific range of bot-

tom topographies, creates a meridional gradient of po-

tential vorticity b 1 bT that supports only evanescent

wave modes, which are represented as complex wave-

number Rossby waves (Fig. 1).

Throughout the entire domain (regions I, II, and III),

the zonal flow u
M

is constant, the meridional flow y
M

is

zero, and a zonal gradient of absolute vorticity ›q/›x is

imposed as bottom topography and is constant for all

three regions. For continuity to be met at all time and all

values of x, the wave frequency and zonal wavenumber

must match at the two boundaries (y 5 0 and y 5 Y), so

v and k are constant everywhere. The same cannot be

claimed for the meridional wavenumbers, due to the

variation of b in the y direction. Thus, the solution for

the wave streamfunction cX in region X 5 fI, II, IIIg has

the form

cX 5 �
J

X

j51

AX
j
exp[i(kx 1 lX

j
y 2 vt)], (4.1)

where JX is the number of wave modes in region X, and

v and k are independent of the region.

For this system, regions I and III support two real

wave modes for the prescribed k, u, b, ›q/›x, y, and v0.

The two waves possess real meridional wavenumber of

opposite sign and thus propagate in opposite directions

(one northward, one southward). For the problem we

initiate a single, northward-propagating Rossby wave

with amplitude 1 within region I. Upon reaching the y 5

0 bound two transmitted waves and a reflected wave

are generated. The reflected wave is the southward-

propagating Rossby wave supported by region I.

For region II, two Rossby wave modes with complex

conjugate meridional wavenumbers are supported. The

imaginary part of the meridional wavenumber modulates

the wave amplitude; one mode is decaying, the other

is growing. (Note that the real wavenumber component

produces wave propagation; the imaginary wavenumber

component produces amplitude decay or growth.) By

design, the solutions have positive real meridional wave-

number components, such that both waves propagate

northward. Consequently, no reflection is supported when

FIG. 1. Schematic of the infinite b plane used for comparing ray-

traced and exact-amplitude solutions.
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these waves reach the y 5 Y boundary (given the pre-

scribed u
M

, y
M

, b, b
T

, ›q/›x, and v0).

For region III, only the northward wave is spawned by

incidence of the complex waves at y 5 Y. Thus at y 5 0,

we have four waves to consider, the region I incident

northward-propagating real wave, the region I reflected

southward-propagating real wave, and the two region II

northward-propagating complex waves (Fig. 1). These

four waves satisfy two boundary conditions at y 5 0,

discontinuity matching of the quasigeostrophic potential

vorticity equation and continuity of pressure across the

boundary. These boundary conditions are derived in

appendix B.

At y 5 Y, we have only three waves to consider, the two

northward-propagating region II complex waves and the

region III northward-propagating real wave (Fig. 1). These

three waves must satisfy the same two boundary conditions

at y 5 Y. Thus, the system requires that

cIn 1 cIs 5 cIIg 1 cIId at y 5 0, (4.2a)

›cIn

›y
1 gcIn 1

›cIs

›y
1 gcIs 5

›cIIg

›y
1 gcIIg

1
›cIId

›y
1 gcIId at y 5 0, (4.2b)

cIII 5 cIIg 1 cIId at y 5 Y, (4.2c)

›cIII

›y
1 gcIII 5

›cIIg

›y
1 gcIIg 1

›cIId

›y
1 gcIId at y 5 Y,

(4.2d)

where the subscripts In, Is, IIg, IId, and III denote the

region I northward-, region I southward-, region II

growing, region II decaying, and region III northward-

propagating Rossby waves, respectively, and g 5 q
x
/u

M
k.

The term cIn is prescribed with amplitude 1. We solve

for the four other waves given the above system [Eq.

(4.2)]. The solutions (see appendix B) give the ampli-

tude of each wave, which varies for a given background

and region I zonal wavenumber Rossby wave as a func-

tion of region II domain size.

We then compare this amplitude solution to a CRT of

region II from y 5 0 to y 5 Y. Within region II the

dispersion relation [Eq. (3.2)] reduces to

v 5 uMk 1
l›q/›x 2 k›q/›y

k2 1 l2
; (4.3)

the ray-tracing equations are

dk

dt
5 2

›v

›x
5 0 and (4.4a)

dl

dt
5 2

›v

›y
5 0; (4.4b)

and

dx

dt
5 ug 5 Re

›v

›k

� �

5 Re

"
uM 1

(k2 2 l2)›q/›y 2 2kl›q/›x

(k2 1 l2)2

#
and,

(4.5a)

dy

dt
5 yg 5 Re

›v

›l

� �
5 Re

"
2kl›q/›y 1 (k2 2 l2)›q/›x

(k2 1 l2)2

#
,

(4.5b)

respectively; also, the evolution of the wave amplitude

along the ray is described by

dA

dy
5 2liA. (4.6)

Equation (4.4) makes clear that within region II there

is no change of the Rossby wave wavenumbers, either

real or complex; rather, this simple analytic system

enables comparison of calculated and ray traced complex

wavenumber Rossby wave amplitudes. Furthermore,

because Eq. (4.3) is quadratic in l, within region II, l
IIg

and

lII
d

are complex conjugates. Note that the two solution

methods are distinct: the ray tracing integrates an initial-

value problem within region II; the analytic solution

solves a boundary value problem for all three regions.

Figure 2 shows how wave height solutions vary as a

function of Y for u
M

520 m s21, y
M

50 m s21, b 5 2 3

10211 s21 m21, b 1 bT 5 23.26 3 10211 s21 m21,

›q/›x 5 2 4:5 3 10211 s21 m21, v0 5 0, and zonal

wavenumber k 5 7.85 3 1027 m21. The wave height is

the real part of the wave function, the amplitude times

FIG. 2. Wave height solutions for Rossby waves on infinite b

plane, as described in text. Solutions are shown for the three Rossby

waves at y 5 Y as a function of region II domain size.

JULY 2012 S H A M A N E T A L . 2119



the wave phase, e.g., Re(cII) 5 Re[�AIIj exp(lIIji
y)

expi(kx 1 lIIjr
y 2 v0t)] in region II. Wave heights are

shown at y 5 Y as this quantity accounts for wave

phase and is the quantity matched in the system so-

lution at this location (see appendix B). At y 5 Y, the

region III Rossby wave height closely matches the

height of the region II growing mode.

Figure 3 shows the amplitude of the region II decaying

mode at y 5 Y, as well as the amplitude of this mode

calculated numerically via the CRT amplitude [Eq. (4.6)].

The two solutions match well, showing that CRT appro-

priately captures the modulation of wave amplitude, as

well as wave propagation characteristics, which define this

modulation. Growing solutions also match (not shown).

This analysis was repeated for a number of backgrounds

and initial zonal wavenumbers; in all cases the ray-tracing

and analytic solutions matched.

5. Solid-body rotation

We next performed stationary barotropic Rossby wave

ray tracing of both complex and real wavenumber waves

on a variety of two-dimensional fields. Both real and

complex ray-tracing trajectories were validated through

comparison with forced solutions of the barotropic vor-

ticity equation (LBVE) linearized about the same two-

dimensional fields (see appendix C for details).

We first experimented with solid-body rotation

where u
M

is constant, y
M

5 0, and q
x

5 0. Thus, the two-

dimensional dispersion relation reduces to

v 5 uMk 1
2qyk

k2 1 l2
. (5.1)

The ray-tracing equations are again Eqs. (2.10c) and

(2.10d), (2.11)–(2.15), and (3.1). In this instance, the real

wavenumber and group velocity equations are some-

what simplified to

dkr

dt
5 2

›v

›x
5 0, (5.2a)

dlr
dt

5 2
›v

›y
5

k›2q/›y2

k2 1 l2
, (5.2b)

and

dx

dt
5 ugr 5 Re

›v

›k

� �
5 Re

"
uM 1

(k2 2 l2)›q/›y

(k2 1 l2)2

#
,

(5.3a)

dy

dt
5 ygr 5 Re

›v

›l

� �
5 Re

"
2kl›q/›y

(k2 1 l2)2

#
, (5.3b)

respectively. The evolution of the wave amplitude is de-

scribed by Eq. (2.17). The imaginary wavenumber ex-

pression includes the additional terms seen in Eqs. (2.10c)

and (2.10d).

We performed these solid-body rotation experiments

using uM 5 15 m s21. At first, to insure that a � 1 (i.e.,

ki � kr and li � lr), we initialized the complex wave-

number ray tracings with an apportioned complex zonal

wavenumber (e.g., k 5 5 1 0.01i), such that, given the

background flow, the meridional wavenumber was simi-

larly scaled among its real and imaginary components.

Figure 4 presents the ray-tracing integrations for four

real wavenumber stationary Rossby waves initiated with

zonal wavenumber k 5 5 and four complex wavenumber

stationary Rossby waves initiated with zonal wavenumber

k 5 5 1 0.01i. These RRTs and CRTs are pairwise initi-

ated at the same locations and are superimposed on the

steady solution of the LBVE model in response to forcing

centered at 08, 1808. The trajectories of real and complex

wavenumber rays initiated at the same location appear

identical in Fig. 4; however, in fact, they do not match

precisely. The small imaginary complex wavenumber in-

troduces slight changes in amplitude and trajectory over

the course of the ray integration.

These differences can be seen more clearly in plots

of the evolution of the wavenumbers and amplitude of

one real wavenumber stationary Rossby wave ray tracing

and the corresponding complex wavenumber stationary

Rossby wave ray tracing, initiated at the same location

(Fig. 5). For this background, the ray tracing initiated with

zonal wavenumber k 5 5 has a real initial meridional

wavenumber. As both wavenumbers are real, there is

no change in amplitude during the ray-tracing inte-

gration. The ray tracing initiated with zonal wavenumber

FIG. 3. Comparison of analytic and ray-traced amplitude solutions

of region II decaying mode at y 5 Y for a range of region II domain

sizes. Solutions are for the same system as in Fig. 2: u 5 20 m s21, y 5

0 m s21, b 5 2 3 10211 s21 m21, b 1 bT 5 23.26 3 10211 s21 m21,

›q/›x 5 2 4:5 3 10211 s21 m21, and k 5 5. The thick gray line shows

the analytic solution; the thin black line is the ray-traced solution.
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k 5 5 1 0.01i, however, produces a slight decay of am-

plitude during integration; this small amplitude decay

reflects the small magnitude of the imaginary wave-

numbers. During the 15-day integration these imaginary

wavenumbers remain several orders of magnitude smaller

than the real wavenumbers, consistent with our assump-

tion that a� 1. Both the real and complex wavenumber

trajectories match the steady solution of the LBVE model

(Fig. 4).

A number of the CRTs initiated with k 5 5 1 0.01i

behaved erratically and diverged from their real wave-

number counterparts (Figs. 6 and 7). This divergence

occurred when the imaginary wavenumber component

grew to magnitudes equal to that of the real wave-

number component (i.e., a ’ 1). At that point, the wave

trajectory would devolve to a primarily zonal propagation

and the wave amplitude would shift radically. This erratic

behavior occurred in the vicinity of the turning latitude

where meridional propagation approaches zero. Near the

turning latitude of a ray, kr/lr is large, WKBJ assumptions

break down, and even real wavenumber ray-tracing so-

lutions are not strictly valid (Karoly and Hoskins 1982).

However, similar erratic behavior does not arise for any

of the RRTs, which propagate through one or more

turning latitudes.

Indeed, the particular sensitivity of some of the CRTs

near the turning latitude suggests that these ray tracings

are more prone to erratic behavior, which likely arises

from violation of the assumption that a � 1 or from

violation of both WKBJ scaling and a � 1. Exami-

nation of the integrations of a number of these erratic

ray tracings consistently revealed li . lr for successive

steps in the region of the turning latitude, as well as

unstable behavior in some of the terms used to de-

termine ›kr/›x, specifically those with (k2 1 l2)3 in the

denominator. These changes produced further growth

of li by several orders of magnitude while lr remained

near zero.

As a consequence, the erratic and aphysical ray-tracing

solutions of complex wavenumber waves should be dis-

missed from the point at which this erratic behavior ari-

ses. However, as will be shown in the next section we did

find numerous wave tracings initiated on realistic two-

dimensional fields for which the a � 1 assumption was

violated but wave behavior remained reasonable and

matched LBVE model solutions.

6. Realistic two-dimensional atmospheric fields

For the next set of experiments we again performed

ray tracing and found forced solutions of the LBVE

model using National Centers for Environmental Pre-

diction (NCEP)–National Center for Atmospheric Re-

search (NCAR) reanalysis July–September 1949–2010

300-hPa relative vorticity climatology (Kalnay et al. 1996)

as the background. Gaussian divergence forcing was ap-

plied centered at 908W and 58N that extended 208 to the

east and west but only 58 to the north and south of this

center. This forcing mimics the position of precipitation

anomalies associated with boreal summer El Niño events

(Shaman and Tziperman 2007).

For ray tracing with this background, the full two-

dimensional dispersion relation [Eq. (3.2)] now applies.

Note that the shear terms in the time-mean absolute

vorticity are retained in full, as they are the same order

of magnitude as b for this background. For each ray

initiation point and initial zonal wavenumber, there are

now three initial meridional wavenumber solutions. Per

Eq. (2.10c), the zonal wavenumber changes as the Rossby

wave propagates such that a real zonal wavenumber be-

comes complex if the meridional wavenumber is com-

plex. The Rossby wave amplitude is again modified by the

imaginary components of both the zonal and meridional

wavenumbers [Eq. (2.17)].

Figure 8 presents solutions for initial integer zonal

wavenumbers k 5 4–12 at all sites within 08–108N and

1108–708W superimposed on the steady vorticity solu-

tion of the LBVE model. The trajectories of the RRTs

and CRTs clearly diverge. The real wavenumber sta-

tionary barotropic Rossby waves remain trapped within

the equatorial waveguide and propagate westward, whereas

FIG. 4. LBVE steady vorticity solution to Gaussian amplitude

divergent forcing centered at 08, 1808. Divergence maximizes in

center at 23 3 1026 s21. The background is in solid-body rotation

that maximizes at 15 m s21 at the equator. Planetary rotation is as

for Earth. Superimposed on this solution are ray tracings initiated

within the forcing region with initial k 5 5 (blue lines) and k 5 5 1

0.01i (red lines) initiated within the forcing region. All waves are

integrated for 15 days. The complex and real ray tracings are in-

distinguishable, so square markers are additionally used to show the

location of the real ray trajectory every 24 h. These markers also

indicate wave phase—dark blue is positive, light blue is negative–

and marker size indicates phase magnitude. All rays begin at either

maximal or minimal phase regardless of forcing location. Black

contours show the LBVE solution with contour intervals of 0.5 3

1026 to 62 3 1026 s21 and 2 3 1026 s21 for larger magnitudes.

Negative contours are dashed; the zero contour is omitted.
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the complex wavenumber stationary barotropic Rossby

waves typically escape the equatorial region and propagate

into the subtropics of both the Northern and Southern

Hemisphere.

Figure 9 shows separately the ray-tracing solutions for

initial zonal wavenumbers k 5 4–6. Many of the com-

plex wavenumber stationary barotropic Rossby wave

ray tracings move along trajectories that fall into three

general groupings. The first grouping propagates north-

ward to the region of subtropical convergence to the

north of the forcing area and then propagates westward.

Some of these rays propagate farther north and then

move northeastward over the continental United States.

The second grouping moves northward or northeastward

over the Caribbean. Some of these rays propagate east-

northeastward over Cuba and a few, by day 15, extend

into the North African–Asian jet. The third grouping

propagates southward to about 108S and then moves

eastward.

Rossby wave propagation is strongly affected by the

background flow, in particular gradients of absolute

vorticity and waveguide structures (Hoskins and Ambrizzi

1993). Figure 10 presents 1949–2010 July–September

(JAS) 300-hPa climatology of the zonal wind; the me-

ridional gradient of absolute vorticity bM per Karoly

(1983),

FIG. 5. Two examples of ray-tracing solutions initiated at the same location (18.628N, 172.58E) on solid-body rotation with u 5

15 m s21 at the equator, showing ray tracings with initial zonal wavenumber (a)–(d) k 5 5 and (e)–(h) k 5 5 1 0.01i. Shown are

(a),(e) wave latitude, (b),(f) wave amplitude, (c),(g) imaginary wavenumber parts, and (d),(h) real wavenumber parts during 15 days

(360 h) of integration.

FIG. 6. As in Fig. 4, pairs of ray tracings initiated within the

forcing region with initial k 5 5 (blue lines) and k 5 5 1 0.01i (red

lines). For these tracings the complex wavenumber Rossby waves

remain at a poleward latitude rather than turning equatorward with

their real counterparts.
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bM 5 2V cos2u/r 2
›

›y

�
1

cos2u

›

›y
(cos2uuM)

�
,

where r is the radius of the earth; and the stationary

wavenumber Ks, per Hoskins and Ambrizzi (1993),

Ks 5
rbM

uM

� �1/2

calculated for regions where bM . 0 and uM . 0. Re-

gions of local maximal bM and Ks tend to occur in the

strong westerly flow associated with extratropical jets.

For the JAS 300-mb atmosphere, these maxima are as-

sociated in the winter hemisphere with the southern jet

and in the summer hemisphere with the North African–

Asian and North American jets, as well as the subtropical

jet over the Pacific (Fig. 10).

Among the three groupings of propagation behavior,

the CRTs that propagate northward to the region of

subtropical convergence and then westward remain

within the easterlies over Mexico and the eastern Pacific,

although a few escape northward into the westerlies and

propagate eastward over the United States. (Fig. 10a).

For the second grouping of CRTs that propagate to the

north or northeast over the Caribbean, the rays that

propagate farthest east move along the maximum of bM

in the North African–Asian jet (Fig. 10b). This behavior

in which the ray propagates zonally while refracting

toward the jet core has also been shown to occur anal-

ogously for RRTs initiated during boreal winter (Shaman

and Tziperman 2005). For the CRTs that propagate into

the Southern Hemisphere, many of these rays propagate

zonally once they reach westerlies near 108S. Some rays

move farther south, become trapped in the southern jet,

and propagate zonally. These behaviors indicate that the

complex wavenumber Rossby wave ray tracings respond

to wind patterns, gradients of absolute vorticity, and

waveguides in fashion similar to real wavenumber

Rossby waves.

The LBVE simulation was next performed again with

the same background and forcing, but with a sponge layer

at 1508E to the west of the forcing region, per Shaman and

FIG. 7. Two examples of ray-tracing solutions initiated at the same location (3.728N, 172.58E) on solid-body rotation with u 5 15 m s21

at the equator, with initial zonal wavenumber (a)–(d) k 5 5 and (e)–(h) k 5 5 1 0.01i. Shown are (a),(e) wave latitude, (b),(f) wave

amplitude, (c),(g) imaginary wavenumber parts, and (d),(h) real wavenumber parts during 15 days (360 h) of integration. The complex

wavenumber wave behaves erratically in the vicinity of the turning latitude as the real meridional wavenumber nears zero.
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Tziperman (2007). This sponge layer damps out westward-

propagating Rossby waves and isolates the response due

to eastward-propagating waves. This simulation reveals

vorticity anomalies east of Cuba, west of Spain, and over

and east of Brazil that arise within the LBVE model due

to eastward-propagating disturbances (Fig. 11). These

vorticity responses are consistent with CRT trajectories.

More specifically, complex Rossby wave ray tracings can

be seen traversing these regions (Figs. 8 and 9).

The different trajectory behaviors among the CRTs

are also evident in plots of individual initiation sites

(Fig. 12). Individual trajectory lines in fact depict two

waves, initialized complex conjugates, one growing,

one decaying, that propagate identically through space.

CRTs initiated at 8.698N, 107.58W produce rays that

propagate northward into the zone of subtropical con-

vergence evident in the LBVE model solution (Fig. 12a).

Complex wavenumber ray tracings initiated at 3.728N,

858W propagate east-northeastward over the LBVE model

solution anomaly in the vicinity of Cuba (Fig. 12b). These

waves exhibit a greater tendency to behave erratically in

trajectory as well as amplitude; however, a number of

them are well behaved. Complex wavenumber ray trac-

ings initiated at 1.248N, 858W propagate either northward

into the zone of subtropical convergence north of the

forcing region or southward and then eastward over

South America (Fig. 12c).

Figures 13 and 14 present the latitude, amplitude, and

wavenumber evolution over the course of 15 days in-

tegration for two of the growing complex Rossby waves

shown in Fig. 12. The east-northeastward-propagating

wave with initial k 5 3 (Fig. 13) traverses Cuba and

nears the isolated vorticity anomaly evident in the

LBVE model solution (Fig. 11) during hour 80 at which

time the wave amplitude grows markedly. The traced

wave peaks in amplitude around hour 100 while in the

vicinity of the vorticity anomaly. During these hours of

integration the wave behaves somewhat erratically as its

amplitude grows precipitously: the wave jumps in lati-

tude and wavenumbers shift or change sign. In addition,

as for many of the ray tracings performed on this 2D

JAS background, the imaginary and real wavenumber

components are the same order of magnitude such that

FIG. 8. Steady LBVE vorticity solution to Gaussian amplitude

divergent forcing centered at 58N, 908W. Divergence maximizes in

center at 23 3 1026 s21. The background is JAS 1949–2010 300-mb

climatology that has been zonally smoothed to wavenumber 8.

Rossby wave ray tracings initiated throughout the forcing region

with initial integer k 5 4–12 are shown: (a) all real wavenumber ray

tracings and (b) all complex wavenumber ray tracings.

FIG. 9. As in Fig. 8, but for ray tracings initiated with initial zonal

wavenumber: (a) k 5 4 only, (b) k 5 5 only, and (c) k 5 6 only.

Black lines are real Rossby wave ray tracings; green lines are

complex Rossby wave ray tracings.
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a ’ 1, rather than a � 1, which violates the approxi-

mation used to insure that rays remain close to the real

plane. However, these complex wavenumber Rossby

waves traverse the region east of Cuba and exhibit rapid

growth in this area, both of which are behaviors con-

sistent with the LBVE solution showing an isolated

anomaly east of Cuba that results from an eastward-

propagating signal (Fig. 11b). In contrast, no real wave-

number Rossby waves traverse this region (Fig. 8).

While this ray-tracing amplitude and trajectory solu-

tion does not clearly corroborate the isolated anomaly

finding of the LBVE model, the peak of amplitude near

the anomaly is consistent with it and could perhaps be

indicative of an area of Rossby wave instability. Fur-

thermore, other waves traversing the area also grow in

amplitude in this same region and qualitatively identify

the anomaly region (Fig. 12).

The northward-propagating wave with initial k 5 4

(Fig. 14) grows continuously during the 15-day integra-

tion. The trajectory and amplitude of this ray tracing vary

smoothly, yet for the meridional wavenumber li and lr
are the same order of magnitude over the course of the

integration. This wave propagates slowly into the region

of subtropical convergence (Fig. 12a).

For all of the ray tracing presented here, the calcu-

lated amplitude does not take into account dissipative

processes, nor does it define an initial wave amplitude,

only relative changes in amplitude. Dissipation will de-

crease the wave amplitude; furthermore, the initial wave

amplitude may be small. In addition, ray tracing does

not account for nonlinear processes, such as wave–mean

FIG. 10. Plots of 1949–2010 JAS 300-hPa NCEP–NCAR re-

analysis (a) zonal wind (m s21), (b) bM (m21 s21), and (c) Ks (1/m).

Values of Ks are only shown for regions of both um . 0 and bM . 0.

FIG. 11. LBVE vorticity solution to Gaussian amplitude di-

vergent forcing centered at 58N, 908W. Divergence maximizes in

center at 23 3 1026 s21. The background is JAS 1949–2010 300-mb

climatology that has been zonally smoothed to wavenumber 8. (a)

Full solution, as in Fig. 8. (b) As in (a), but a sponge layer has been

applied at 1508E to preclude Rossby wave propagation westward

from the Pacific basin. Contours are 60.2 3 1026, 60.4 3 1026,

60.6 3 1026, 61 3 1026, 62 3 1026, and 24 3 1026 s21. Negative

contours are dashed.
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flow interaction or wave breaking, which would likely

dominate at large wave amplitudes. In spite of these

limitations, both the trajectory and amplitude growth of

the traced complex wavenumber Rossby waves are quali-

tatively consistent with the development of the isolated

vorticity anomalies seen over Cuba and the subtropical

convergence zone north of the forcing region.

For further comparison, we performed a similar experi-

ment during boreal winter over Indonesia. The LBVE

model was linearized about 300-hPa January–March (JFM)

climatology and forced with divergence centered at 58N,

1208E. Rossby wave ray tracings were initiated throughout

the forcing region with initial integer k 5 3–6. For this re-

gion and season, there is less distinction between the real

and complex stationary barotropic Rossby wave ray-

tracing trajectories (Fig. 15); however, real wavenumber

ray tracings show a greater tendency to propagate pole-

ward and eastward along trajectories that follow the wave

train of alternating positive and negative anomalies pro-

duced by the LBVE model. The complex rays tend to

remain within the tropics and also show a greater ten-

dency to cross into the Southern Hemisphere.

The similarity of the complex and real wavenumber

Rossby wave trajectories initiated over Indonesia during

boreal winter (Fig. 15) differs from the tracings initiated

over the eastern equatorial Pacific during boreal summer,

which show a clearer divergence of complex and real

wavenumber Rossby wave trajectory behaviors (Fig. 8).

Differences among these two tropical environments include

differences in the background winds in both the tropics and

FIG. 12. Steady LBVE vorticity solution to Gaussian amplitude

divergent forcing centered at 58N, 908W. Divergence maximizes in

center at 23 3 1026 s21. The background is JAS 1949–2010 300-mb

climatology that has been zonally smoothed to wavenumber 8. A

sponge layer has been applied centered at 1508E that precludes

Rossby wave propagation westward from the Pacific basin. Rossby

wave ray tracings initiated at three individual sites with initial integer

k 5 4–12 are shown. The sites are (a) 8.698N, 107.58W; (b) 3.728N,

858W; and (c) 1.248N, 858W. Black lines are real Rossby wave ray

tracings; green lines are complex Rossby wave ray tracings.

FIG. 13. Plots of (a) wave latitude, (b) wave amplitude (relative

to initial value), (c) imaginary wavenumbers, and (d) real wave-

numbers of the growing ray initiated with k 5 3 at 1.248N, 858W.

2126 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 69



extratropics. These changes may account for the different

forced LBVE solutions, as well as the greater dispersion of

complex and real wavenumber Rossby waves initiated over

the eastern equatorial Pacific during JAS. The divergence

of complex versus real wavenumber ray behaviors and its

dependence on the background field is a topic for future

study.

7. Comparison of complex ray-tracing methods

As discussed above, other approaches have been pro-

posed and developed for carrying out CRT (Brillouin

1914; Sommerfeld 1914; Censor and Gavan 1989;

Sonnenschein et al. 1998; Kravtsov and Orlov 1999).

Here we compare our CRT method with one alternate

approach, referred to as MD93, in which wavenumbers

are allowed to be complex but ray propagation is re-

stricted to real coordinate space by considering only the

real part of the group velocity (Muschietti and Dum

1993). The principal difference between the two methods

is that our method neglects, via a scaling argument, only

the last term of Eq. (2.5a), whereas the alternate approach

neglects the last term of both Eqs. (2.5a) and (2.5b).

CRT performed using the MD93 approach was ap-

plied to the NCEP–NCAR reanalysis JAS 1949–2010

300-hPa relative vorticity climatology and initiated at

forcing sites within 08–108N and 1108–708W for initial

k 5 4–12 (Fig. 16). As a whole, the results are qualita-

tively similar to our perturbation approach. Complex

ray tracings with the MD93 approach are also distinct

from RRT solutions, which remain within the equatorial

waveguide (Fig. 8). As in our perturbation approach, the

MD93 CRTs fall into three general groupings: 1) prop-

agation northward to the region of subtropical conver-

gence over and west of Mexico; 2) propagation over the

Caribbean, Cuba, and in some instances into the North

African–Asian jet; and 3) propagation southward to

about 108S and then eastward.

Based on these findings it is difficult to identify one

CRT approach as superior. Both methods produce similar

gross descriptions of the complex wavenumber Rossby

wave response to forcing over the eastern equatorial

FIG. 14. As in Fig. 13, but for the growing ray initiated with k 5 4 at

8.698N, 107.58W.

FIG. 15. Steady LBVE vorticity solution to Gaussian amplitude

divergent forcing centered at 58N, 1208E. Divergence maximizes

in center at 23 3 1026 s21. The background is JFM 1949–2010

300-mb climatology that has been zonally smoothed to wavenumber

8. Rossby wave ray tracings initiated throughout the forcing region

with initial integer k 5 3–6 are shown, for (a) real wavenumber ray

tracings and (b) complex wavenumber ray tracings.
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Pacific during boreal summer. Both have rays that traverse

the isolated anomalies east of Cuba, west of Spain, and

over and east of Brazil that arise within the LBVE model

due to eastward-propagating disturbances (Fig. 11b). Both

methods produce rays that grow in the vicinity of these

isolated anomalies (not shown). Both methods produce

some rays with erratic, aphysical behavior.

Indeed, the MD93 approach is simpler to apply, and

these findings suggest that this method can also be jus-

tifiably used for tracing Rossby waves. However, indi-

vidual ray trajectories differ between the two methods:

that is, the same initial complex ray follows a different

path depending on the tracing method used (Figs. 12 and

17). The perturbation method we have introduced in-

cludes a scaling formalism that accounts for an addi-

tional term, ugi(›kr/›x) [Eq. (2.5b)], that is neglected

when the imaginary group velocity is dropped in the

MD93 approach. For ray tracings where a � 1, our

method should be more accurate, although admittedly for

many of the ray tracings this scaling does not hold. In such

instances, it is difficult to determine which tracing method

is superior. Still, overall, both CRT methods produce a

family of rays that depict responses seen in simulations

with the LBVE model and not produced by RRT.

8. Discussion

Here we have shown that complex wavenumber sta-

tionary barotropic Rossby wave ray tracing can be used

to track the amplitude and trajectory of simultaneously

propagating and growing or decaying forced distur-

bances. Ray-tracing amplitude solutions for these waves

match exact solutions in a simple, idealized setting.

Trajectories of these complex wavenumber Rossby wave

ray tracings match forced solutions of a barotropic

vorticity equation model linearized about a state of

solid-body rotation, as do real wavenumber Rossby wave

ray-tracing trajectories.

Complex wavenumber Rossby wave ray tracing in a

realistic zonally asymmetric atmosphere produces tra-

jectories that are distinct from real wavenumber Rossby

wave ray tracings and coincident with vorticity anoma-

lies generated in similarly forced solutions of the LBVE

model. Thus, it appears that inclusion of complex wave-

number stationary barotropic Rossby waves in addition to

the real wavenumber ray tracings provides a more complete

description of the LBVE model solution. The amplitudes

of these distinct complex wavenumber wave trajectories

appear, on a qualitative level, to amplify in regions where

the LBVE model vorticity solutions maximize.

Care must be taken when using this ray-tracing ap-

proach. Many of the integrations performed violate the

assumption that a� 1. In some instances this violation is

associated with unusual and nonphysical behaviors. This

erratic behavior of some of the complex waves may arise

from a violation of WKBJ assumptions near a turning

latitude (Karoly and Hoskins 1982), a violation of the

assumption that a� 1, or both. It is noteworthy that for

solid-body rotation no real wavenumber Rossby wave ray

tracings were found to behave in this fashion near turning

latitudes (Fig. 6). Consequently, the erratic behavior of

some complex wavenumber ray tracings at and beyond

FIG. 16. As in Fig. 8, but only for complex wavenumber Rossby

wave ray tracings performed per Muschietti and Dum (1993) in

which wavenumbers are complex but ray propagation is restricted

to the real coordinate space by considering only the real part of the

group velocity.

FIG. 17. As in Fig. 12, but only for Rossby wave ray tracings

performed per Muschietti and Dum (1993) in which wavenumbers

may be complex but ray propagation is restricted to real coordinate

space by considering only the real part of the group velocity. Black

lines are real Rossby wave ray tracings; blue lines are complex

Rossby wave ray tracings.
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a turning latitude likely arises from violation of the as-

sumption that a� 1 or from violation of both WKBJ and

a� 1.

In spite of this erratic behavior from some complex

wavenumber Rossby wave ray tracings, many of the

other complex wavenumber wave trajectories propagate

without large wavenumber changes over a single time

step or radical shifts in direction or location. This finding

suggests that the technique presented here can provide

useful insight even when formal scaling assumptions are

violated. Indeed, ray tracing of real wavenumber waves

often violates WKBJ assumptions yet still proves in-

formative (Karoly and Hoskins 1982).

CRT has been performed here for an inviscid atmo-

sphere; however, complex wavenumbers can be intro-

duced if the medium is unstable or dissipative. Indeed,

inclusion of dissipative processes might be warranted.

While our Rossby wave dispersion relation (3.2) is in-

viscid, the LBVE model solutions to which the CRT is

compared include damping and diffusion (appendix C).

To better reflect the LBVE model, we could include

dissipation in the barotropic vorticity equation for the

perturbation streamfunction,

›=2c9

›t
1 J(c, =2c9) 1 J(c9, =2c 1 f ) 1 n=2c9 5 0,

where n is the Rayleigh damping coefficient. For a plane

wave of the form c 5 A exp[i(kx 1 ly 2 vt)] this yields

the dispersion relation

v 5 uk 1 yl 1
l›q/›x 2 k›q/›y

k2 1 l2
2 in. (8.1)

Typically, damping is ignored and the atmosphere is

treated as inviscid for the purpose of Rossby wave ray

tracing (Hoskins and Karoly 1981; Karoly 1983; Li and

Nathan 1997); however, Eq. (8.1) is a valid Rossby wave

expression that would produce complex wavenumber

Rossby waves, which would undergo weak decay while

propagating due to this damping. This framework is

analogous to the one addressed by Muschietti and Dum

(1993) and Censor and Gavan (1989), who both consider

complex wavenumbers and group velocities for systems

with complex dispersion relations. Our use of an inviscid

Rossby wave dispersion relation (3.2) allows for both

real and complex wavenumber waves. Explicit decay

due to damping is not represented, but rather the more

dynamically interesting cases of growth or decay due to

spatial instability are depicted.

Rossby wave ray tracing also need not be restricted to

stationary waves. Tropically forced, low-frequency, non-

stationary Rossby waves have been examined in prior

studies (Li and Nathan 1997) to explore the planetary-

scale response to time-varying forcing. It has been found

that for the same forcing location and initial zonal

wavenumber but different wave frequencies, the trajec-

tories of these waves diverge. In fact, by merely changing

the Rossby wave frequency v, the initial meridional

wavenumber solutions changes, and in some instances

can change from real to complex. Consequently CRT of

low-frequency, nonstationary Rossby waves will provide

a fuller representation of the planetary scale response

to such low-frequency time-varying forcing than RRT

alone. Such investigation, which is left for a future work,

may provide a more complete picture of atmospheric

response to periodic forcing at time scales that are sub-

seasonal but beyond the limits of numerical weather

prediction.

Our perturbation method for CRT is appealing due

to the relative simplicity of the approach, the scaling

formalism that retains an appropriate additional term

in the ray-tracing equation (provided a � 1), and the

fact that CRT solutions replicate LBVE model behavior

not captured by RRT. However, the still simpler MD93

approach produces qualitatively similar Rossby wave ray-

tracing results in a zonally asymmetric two-dimensional

atmosphere. It is difficult to assess quantitatively which

of these methods is indeed more accurate. Future com-

parison of these two approaches might focus on catalog-

ing the ability of CRT approaches to capture unusual

phenomena. Indeed, CRT of Rossby waves may provide

insight into energy accumulation (e.g., Webster and Chang

1988), caustics in the atmosphere, critical layers, and spa-

tial instabilities, such as in frontal zones.

CRT of the full Eqs. (2.5) into complex space might

also be attempted and used for comparison. Such a pro-

cedure, although more cumbersome, might use analytic

continuation to project the basic state into complex space

(e.g., using Chebyshev polynomials), perform ray tracing

in complex space, and then project the solutions back to

real space.

The LBVE model used in this study provides a highly

simplified depiction of large-scale atmospheric response

and does not include nonlinear, baroclinic, or moist

processes. Furthermore, by restricting LBVE model

forcing to the immediate region of equatorial diver-

gence [i.e., 2( f 1 z)D] rather than the full Rossby wave

source, as described by Sardeshmukh and Hoskins

(1988), the model depiction is further removed from

the response of the true atmosphere, or even a GCM.

However, use of only the simple 2( f 1 z)D forcing

provides a useful means for explicit comparison of

CRT and model solutions; that is, rays and the LBVE

model are only forced in a single region and secondary

forcing regions that can arise from vorticity advection

of the divergent flow are not depicted in either the

LBVE model or CRT.
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Still, a truer representation of the actual atmospheric

response to equatorial heating would allow for vorticity

advection by the divergent flow and downstream Rossby

wave generation (Sardeshmukh and Hoskins 1988). A

useful follow-up study and application of CRT would be

to explore whether the inclusion of complex wavenumber

Rossby wave ray tracings better represents the trajectories

of such secondarily forced Rossby waves from down-

stream regions of initiation than just standard real wave-

number Rossby wave ray tracing alone. Such a study

would use ray tracing to understand better the complete

large-scale barotropic atmospheric response to thermal

or orographic forcing.

A key question to be examined further in future studies

is whether complex rays describe real-world, physical

phenomena not described through RRT. The evidence

from this study, and prior work in other disciplines, sug-

gests that CRT can represent wave patterns not captured

by RRT alone. Complex wavenumber plane wave solu-

tions simultaneously propagate and either grow or decay,

unlike real wavenumber solutions, which only propagate,

and purely imaginary wavenumber solutions, which only

grow or decay.

In the work presented here, for some CRT, the imagi-

nary components of the zonal and meridional wave-

numbers of these complex Rossby waves could have

offsetting effects on wave amplitude. That is, if the signs of

the imaginary components of the two wavenumbers, ki and

li, are opposite, one will act to increase wave amplitude

while the other acts to decrease wave amplitude. The

combined effect is that the amplitude of the wave may not

grow or decay rapidly and thus may produce a signal like

a real wavenumber Rossby wave. Dickinson and Clare

(1973) noted that slowly decaying complex wavenumber

Rossby waves could persist for some time in the atmo-

sphere and ultimately extract momentum from the mean

flow at considerable distances from their initial generation.

Future work is needed to determine the full utility of

this methodology and complex wavenumber Rossby wave

ray tracing in general. In particular, the factors controlling

the dispersion of complex and real wavenumber ray tra-

jectories need to be further investigated in order to de-

termine the conditions in which these two wavenumber

types characterize distinct behaviors.
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APPENDIX A

Wavenumber Gradient Equation Components for
Two-Dimensional Barotropic Rossby Waves

To construct Eqs. (2.12)–(2.15) for two-dimensional

barotropic Rossby waves, we need the following addi-

tional expressions:

›2v

›k›x

����
r

5 Re

"
›uM

›x
1

(k2 2 l2)›2q/›y›x 2 2kl›2q/›x2

(k2 1 l2)2
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›2v

›k›y

����
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(k2 1 l2)3
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2130 J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S VOLUME 69



›2v

›l›y

����
r

5 Re

"
›yM

›y
1

2kl›2q/›y2 1 (k2 2 l2)›2q/›x›y

(k2 1 l2)2

#
,

›2v

›x2

����
r

5 Re

"
k

›2uM

›x2
1 l

›2yM

›x2
1

l›3q/›x3 2 k›3q/›x2›y

(k2 1 l2)

#
,

›2v

›y2

����
r

5 Re

"
k

›2uM

›y2
1 l

›2yM

›y2
1

l›3q/›x›y2 2 k›3q/›y3

(k2 1 l2)

#
,

›2v

›y›x

����
r

5 Re

"
k

›2uM

›y›x
1 l

›2yM

›y›x
1

l›3q/›y›x2 2 k›3q/›y2›x

(k2 1 l2)

#
.

These expressions are all derived from Eq. (3.2) and

can be used to construct the ray-tracing equations for

›kr/›x, ›kr /›y, ›lr/›x, and ›lr/›y, and thus also Eqs. (2.10c)

and (2.10d) for ki and li.

APPENDIX B

Solution to the Analytic System

The four waves satisfy two boundary conditions at y 5

0, discontinuity matching of the quasigeostrophic po-

tential vorticity equation and continuity of pressure

across the boundary (i.e., c is continuous). At y 5 Y, we

have only three waves to consider, the two northward-

propagating region II complex waves and the region III

northward-propagating real wave. These three waves

must satisfy the same two boundary conditions at y 5 Y.

The quasigeostrophic potential vorticity equation with

yM 5 0 is

(›t 1 uM›x)=2c 1 bcx 1 qxcy 5 0. (B.1)

Discontinuities in the effective b occur at y 5 0 at y 5

Y, which require use of a jump condition. To get this

we integrate Eq. (B.1) from 2� to 1� on either side of

these bounds and equate the resulting equation with

zero (Wang and Fyfe 2000). All terms on the lhs but two

vanish as � / 0, yielding

(v 1 uMk)cyj
1�

2�
1 qxcj1�

2�
5 0, (B.2)

which is our discontinuity matching condition [Eqs. (4.2b)

and (4.2d)].

We consider stationary plane waves solutions of the

form c 5 A expi(kx 1 ly) for the system described in

Eqs. (4.2). This yields the following equations:

1 1 AIs 5 AIIg 1 AIId, (B.3a)

lIn 1 lIsAIs 5 lIIgAIIg 1 lIIdAIId, (B.3b)

AIII 5 AIIgeil
IIg

Y
1 AIIdeil

IId
Y , (B.3c)

lIIIAIII 5 lIIgAIIgeil
IIg

Y
1 lIIdAIIdeil

IId
Y . (B.3d)

For the solutions for a prescribed background (uM, yM,

b, bT , ›q/›x) and initial zonal wavenumber and wave

frequency, the meridional wavenumber of each wave

lIn, lIs, lIIg, lIId, and lIII is found using Eq. (3.2). Solving

for the amplitudes yields the following solutions:

AIId 5
lIn 2 lIs

[(lIs 2 lIIg) (lIII 2 lIId)/(lIII 2 lIIg)]ei(l
IId

2l
IIg

)Y
1 (lIId 2 lIs)

, (B.4a)

AIIg 5
AIId(lIId 2 lIII) 2 (lIn 1 lIs)

lIs 2 lIIg

, (B.4b)

AIII 5 AIIgei(l
IIg

2l
III

)Y
1 AIIdei(l

IId
2l

III
)Y , (B.4c)

AIs 5 AIIg 1 AIId 2 1. (B.4d)

Ray-tracing solutions are solved for using the meth-

ods described in section 2. This tracing provides solu-

tions for the change in wave amplitude as well as zonal

JULY 2012 S H A M A N E T A L . 2131



translocation while traversing the region II domain in

the meridional direction. An analytic solution of Rossby

wave zonal translocation within region II is determined

based on the ratio of the zonal and meridional wave-

numbers and region II extent, Y for comparison.

APPENDIX C

Solutions of the Linearized Barotropic
Vorticity Equation

Forced solutions of the linearized barotropic vorticity

equation were found following the solution method

of Branstator (1983). The barotropic vorticity equation

was first linearized about a low-pass filter (zonal wave-

numbers 0–8) around a background streamfunction field

(e.g., solid-body rotation). The equation to be solved is

then

J(c, =2c9) 1 J(c9, =2c 1 f ) 1 n=2c9 1 k=4=2c9 5 R,

(C.1)

where f is the Coriolis force, n is the Rayleigh coefficient,

k is a diffusion coefficient, R is a forcing function,

J(A, B) 5
1

r2

›A

›l

›B

›m
2

›A

›m

›B

›l

� �

is the Jacobian, l is longitude, m 5 sin(u), u is latitude,

and r is the earth’s radius. The overbars indicate the

seasonal time-mean flow (the basic state); primes signify

the perturbation flow to be solved; n was set to 1.57 3

1026 s21 [an e-folding time of 1/(7 days)], and k was set

to 2.34 3 1016 m4 s21. The anomaly forcing was speci-

fied as R 5 2( f 1 =2c)D, where D, forcing divergence,

is set to 3 3 1026 s21. Equation (C.1) was solved using

spherical harmonics and triangular 24 truncation (T24).
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