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Abstract

A Primitive Equation Ocean General Circulation Model (PE OGCM) in a global con-
figuration similar to that used in coupled ocean-atmosphere models is fitted to climatolog-
ical data using the adjoint method. The ultimate objective is the use of data assimilation
for the improvement of the ocean component of coupled models, and for the calculation
of initial conditions for initializing coupled model integrations. It is argued that oceanic
models that are used for coupled climate studies are an especially appropriate target for
data assimilation using the adjoint method.

It is demonstrated that a successful assimilating of data into a fully complex PE OGCM
critically depends on a very careful choice of the surface boundary condition formulation,
on the optimization problem formulation, and on the initial guess for the optimization
solution. The use of restoring rather than fixed surface-flux boundary conditions for
the temperature seems to result in significantly improved model results as compared
with previous studies using fixed surface-flux boundary conditions. The convergence of
the optimization seems very sensitive to the cost formulation in a PE model, and a
successful cost formulation is discussed and demonstrated. Finally, the use of simple, sub-
optimal, assimilation schemes for obtaining an initial guess for the adjoint optimization
is advocated and demonstrated.

1 Introduction

Oceanographic data assimilation is a rapidly evolving field with very diverse objectives
and hence many different possible methodologies to address these objectives. Two of
the main purposes of combining ocean models and data are the improvement of ocean
models, and the calculation of an optimal estimate of the oceanic state, based on both
model dynamics and the available data (Malanotte-Rizzoli and Tziperman, Chapter 1
of this book). These two objectives are very general, and apply to a wide spectrum of
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models, from high resolution to coarse, and a variety of uses can be found for the optimal
ocean state estimated by data assimilation or inverse studies.

One class of ocean models for which these two objectives are especially relevant and
important consists of the ocean models used in coupled ocean-atmosphere model studies.
Model improvement in this context refers to the need to improve these ocean models,
including their sub-grid scale parameterizations, their poorly known internal parameters
such as various eddy coefficients, the surface boundary forcing fields which are often
known with large uncertainty, etc. Data assimilation may be used to find those model
parameters that result in a better fit of the model results to observations, and therefore
in an improved performance of the model when run within a coupled ocean-atmosphere
model. The state estimation problem in this context refers to the need to find “optimal”
initial conditions for coupled model climate simulations. Such initial conditions, based on
both the model dynamics and the oceanic observations, would hopefully result in better
climate forecasts.

The combination of OGCMs and oceanographic data for the above purposes can be
formulated as an optimization problem. Such an optimization would search for a set
of model parameters and for an optimal ocean state which together satisfy the model
equations and fit the available data as well as possible. This is done by formulating a cost
function to be minimized, which measures the degree to which the model equations are
satisfied, as well as the distance to the data. The minimization of this cost function is
a most complex nonlinear optimization problem, requiring very efficient methodologies.
A common solution for such large scale optimization problems is to use gradient-based
iterative algorithms such as the conjugate gradient (c-g) algorithm. The minimization
is carried out-in a huge parameter space comprising of all model parameters and of the
3D model initial conditions for the temperature, salinity and velocities. The efficient
estimation of the gradient of the cost function with respect to these many parameters is
a crucial part of the methodology. This is done using a numerical model based on the
adjoint equations of the original model equations. Thus this optimization approach is
often referred to as the “adjoint method” (e.g. [1]-[4]).

The adjoint method is very efficient compared to other ways of estimating the gradient
of the cost function, but is still computationally intensive. Given the power of todays
computers, the adjoint method is therefore adequate primarily for medium to coarse
resolution models. Due to the very high computational cost of coupled models, they
are also presently limited to a fairly coarse resolution. Clearly the data assimilation
problems related to coupled models are therefore an excellent match to the capabilities of
the adjoint method. Moreover, it may be expected that as available computers become
more powerful and allow higher resolution coupled ocean-atmosphere models, the new
computational resources will also enable the use of such higher resolution models with the
adjoint method. :

We would like to present here a step towards the ultimate goal of using the adjoint
method with the ocean component of coupled ocean-atmosphere models. We still cannot
claim to having improved the model or having produced optimal initial conditions, but
hopefully have made some progress. Inverting a three dimensional GCM (that is, assim-
ilating data into a three dimensional GCM using an optimization approach) is basically
a very technical problem, yet we will demonstrate here that a successful application of
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the adjoint method to this problem requires a very good understanding of both the ocean
circulation dynamics and of the technical issues involved. In fact, we try to emphasize
here precisely those issues that require the understanding of the dynamics in order to
formulate and successfully solve the inverse problem of combining ocean GCMs and data.
The use of a fairly coarse resolution model here implies, of course, that we do not attempt
here to produce a highly realistic simulation of the oceanic state. Rather, the above ob-
jectives are all related to the ultimate improvement of coupled ocean-atmosphere model
simulations whose main tool is similar coarse-resolution models.

Although the objective of combining 3D ocean climate models with data is of obvious
interest, it is surprising to realize that there have only been very few efforts so far trying
to apply the adjoint method to full complexity 3D ocean models. Tziperman et al.
[5, 6] have examined the methodology using simulated data and then real North Atlantic
data; Marotzke [7], and Marotzke and Wunsch [8] (hence after MW93) have considerably
improved on the methodology and analyzed a North Atlantic model; Bergamasco et al.
[9] used the adjoint method in the Mediterranean Sea with a full PE model, and Thacker
and Raghunath [10] have examined some of the technical challenges involved in inverting
a PE model. This relatively small number of studies has a simple reason: the technical
difficulties in constructing an adjoint model of a full GCM are almost overwhelming.
Fortunately, this difficult task was successfully tackled by Long, Huang and Thacker [11],
who have generously made the results of their efforts available to others and the present
study is a direct outcome of their efforts. (The adjoint code of [11] was modified here to be
consistent with the global configuration and eddy parameterizations used in this study, so
that the adjoint code used here is the precise adjoint of our finite difference global model).
All of the above works use the the model equations as “hard” constraints. This implies
that errors in the model equations are not considered explicitly. It is worthwhile noting
that adjoint models can also be used for different data assimilation approaches than used
here [12, 13].

Within the framework of using climate models with the adjoint method, this study has
three specific objectives. First, we would like to investigate the issue of model formulation
for such optimization problems, and in particular the surface boundary condition formu-
lation. There are two commonly used surface boundary condition formulations. One is
fixed-flux conditions, in which the heat flux is specified independently of the model SST.
The second is restoring boundary conditions in which the heat flux is calculated by restor-
ing the model SST to a specified temperature distribution (possibly the observed SST).
Previous applications of the adjoint method to 3D GCMs used the fixed-flux formulation
in an effort to calculate the surface fluxes that results in a good fit to the temperature
observations. However, the optimal solution was characterized by large discrepancies, of
up to 6 degrees, with the observed SST [6, 8]. Tziperman et al. [6] suggested that this dis-
crepancy is the result of using flux boundary conditions, rather than restoring conditions
that are normally used in ocean modeling. MW93 (8] suggested that this discrepancy
might be a result of the use of a steady model which lacks the large seasonal signal in
the SST, and that this problem might be resolved using a seasonal model. We explain
and demonstrate below that using restoring boundary conditions, is better motivated
physically as well as seems to eliminate the large SST discrepancies observed in previous
optimization studies (section 4.2). ‘
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Our second objective is to examine various possibilities for the formulation of a cost
function measuring the success of the optimization problem and their influence on the suc-
cess of the optimization. Finally, we shall discuss and demonstrate methods for increasing
the efficiency of the adjoint method by initializing the gradient based optimization with
solutions obtained using simpler, sub-optimal, assimilation methodologies.

Ocean models presently used in coupled ocean-atmosphere studies are coarse, non-
eddy-resolving, yet usually include the seasonal cycle. Faithful to our philosophy of trying
to use the same models for data assimilation studies we should have used a seasonal model,
and indeed work is underway to do just that. In this present work, however, we have made
several steps forward going from basin to global scale, and from a simplified 3D GCM to
a full PE model. These steps turned out to involve a sufficient number of new challenges,
so we have decided to maintain the steady state assumption, and progress to a global PE
seasonal model only at a following stage. We expect that the lessons learned from the
steady state problem will be very useful at the next stage, as time dependent, presumably
seasonal, models are inverted.

In the following sections we describe the model and data used in this study (section
2), discuss in detail the formulation of the optimization problem (section 3). We then
present the results of the model runs carried out here (section 4), and finally discuss the
lessons to be learned for future work and conclude in section 5.

2 Model and data

Ultimately, our objective is to use data to improve ocean models used in climate simu-
lations; therefore the model used for the optimization study needs to be the same model
that can be run independently in a simulation mode. This determines many of our choices
concerning the model and surface boundary condition formulation.

We use the GFDL PE model, derived from the model of Bryan [14], with later mod-
ifications by Semtner [15] and Cox [16], in a coarse resolution global configuration sim-
ilar to that of Bryan and Lewis [17], with the main difference being that the Arctic
ocean is not included in our model. The model’s geometry and resolution are also sim-
ilar to those presently used by coupled ocean-atmosphere models. The model’s geom-
etry is shown in Fig. la. The model has 12 vertical levels, with the eddy mixing co-
efficients for the temperature and salinity varying with depth according to the scheme
proposed by Bryan and Lewis [17]. The mixing coefficients for the temperature and
salinity are given by Ag(k) = rg(k)2 x 107em?/sec in the horizontal direction, and
Ay (k) = rv(k) x 0.305cm?/sec in the vertical direction, where rg (k) and ry(k) are given
in Table 1. The momentum mixing coefficients are 25 x 10%, and 50 cm?/sec in the
horizontal and vertical directions correspondingly.

The choice of surface boundary condition formulation turns out to be a crucial factor
in the optimization problem we have set out to solve here. We explain and demonstrate
below that using restoring boundary conditions, rather than the fixed-flux formulation
used previously is better motivated physically as well as eliminates the large SST discrep-
ancy observed in previous optimization studies (section 4.2). Under restoring boundary
conditions the model is driven with an implied air-sea heat flux H55T that is calculated
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Table 1
Model levels and horizontal and vertical mixing coefficients.
level  depth horizontal vertical
(k) (m) mixing factor (ry) mixing factor (rv)
1 25.45 1.0000 1.000
2 85.10 0.8923 1.003
3 169.50 0.7794 1.007
4 295.25 0.6620 1.015
5 482.80 0.5475 1.028
6 754.60 0.4482 1.053
7  1130.65 0.3733 1.109
8 162240 0.3218 1.288
9 222835 0.2853 2.904
10 2934.75 0.2553 4.048
11 3720.90 0.2274 4.193
12 4565.55 0.2000 4.244
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Figure 1: The steady state model solution for the surface temperature obtained without
the use of interior data: (a) Model geometry and the sea surface temperature at steady
state. Contour intervals are 2.5°C. Negative areas are dotted. (b) Total meridional heat
flux for the global ocean (solid), for the Atlantic ocean (dash), overturning circulation
contribution to the meridional heat flux (short-dash) and gyre contribution of the merid-
ional heat flux (dot). (c) North Atlantic meridional stream function. (d) Temperature
section through the North Atlantic model sector solution.
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at time step n from the model upper level temperature, 77; ;_,, and the temperature data
at this depth, ﬂ‘fj,kﬂ, (where the indices 7, j denote horizontal grid point location, and &
vertical level) as follows

SSTn L n
H; = POCHTAZI(Til,ij,kﬂ = Tiih=1)- W

The restoring coefficient 77 has units of one over time, C, is the heat capacity of sea
water, po is a constant reference density, and Az; denotes the thickness of the upper
model level. Similarly, an implied fresh water flux is calculated from the difference of the
model surface salinity and the surface salinity data,

[E—P];Sjss'n = ‘YSAZI(Sffj,kﬂ — S8 k=1)/50, (2)

where Sy is a constant reference salinity used to convert the virtual salt flux to an implied
fresh water flux. In our runs, where Az; = 50m, we use 77 = 1/30days™! and 75 =
1/120days™!. Following Hirst and Cai [21], we restore our model surface temperature and
salinity to (-1.9° C, 34.84ppt) in the North Atlantic portion of our model, at two grid
points only, located at (68.9N; 7.5W and 11.25W) using restoring coefficients that are
10 times larger than those used elsewhere. This results in an improved simulation of the
NADW formation and spreading. Finally, as the Mediterranean Sea is not included in our
model, a sponge layer is used at two grid points near the Mediterranean outflow region,
in which model temperature and salinity are restored to the Levitus data at all depths.

The steady state model results obtained by integrating the model for about 1500 years
(without data assimilation) are shown in Fig. 1 Depicted are the surface temperature field
(Fig. 1a), the global and North Atlantic meridional heat flux (Fig. 1b, see [17, 18] for the
meridional heat flux decomposition used here) the North Atlantic overturning circulation
(Fig. 1c) and a temperature section through the North Atlantic ocean (Fig. 1d). Note
that the overturning circulation is about 16Sv at 30N, close to the commonly assumed
value of about 18 Sv there. This is due to the strong restoring at the two northern surface
grid points mentioned above, without which the overturning at 30N reduces by about
25%.

The “data” used in this study are the annually averaged temperature and salinity
analysis of Levitus [22]; the annually averaged climatologies of heat flux from Esbensen
and Kushnir [20], of fresh water flux ([E—P]) from Baumgartner and Reichel [23] and
of winds from Hellerman and Rosenstein [24]. All of these are, in fact, gridded analyses
rather than raw data. While it is clearly more convenient to use such analyses, future
applications of the adjoint method may use the raw data instead. The use of the raw
observations, together with detailed error information, may result in more reliable results
and better error statistics for the model solution than is possible here.

3 Optimization Problem

One of the main lessons that have been learned over the past few years while trying to
combine 3D ocean models and data, is that the correct formulation of the inverse problem
is of crucial importance to the success of the optimization. Much thought and understand-
ing of the dynamics should enter the process of posing the optimization problem. This
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process includes the choice of a cost function that measures the optimization success and
that needs to be minimized, the specification of the initial guess for the optimization
solution from which the iterative minimization should begin, and the choice of control
variables which are varied in the optimization. We now examine each of these steps in
some detail. The results of an optimization formulated according to the ideas presented
in this section are shown and discussed in section 4.

3.1 Cost Function

Once the data and model have been specified, the next stage in the formulation of the
inverse problem is to specify a measure for the success of the optimization, i.e., the cost
function to be minimized. The cost function measures both the fit of the model results
to the data, and the degree to which the dynamical constraints are satisfied. A given
dynamical constraint can be formulated in many different ways. It has been shown for
simpler GCMs that the ability of the optimization to minimize the cost function critically
depends on the precise form of the cost function [7]. We find that a Primitive Equations
model is even more sensitive to the precise cost formulation.

Let us consider the various dynamical and data constraints and the possibilities of
specifying them within a cost function to be minimized. Begin from the dynamical con-
straints, which in our case are the requirement for the solution to be as close as possible
to a steady state of the model equations. This condition may be obtained by minimizing
a measure of the deviation of the model from a steady state solution. Tziperman and
Thacker [4] and then Tziperman et al [5, 6] have suggested to minimize the finite differ-
ence form of (9T'/0t)?, obtained by stepping the model from the initial conditions T%° a
single time step to 773", and minimizing the sum of terms such as (7% — T73;°)?. This
seems reasonable, and worked for a QG model [4], yet encountered major difficulties when
applied to a 3D model [5, 6]. Marotzke [7], in an important contribution, suggested to
use instead (TgN — 7%°)%, such that the model integration time NAt corresponds to
the time scale of physically relevant processes in the model (e.g. O(10 years) for a prob-
lem involving the upper ocean, longer time scales for the deeper ocean, etc). Marotzke’s
suggestion resulted in most significantly improved convergence of the optimization, as
presented in both Marotzke [7] and MW93 [8].

A useful perspective for evaluating the usefulness of a given formulation of the dy-
namical constraints in the cost function is the conditioning of the resulting optimization
problem. The cost surface in parameter space near the cost minimum is of a bowl shape.
The bowl may be nearly flat in some directions and very steep in others. If such a dis-
crepancy occurs, the optimization is said to be ill conditioned [25]. An ill conditioned
optimization may stall and not progress towards the minimum even after many iterations
of the minimization algorithm. If the steepness of the cost surface is nearly even in all
directions, the optimization is said to be well conditioned, and the solution is found within
a few iterations. The conditioning issue was discussed in detail in Tziperman et al. [6],
where the analysis pointed out to some possible ways of improving the conditioning using
various formulations for the cost function. The conditioning of the steady penalties of
temperature and salinity for the PE model used here is examined in section 3.1.1. For
a primitive equation model such as used here, there are additional considerations con-



126

cerning the form of the dynamical constraints for the velocity field which turns out to be
most crucial for the success of the optimization, and these are discussed in section 3.1.2.
Finally, the cost formulation for the penalties requiring the model heat flux (and fresh
water flux) to be close to the observations is discussed in section 3.1.3.

3.1.1 Dynamical constraints for temperature and salinity

In order to evaluate the conditioning of the dynamical constraints, we have plotted them
together with the data penalties along a somewhat arbitrary section between two points
in parameter space. The two points correspond to two choices for the 3D temperature,
salinity, velocity and stream function initial conditions. The two points were obtained by
running a few iterations of the optimization algorithm once from the steady state solution
and once from a robust diagnostic solution ([27]; see below for details). The plotted cost
function is of the form

i/ L (pn= = T (d =
IT S0 007) = S |WESE = T 4 W~ T

ij

72 = =l S d =
b 3 [WESE - S0+ WEShe - 57 ®

ijk
where T° = T"=0 is the initial condition for temperature, and similarly for S°,u°,v°,°.
The precise choice of the weights is discussed below. Let the two points in parameter space
be x1,X2. Then the various terms of the cost function were evaluated and plotted along
the straight line in parameter space connecting these two points at x = x3 + r(x2 — x1),
with r varying from r = —0.6 to r = 1.6 at intervals of Ar = 0.1, using an integration
time of NAt = 2 years. The results are shown in Fig. 2.
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Figure 2: Cost function along a section in parameter space. Shown are the steady temper-
ature penalties (short-dash); steady salinity penalties (dot); data temperature penalties
(solid); data salinity penalties (dash) and the total cost (dash-dot).

The data penalties along the section are clearly simple parabolas. The dynamical
constraints for the temperature and salinity, however, have a very nonlinear character,
reflecting the nonlinearity of the model equations used to obtain 7"=N from T™=C. These
terms of the cost function are nearly flat between the two points (r = 0 and r = 1), and
then rise very rapidly outside of the interval. In particular, going from the minimum point
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at r & 0, corresponding to the optimization started at the robust diagnostic solution, to
r = 1, the data penalties increase significantly, indicating a very significant change in the
temperature and salinity fields (Fig. 2). Yet the steady penalties hardly change. This
seems to indicate a possible ill conditioning of the dynamical constraints, so that they
are not well constraining the optimization which would feel mostly the variation of the
data penalties along this section. As these dynamical constraints were evaluated using a
2 year integration time, they are presumably much better conditioned than using a single
time step or other short integration time. It seems likely, however, that a more thoughtful
formulation of the steady penalties may result in an even better conditioned form of the
dynamical constraints.

While there is probably room for improvement in the cost formulation, we wish to
emphasize that an optimization problem formulated using a cost function similar to the
above is, in fact, successfully solved below (section 4).

3.1.2 Dynamical constraints for velocities and barotropic stream function

Under the primitive equation approximation, there are 5 prognostic fields: temperature,
salinity, two horizontal baroclinic velocities and the barotropic stream function. In prin-
ciple, each of these needs to be required to be at a steady state if such a model solution
is desired. We have attempted to do this by adding to the cost function 3 terms such as

Tuteady wnw = 0 Wi (Wi = wii®)? + (3" — viz®)?) + Z sl O
ijk

Several optimizations were performed using this formulation, starting from the data,
from the steady state or from a robust diagnostic solution (see next section). In all cases,
the optimization efficiently reduced the steady penalties for the velocities and stream
function using minute changes to the temperature and salinity, leaving the steady and
data penalties for the temperature and salinity nearly unchanged. This could, of course,
be due to a poor choice of the cost weights, although we feel that we have come up with
a reasonable choice for them (see Table 2 and discussion below).

Note that given the density stratification, the velocity field in a rotating fluid must
adjust to the density stratification within a few pendulum days. Therefore, there seems to
be no point in penalizing the velocity field separately from the temperature and salinity
fields. Once the temperature and salinity penalties are minimized by the optimization,
the velocity field just adjusts to the optimal stratification. Indeed, removing the velocity
and stream function penalties resulted in an immediate improvement of the convergence
of the optimization, and the steady velocity penalties are therefore not used in this study.

It is interesting to note that this problem did not arise in previous studies such as [5]-
[8], because they were all using a simpler GCM in which the momentum equations were
diagnostic, and therefore did not require separate steady velocity penalties. The issue of
dynamical constraints for the velocity field in a PE model is one of the new insights we
seem to have gained by going to a full PE model in the present study.
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3.1.3 Constraints for surface flux data

In all previous applications of the adjoint method to a 3D GCM, the model was formu-
lated using fixed surface-flux boundary conditions for the temperature and salinity. Then
an optimal flux which minimizes the cost function was sought using the optimization al-
gorithm. This involved penalizing the deviations of the optimal heat flux, H, from the
heat-flux data, H? as follows:

J(H) = [W"( {- . (%)

Note that the cost function in this case is an explicit function of the heat flux H which
is used as a control variable to be directly calculated in the optimization. In previous
applications of the adjoint method, this formulation resulted in very large discrepancies
between the model surface temperature and the observed one, in spite of the data penalties
in the cost function.

In this study, we wish to examine the suggestion of Tziperman et al. [6] that restoring
conditions may resolve the problem of large SST discrepancies, by using a cost function
of the form

= 2
J(SST)=3" [WH (H5T= - HY) ] - (6)
ij
where H55T"=0 is the restoring conditions heat flux (1) at the beginning of the run, and
the control variable is the surface temperature, rather than the flux itself.
Let us now write the complete cost function (selected parts of this cost function are
used in the optimization presented below):

J(Tn=0, Sn.:O-’ un=0’ ,vn=0, ¢n=0) — Z [W’l’( n=N ,‘/)n_O) ]
ij
+ S| Wram - Ty Wi - 5]
ijk L
+ 3| wred, - e west - s ¢
ijk L

b WO -y W - )]

ik L

+ 3 o (HSSTn= _ HY)" 4+ WEP (|B-PI555"=° - [E-P ]'f,j)z] -

i L

The data weights for the temperature, salinity and velocities are the inverse square error
in the temperature data as estimated in Table 2, normalized by the number of model’s
grid points, M. The steady penalties require that the drift in temperature (or salinity)
during a period of 15 years is equal to the assumed data error. The integration time of
2 years used to evaluate the steady penalties dictates the following choice for the steady
penalties [6, 7]:
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—T 1 (2 years x e(T) -2
Wy = M ( 15 years ) ®

The steady penalties for the velocities and stream function are similarly calculated from
ex(U) and e(y) given in Table 2. The errors in the flux data were assumed to be
50Watts/m? for the climatological heat flux and 50cm/yr for the evaporation minus pre-
cipitation data [18].

The above choice of weights implied uncorrelated error statistics. For correlated errors,
non diagonal weight matrices must be used. The errors in oceanic observations are not
only correlated, but the correlation distances are, in fact, variable. This necessitates
the use of non diagonal, inhomogeneous and non-isotropic error statistics. The use of
horizontally uniform diagonal weights here is due to both the simplicity of this formulation
and to the lack of reliable information about error statistics in oceanic observations.

Table 2
Error estimates used to calculate the cost function weights.
level €x(T) ex(S) ex(U)
(°C)  (ppt) (em/sec)
2.000 0.2500 5.000
1.858 0.2323 4.677
1.675 0.2095 4.258
1.436 0.1796 3.712
1.142 0.1429 3.041
0.8218 0.1029 2.309
0.5249 0.06580 1.630
0.2976 0.03742 1.111
0.1555 0.01967 0.7866
0.08189 0.01048 0.6185
0.04942 0.006425 0.5444
0.03676 0.004844 0.5154

BE 200 oewo—

With the above choice for the cost weights, a given constraint can be said to be
consistent with the assumed error level if the corresponding term in the cost function
is less than one. Larger value of the temperature data penalties, for example, would
indicate that the solution is not consistent with the requirement that the solution is near
the Levitus analysis. A large steady penalty contribution indicates that the solution is
not consistent with the steady state model equations. An optimal solution should have
all terms, representing dynamical constraints as as well as data constraints, smaller than
one.

3.2 Initial guess

The minimization of a cost function based on the equations of a complex OGCM as con-
straints is a highly nonlinear optimization problem. If started too far from the absolute
minimum of the cost function, the gradient based optimization could lead to a local min-
imum of the cost function which does not represent the optimal combination of dynamics
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and data. Tziperman et al. [6] found evidence for such local minima and MW93 [8] also
found that when starting their optimization directly from the data it seemed to converge
to a different solution than the one they felt reflects the optimal state.

It is clearly important, therefore, to initialize the optimization with a good initial
guess for the optimization solution. This can reduce the possibility of falling into a local
minimum, as well as save much of the effort of minimizing the cost function through the
expensive conjugate gradient iterations.

The initial guess for the optimization solution can be obtained by using simpler as-
similation methods that are not optimal in the least square sense, yet have been shown
to produce a very good approximation for the optimal solution. Let us briefly consider
two such methods and demonstrate them using the present global model.

Suppose that our cost function consists of steady and data penalties for the tempera-
ture,

HT) = 3 [Wi (aVT - KT - K T2a) 4 W (1~ 7)), (9)
ik

(the steady penalty here is simply the square of the steady state model equations). Be-

cause each term in the cost function is weighted by its expected error, we expect that at

the optimal solution the total contribution of the steady penalties over the entire model

domain should be roughly of the same order as that of the data penalties [6]. Assuming

(with no rigorous justification) that this global condition may be applied locally, we have

(WVT ~ KaV2T - K, Tr) ' » [;ﬁk] (7-1)°, (10)
ijk

which is exactly the robust diagnostic equation [27] for the temperature

ar
ot

at a steady state, with the restoring coefficient set to [6]

W.-ﬁr
T= |57 : 12)
|:Wijk

+ (uVT - KaG2T - K,T..) = (T - T), (11)

In order to demonstrate the efficiency of the robust diagnostics approach, when used
in the above fashion, to produce a good guess of the optimal solution, we show in Table 3
the cost parts obtained from the points in parameter space representing the Levitus data
[entry (a)}, the steady state model solution [entry (b)], and the robust diagnostic solution
[entry (c)). As may be expected, the point representing the Levitus data is characterized
by large steady penalties and zero value for the data penalties; the steady state has
vanishingly small values for the steady penalties but relatively large values for the data
penalties, indicating that the steady state is not consistent with the data. Finally, the
robust diagnostic solution has a well balanced distribution of steady and data penalties
such that they are all small, and has therefore produced a near-optimal solution of our
inverse problem, as anticipated in the above discussion.
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Table 3
Summary of model runs and assimilations used in this study.

Run Cost Parts Comments

data T/S steady T/S steady u,v/y data H/[E—P]
(a) 0.00/0.00 9.18/898 12.00/3221. 0.15/ 1.87 data -
(b) 19.41/61.3 0.01/002 0.00/ 0.00 0.25/ 1.92 steady state
(c) 0.31/032 0.51/0.49 0.06 / 1.47 0.15/ 1.81 robust (rest. b.c)
(d) 062/074 1.11/1.24 0.08/ 1.67 0.00 / 0.00 robust (flux b.c)
(e) 0.31/0.34 051/050 0.06/ 148 0.10 / 0.66 extended robust
(f) 0.31/0.32 0.32/042 *0.03/*2.17  *0.15 /*1.81 optimization

Terms marked by “*” were not part of the cost function used in the optimization and are
only given for comparison with the other runs.

A second example of using a simple assimilation technique to obtain a good approxi-
mation of a complex optimization problem involves the optimal combination of heat-flux
data and SST data [18]. Given the SST data, an estimated implied heat-flux field H55T
may be obtained using the restoring conditions formulation (1). Given also a climatolog-
ical flux estimate, H¢, we can formulate an optimization problem in order to calculate an
optimal heat flux H which is based on both estimates H% and HSST. The appropriate
cost function is of the form:

2
J(SST,H) = Z [WSST (HgsT ~ H;,j) +WH(HE, - Hyj)?. (13)
ij
To obtain an approximate solution to the optimization problem posed by the above
cost function, we simply write the model heat flux at every time step as a weighted
average of the implied fluxes obtained from the restoring boundary conditions, and the
climatological flux data

H" = aTHd + (1 _ aT)HSST,n, (14)

Integrating the model to a steady state using this heat flux, we obtain a solution for H
which serves as the approximated solution to the above optimization problem. To derive
an expression for af, we again use the expectation that at the minimum of the cost

K

function, the different cost terms have roughly the same magnitude,

2
) [WSST (HSST - Hij) ] ~3 [W” (HE, - H,-,j)ZJ. (15)
13 t
assuming this holds locally and taking the square root, we have
WSsT1/?
[—WH ] (HST - Hi;) ~ (Hij — HY;). (16)

A final manipulation of (16) brings us to the form postulated before in (14) and the
relation between the weights in the cost function (13) and the coefficient a7 is found to
be [18]
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ol = [1 + \/WSST/WH]—l . (17)

The runs in Table 3 demonstrate how the above scheme, which we term “extended
robust” serves to minimize the heat-flux penalties in the cost function. The heat flux
and fresh water flux penalties in entries (a-c) in Table 3, reflecting the data, steady state
and robust diagnostics, are relatively large. Entry (e) represents the solution obtained
using the robust diagnostics scheme (11) in the ocean interior plus the extended robust
diagnostics scheme (14) at the surface. The extended robust scheme can be seen to be
very efficient in reducing the value of the flux terms in the cost function, demonstrating
again that simpler assimilation methods, when used wisely, can most efficiently calculate
a near-optimal solution of most complex nonlinear optimization problems.

Both of the simple assimilation schemes used above can be shown to be equivalent to
a corresponding optimization problem and give the same results under certain simplifying
assumptions such as linearity, a single time step in evaluating the steady penalties etc.
Thus the success of the simpler methods is not surprising. It is important to note however,
that these simpler methods cannot replace the optimization approach for its ultimate
objectives of parameter estimation and 4D data assimilation, both of which are still not
tackled here.

3.3 Control Variables for a PE optimization

A primitive equation ocean model such as we use here requires the specification of tem-
perature, salinity, horizontal baroclinic velocity field and the barotropic stream function
as initial conditions. This multiplicity of initial conditions that must be calculated by
the optimization algorithm poses two potential difficulties. First, the parameter space
is significantly larger due to the addition of the baroclinic velocities and stream func-
tion as control variables. In general, the larger the parameter space, the more iterations
are required to locate the cost minimum. Second, the additional control variables are
very different from the temperature and salinity initial conditions, and thus pose new
conditioning problems. Some of the complexities of using the baroclinic velocities and
barotropic stream function as control variables, and the resulting ill conditioning were
carefully examined by Thacker and Raghunath [10]. These potential difficulties with the
velocity initial conditions lead Tziperman et al. [5, 6] to develop and use a model with
diagnostic momentum equations for which only temperature and salinity initial conditions
needed to be specified. However, in the present work we are faced with an optimization
based on a full PE model, with more than double the number of initial conditions (per a
given model resolution) than in Tziperman et al. [5, 6].

As before, we can use our knowledge of the physics to formulate the optimization
problem in a way that is more likely to result in an efficient solution. It is known, and
this fact has been used above to formulate the steady cost penalties, that given the density
stratification, the velocity field in a rotating fluid must adjust to the density stratification
within a few pendulum days. It seems most reasonable, therefore, that one would not
need to calculate initial conditions for the velocities, and restrict the optimization problem
to finding only the optimal temperature and salinity. The optimal velocity field will be
found by the model after a very short initial adjustment period that should not have a
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significant effect on the cost function that is based on the difference in temperature and
salinity over an integration period of years. Every several iterations, the initial conditions
for u,v,% may be updated by integrating the model for a few days starting from the
last initial conditions for the temperature and salinity calculated by the c-g optimization
and saving the results for the adjusted velocities and stream function and other models
variables to be used as the new starting point for the optimization. Because of the short
integration period, the temperature and salinity hardly change from their value calculated
by the optimization.

This procedure should result in a better conditioning of the optimization problem due
to the significantly reduced number of control variables. In Fig. 3 we show the reduction of
the cost function for the optimization (run (f) in Table 3) that was started from a robust
diagnostic solution. The optimization procedure was able to reduce the value of the
cost, but eventually stalled after about 17 iterations. It seems that the optimization has
converged to a local or global minimum solution; however after restarting the optimization
with only T,S as control variables, additional progress was obtained, indicating that
the stalling was more likely due to ill conditioning. Note that if the solution found at
iteration 17 (Fig. 3) was indeed a minimum solution in the full parameter space spanned
by T, S, u,v,, then it is also a minimum in the subspace of T, S, and no further progress
should have been obtained.

0 5 10 15 20 26 30
Iteration

Figure 3: Cost value as function of iteration number for the optimization (run (f) in
Table 3) beginning from the extended robust diagnostic solution (run (e) in Table 3).

Another issue related to the choice of control variables for the optimization is that
of preconditioning. Preconditioning refers to a transformation of the control variables
in order to improve the conditioning of the optimization. The control variables may be
measured in various units and have very different typical numerical magnitudes. This
may result in a badly conditioned optimization and therefore in the optimization stalling
and not progressing towards the minimum of the cost function. The simplest remedy is
to scale the control variables so that they all have similar numerical ranges. This may be
improved upon by scaling the variables by the diagonal of the Hessian matrix'if it can be
estimated. The control variables may also be scaled by a non-diagonal transformation if a
reasonably efficient transformation is available (see, e.g., {25, 26, 10]). Although somewhat
neglected in the discussion here, the issue of preconditioning is a most important one.
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4 Results

So far we have discussed in detail the issues of correctly formulating the optimization
problem, and trying to guarantee its successful solution by starting from a good initial
approximation of the optimization solution. We now wish to describe the results of a few
model runs in some more details. We begin in section 4.1 by describing and analyzing the
solution of optimization (f) in Table 3. We then analyze model solutions obtained under
restoring conditions and under flux conditions in section 4.2.

4.1 The optimization solution

One of the advantages of nonlinear optimization is that it can be used to re-map the
data in a way that is consistent with the model equations. Fig. 4 shows the horizontal
temperature and salinity fields at model levels 2 and 7, as obtained from the optimization
(run (f) in Table 3), as well as the Levitus data at the same levels.

The data residuals at levels 2 and 7 for the temperature and salinity (Fig. 5a) are quite
small over most of the ocean volume, as indicated by the fact that the global measure of the
data penalties (see Table 3) is less than one for both the temperature and the salinity. But
there are some regions, most notably the western boundary regions in the North Atlantic
and North Pacific, as well as the equatorial Pacific region, in which the deviations from
the data are systematic and larger than the errors specified by the cost function weights
(Table 2). In these regions, the optimization has clearly modified some features of the
Levitus analysis quite substantially [See for example (Fig. 4) the temperature field in the
tropical Pacific at level 2, or the smoother salinity contours created by the optimization
at level 7]. In some cases the changes made by the optimization could be considered
improvements, in others they are certainly a reflection of model deficiencies. Considering
the coarse model we use here, we do not wish to claim to have improved on the Levitus
analysis. But the temperature and salinity distributions we find are clearly more consistent
with the model dynamics and therefore more appropriate for starting a coupled model
integration using an ocean model similar to ours than is the original Levitus analysis.

The steady residuals at levels 2 and 7 for the temperature and salinity are shown in
Fig. 5b. The quantity plotted is the temperature after two year integration from the
optimal state, minus the optimal state, multiplied by 7.5, to get the extrapolated drift
expected in a 15 year period, as it appears in the cost function. The projected temperature
drift is quite small at level 2, except in the Pacific sector of the southern ocean, where a
strong convection creates some numerical noise of no physical significance. At level 7 one
notices systematic warming in the north west Atlantic, probably due to the inability of the
model to create the NADW at the right level and to have it spread southward correctly. In
the north east Atlantic, the cooling trend is related to the Mediterranean tongue outflow
that while simulated fairly reasonably thanks to the Mediterranean sponge layer, is still
not sufficiently consistent with the data in that region. The steady salinity residuals
reflect basically the same model problems indicated by their temperature counterparts.

It is important to understand that while the optimization results suffer some obvious
deficiencies as indicated above, they still provide a significant improvement over both the
steady state model solution obtained without data assimilation and the Levitus analysis.
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Figure 4: (a) Optimization solution. Uppermost two panels: solution for the temperature
at levels 2 and 7 (depths of 85m and 1130m). Second row of panels: salinity solution at
the same levels. (b) Levitus analysis. Third row of panels: Levitus temperature at model
levels 2 and 7. Bottom two panels: Levitus salinity at model levels 2 and 7. Contour
intervals for a.1-a.4 (and for b.1-b.4) are 2.0°C, 0.5°C, 0.25°/,0and 0.1°/,,, respectively.

Negative areas are dotted.
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Figure 5: (a) Data residuals for the optimization solution (run (f) in Table 3). Uppermost
two panels: data temperature-residuals at levels 2 and 7; second raw of panels: same, for
salinity. (b) Steady residuals for the optimization (run (f) in Table 3). Third raw of
panels: steady temperature-residuals at levels 2 and 7 ; bottom raw of panels: same, for
salinity. Here and elsewhere in the manuscript, plots of data residuals are of optimization
solution minus the corresponding data. Similarly, plots of steady residuals are of the
model solution after a two-year integration time minus the initial state, extrapolated to
15 years by multiplying the difference by 7.5. Contour intervals for panels a.l1-a.4 (as
well as for b.1-b.4) are 1.0°C, 0.25°C, 0.2°/,0and 0.05°/,,, respectively. Negative areas
are dotted.
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Figure 5: (c) Left panel: Steady temperature-residuals at level 7 estimated for the Levitus

analysis; right panel: data temperature-residuals at level 7 estimated for the steady state
model solution of Fig. 1. Contour intervals are 1.0°C. Negative areas are dotted.
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Figure 6: (a) North Atlantic meridional stream function for optimization solution (run
(f) in Table 3). (b) Meridional heat flux for optimization solution; see caption of Fig. 1b.

This is seen from Table 3 which shows that the cost values for the Levitus data and the
steady state solution are significantly larger than for the optimal solution. Fig. 5¢c shows
the steady temperature residuals at level 7 estimated for the Levitus analysis as well as
the temperature data residuals at level 7 estimated at the steady state model solution.
Clearly both the data and the steady state are not optimal in the sense that they minimize
one type of cost terms (data or steady penalties), but on the expense of a large increase
in the other cost terms.

The North Atlantic overturning circulation for the optimal solution is shown in Fig. 6a.
The overturning circulation at 30N is only 10Sv instead of the expected 16-20Sv. This
feature of the solution cannot be considered an improvement over the prognostic run
of Fig. 1. Fig. 6b shows the meridional heat flux for the optimal solution. Again, no
significant improvement is obtained over the prognostic model solution of Fig. 1, and
the northward heat flux carried by the North Atlantic ocean at 25N is still significantly
less than the expected 1PW (10'® watts). These limitations of the meridional circulation
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and meridional heat flux for the optimal solution are not surprising, considering the
model performance in these areas. It seems that the only appropriate solution is to
improve the prognostic model, perhaps by using isopycnal mixing or another eddy mixing
parameterization [19)].

As is quite clear from Table 3, most of the cost reduction as compared to the Levitus
analysis or steady state solution has been obtained during the robust diagnostics initial-
ization run [entry (c) in Table 3. Still, the cost reduction during the optimization itself
is not negligible (Fig. 3), in particular for the steady penalties. Fig. 7 shows the steady
residuals at the end of the robust diagnostic solution. The general picture is of fairly
significantly reduced steady residuals in the optimization as compared to the robust diag-
nostics (compare Fig. 5b.1 and Fig. 7a). The reduction is spread over the entire domain,
showing again the effectiveness of the optimization. A similar comparison of the salinity
steady residuals (not shown) shows a similar reduction. A comparison of the distribution
of the data residuals does not show a significant difference between the robust diagnostics
solution and the optimization, as may be expected from the results in Table 3.

3 It i 3 I 4 .l Kl 4 4 1 1 i 4 1
t t + + t 1 + t + + + + + t + t t t 1 + t + +
0 30 60 90 120 150 180-150-120 —80 —60 —-30 0 30 680 90 120 150 180—-150-120 —90 —-60 —30

Figure 7: (a) Steady temperature residuals for robust diagnostic solution (run (c) in Ta-
ble 3) at level 2; (b) same, at level 7. Contour intervals are 1.0°C and 0.25°C, respectively.
Negative areas are dotted.

Note that during the optimization, the steady residuals were reduced significantly
more than the data residuals [compare entries (c) and (f) in Table 3]. This indicates
that a relatively small change in the temperature and salinity fields can induce a larger
change in the steady penalties. This asymmetry between the steady and data penalties
is again a possible indication that the cost function is not sufficiently well conditioned.
Perhaps a better cost formulation may be able to better balance steady and data penalties.
Interestingly, the asymmetry observed here between the data and steady penalties is of
an opposite nature to that seen in the cost section of Fig. 2, where a small change to the
steady penalties (between r = 0 and r = 1) involved a large change in the data penalties.
Clearly the highly nonlinear structure of the steady penalties, reflecting the nonlinear
model equations, accounts for these complex behaviors of the steady penalties.

4.2 Restoring vs fixed-flux surface boundary conditions

Let us now consider the issue of fixed-flux vs restoring surface boundary conditions in
inverse problems based on an ocean GCM. Tziperman et al. [5] have shown that when
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using fixed flux boundary conditions with the flux as a control variable, small errors may
be amplified by the optimization in areas of deep convection resulting in huge errors in the
calculated heat flux. Furthermore, Tziperman et al. [6] found a very large discrepancy
between their optimization solution for the SST and the data, and suggested that this
is due to the use of flux rather than restoring conditions. Marotzke and Wunsch (8]
encountered a similar large discrepancy in SST which they interpreted as a drift towards
winter conditions and felt that this is the result of the absence of seasonal cycle in their
model.

We would like to suggest here that these large SST discrepancies may be. eliminated
by the use of restoring boundary conditions. We further argue that such a boundary
condition formulation is more physically motivated as well as more successful from a
practical point of view.

Based on the success of the robust diagnostic approach in obtaining a near-optimal
solution to the least square optimization problems, we shall base our discussion on the
two robust diagnostic solutions represented by entries (d) and (e) in Table 3. Run (d) uses
flux boundary conditions with the surface fluxes of heat and fresh water specified to be
the climatological data sets described in section 2, while run (e) uses restoring boundary
conditions and combines the climatological flux data and the restoring to the observed
SST using the extended robust diagnostics approach [18] described in section 3.2.

o 30 60 90 150 150 180-150-1%0 —50 60 50 s 30 60 %0 130 19 160-150-120 60 80 30
Figure 8: SST for (a) robust diagnostics run using flux conditions with the climatological
heat and fresh water flux data [entry (d) in Table 3), (b) an extended robust run using
restoring surface boundary conditions [entry (e) in the Table 3]. Contour intervals are
2.5°C. Negative areas are dotted.

Fig. 8 shows the SST for both runs. The surface temperature field for run (d), using
flux boundary conditions with climatological flux data, is very far from the observed field.
Note that the temperature and salinity at all levels are still restored in this run to the
Levitus data by the robust diagnostic term in the model equations. The restoring time,
however, is 15 years, rather than 30 to 120 days normally used for the surface fields
under restoring conditions. The structure of the temperature field is consistent with a
contraction of the large scale shape of the thermocline in the north-south direction, as
seen in a much more pronounced form in ocean model runs under flux conditions without
restoring at the interior. The mid-latitude regions and poleward are colder than the
Levitus data, while the tropical regions are warmer. The large discrepancy in SST is
reminiscent of the results of Tziperman et al. [6] and MW93 [8]. In our run (d), the
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entire North Pacific ocean north of about 20N is significantly colder than the data, giving
an impression that it tends towards a winter temperature distribution.

We note, however, that the restoring conditions run of entry (e) produces a very rea-
sonable fit to the Levitus SST, while also being able to reduce the distance to the observed
climatological fluxes (see heat-flux penalty terms for this run in Table 3). Moreover, both
the data and steady penalties for the temperature and salinity under the flux conditions
are significantly larger. It seems, therefore, that inverse models should use restoring con-
ditions even when trying to estimate the optimal air-sea flux. The enforcement of the
flux data can be done by including it in the cost function as in (6). Such a formulation
seems capable of producing a reasonable compromise of heat-flux data, SST and interior
temperature.

o 30 80 50 150 150 160-150-120 —50 60 30
Figure 9: Heat-flux residuals for the extended robust diagnostics run of Fig. 8b. Contour
intervals are 50Watts/m?. Negative areas are dotted.

Fig. 9 shows the heat-flux data residuals for run (e), that is, the optimal heat flux of
run (e) minus the climatological data of Esbensen and Kushnir [20]. There are clearly
large systematic deviations from the heat-flux data in many areas such as the North
Atlantic, equatorial Pacific and Indian Ocean. Large systematic heat-flux residuals in
MW093 have lead the authors to suggest that the optimization’s solution tends towards
winter conditions with strong cooling over their entire basin. It seems to us that such
large heat-flux residuals may, in fact, be related to the inability of the model to correctly
simulate the North Atlantic meridional circulation [19], and therefore the meridional heat
flux. Such a poor simulation of the meridional heat flux is directly linked to poor sim-
ulation of the air-sea fluxes [18], and hence the large heat-flux residuals seen in Fig. 9,
and possibly also in MW93. The meridional heat flux for runs (d) and (e) is shown in
Fig. 10. The run under flux conditions has a somewhat enhanced northward flux both
in the northern hemisphere of the global ocean and in the North Atlantic ocean. But
the price paid for this enhancement in terms of deviation from the temperature data is
clearly too large. The large SST discrepancy indicate that the model cannot be forced to
simulate the correct air-sea fluxes, possibly because of its inability to produce.the correct
overturning circulation.

Runs (d) and (e) are, of course, not optimizations but solutions of a robust diag-
nostic model which was previously shown to closely simulate the optimal solution of a
corresponding optimization. We have recently repeated the above analysis for two op-
timizations using restoring and flux boundary conditions correspondingly. The results
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Figure 10: Meridional heat flux for both runs of Fig. 8: (a) run using fixed surface-flux
boundary conditions (run (d) in Table 3); (b) run using restoring boundary conditions
(run (e) in Table 3). See caption of Fig. 1b.

fully support the above conclusions reached for runs (d) and (e) and will be published
elsewhere with a fuller analysis of the boundary condition formulation problem for inverse
studies.

To estimate the effect of the missing seasonal cycle in our model, a comparison can
be made between our results and those of Bryan and Lewis [17] who have used a very
similar model, under seasonal forcing. Comparing, for example, the annually averaged
meridional heat flux in their model, the to the steady state meridional heat flux in ours
(Fig. 1), we see that there is not much of a difference. The addition of seasonality does
not necessarily improve the simulation of the meridional heat flux (and therefore of the
implied surface flux).

Let us summarize the issue of boundary condition formulation, both from the point
of view of the physics, and from a practical point of view. First, from the point of
view of the physics of air-sea interaction, we note that flux boundary conditions imply
modeling the atmosphere by assuming that the air-sea heat flux does not depend on the
SST, and ignoring the obviously important feedback between SST and air-sea heat flux.
In restoring conditions, this feedback is crudely included, as the restoring to the SST
observations is somewhat reminiscent of the restoring of SST to the lower atmospheric
temperature which occurs in the actual coupled system. Ultimately, one may want to
use more elaborate parameterizations of the air-sea heat flux as function of the SST, and
perhaps use as control variables the restoring times, or the atmospheric temperature which
may appear in these parameterizations. This seems to make much more physical sense
than formulations in which the flux is ca.lcula.ted directly, ignoring the SST-flux feedback.

Second, from a more practical point of view; we note that ocean GCMs poorly simulate
the observed ocean temperature when driven by specified surface heat fluxes. Similarly,
when run under restoring conditions to observed SST and surface salinity, ocean models
produce very poor estimate of the surface fluxes of heat and fresh water, and therefore of
the meridional fluxes of heat and fresh water [18]. It seems, therefore, that ocean models
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can presently produce either surface heat fluxes that are consistent with observations, or
an interior solution that is consistent with observations, but not both. Now, in coupled
model studies, it is presently more crucial for the ocean model to get the SST right than
the heat flux, as the latter is corrected for using the artificially added flux correction.
This dictates a choice of surface boundary condition formulation that is different from
what was used in previous applications of the adjoint method to similar models, namely
a restoring boundary condition rather than flux boundary condition. Restoring boundary
conditions formulation is also consistent with our wish to use a model that can be run in
a simulation mode, as this requirement cannot be met using fixed-flux surface boundary
conditions.

5 Conclusions

This study attempted to combine a global primitive equation ocean model with climato-
logical data for temperature, salinity and surface fluxes, using the adjoint method of data
assimilation. This is a step towards using the adjoint method with the ocean component
of coupled ocean-atmosphere models in the hope of achieving two ultimate goals. The
first goal is the improvement of ocean climate models by estimating, for example, internal
model eddy parameters and parameterizations so that the model simulations are closer
to the observed ocean even when they are run without data assimilation. The second
ultimate goal is the calculation of an ocean state based on the available data and the
model equations to be used as initial conditions for coupled ocean-atmosphere climate
simulations. While we have not achieved these goals as yet, we believe an important
progress was made. Let us briefly summarize the main lessons we have learned here.

Because our goal is to work with ocean models that can also be run without data
assimilation, we have taken the approach that the model used for the inverse calculation
must be formulated such that it can run independently in a simulation mode. A particular
consequence of this approach has been the use of restoring rather than fixed-flux surface
boundary conditions. We argued that the restoring boundary conditions are both better
physically motivated and more successful from a practical point of view in producing a
good inverse solution.

Large discrepancies between the optimization solution for the SST and the data have
been encountered in previous inversions using the adjoint method [6, 8]. These inversions
used a fixed-flux surface boundary condition formulation. Marotzke and Wunsch have
suggested that the SST discrepancy in their model was due to a drift towards colder
surface temperatures (“winter conditions”) which results from the lack of a seasonal cycle
in their steady model. We have shown that the SST discrepancy can be eliminated in
our model by using restoring surface boundary conditions, while still incorporating the
available climatological flux data into the optimization. A comparison of our model results
with a seasonal version of the present model run by Bryan and Lewis [17] seems to indicate
that the annually averaged results of the seasonal model are quite close to the results of
the model when driven with annually averaged steady forcing. We suspect, therefore,
that at least for the present model, the use of flux conditions, rather than the lack of a
seasonal cycle may be the cause of the SST discrepancies.
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We have run our model in a simulation mode and have tuned the model as well as we
can to produce the best possible results. Still, it is evident that according to our measure
of success (the value of the cost function), the steady results with no data assimilation were
grossly inconsistent with the Levitus data. Similarly, the Levitus analysis was found to be
just as inconsistent with the requirement that it satisfies the steady state model equations.
However, our optimization approach provided a better solution than both the steady state
model solution obtained with no data assimilation and the original climatological data
sets. This solution was much more consistent with both the data and steady constraints,
and therefore significantly more optimal in the least square sense. The ultimate test of
this optimality would be, of course, to use such a state as initial conditions for a climate
simulation.

Several important lessons have been learned here concerning the cost function formu-
lation for PE models. We have demonstrated that there are still conditioning difficulties
for the dynamical constraints with the presently used cost formulations, and that there
seems to be room for improvement in this area. This issue requires much further research.
A second conclusion we have come to concerning the cost formulation for PE models is
that it does not seem necessary to include explicit steady penalties for the baroclinic
velocities and barotropic stream function. Because the velocity field very rapidly adjusts
to the stratification in rotating fluids, it seems sufficient to penalize the deviations of the
temperature and salinity from a steady state. Similarly, we expect that future studies
using seasonal models with an optimization approach, should enforce the dynamical con-
straints requiring the model solution to be seasonal on the temperature and salinity fields
and not on the velocity field. The fast adjustment of the velocity field to the stratification
has also led us to suggest that one can do well by using only the temperature and salinity
as control variables to be calculated by the optimization, allowing the model to adjust
the velocity field. Such a procedure, outlined in more detailed in the previous sections,
may improve the conditioning of optimization problems based on PE ocean models.

A most successful part of this study has been the use of simple assimilation method to
obtain good approximations to the optimization problem. These approximations are then
used to initialize the optimization, significantly reducing the minimization effort in the
optimization itself. More importantly, they reduce the possibility of encountering local
minima that will prevent the c-g optimization from finding the global minimum repre-
senting the desired optimal solution. We have demonstrated how dynamical constraints
can be combined with data constraints using the simple robust diagnostic approach [27}
to obtain a near-optimal solution. We have also shown how surface flux data may be
combined with the dynamical constraints and the surface temperature and salinity data
using the extended robust diagnostic approach of Tziperman and Bryan [18], again re-
sulting in a near-optimal solution. Such simple assimilation approaches can help but not
replace the optimization approach of the adjoint method, because they cannot be used
to estimate parameters such as eddy coefficients etc, a goal for which the adjoint method
itself is well suited.

We feel that the technical aspects of inverting complex PE ocean models treated here,
as well as the more general issues we dealt with, should be useful to future studies directed
at using data assimilation with ocean climate models. There is a clear and urgent necessity
of improving ocean models used for climate studies, and of using these models to estimate
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the ocean state as well as is allowed by the available data. We have argued here that the
adjoint method is a most appropriate tool for obtaining these goals, and we feel that they
should and can be achieved in the near future.
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