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Abstract The European climate is changing under global warming, and especially the Mediterranean
region has been identified as a hot spot for climate change with climate models projecting a reduction
in winter rainfall and a very pronounced increase in summertime heat waves. These trends are already
detectable over the historic period. Hence, it is beneficial to forecast seasonal droughts well in advance
so that water managers and stakeholders can prepare to mitigate deleterious impacts. We developed a
new cluster-based empirical forecast method to predict precipitation anomalies in winter. This algorithm
considers not only the strength but also the pattern of the precursors. We compare our algorithm with
dynamic forecast models and a canonical correlation analysis-based prediction method demonstrating that
our prediction method performs better in terms of time and pattern correlation in the Mediterranean and
European regions.

Plain Language Summary We have applied a new forecasting technique to the problem of
seasonal prediction that involves machine learning. By recognizing related and reoccurring patterns in
both the predictors and the predictands our new technique shows improved accuracy in predicting winter
precipitation in the European and Mediterranean regions. Our demonstrated technique outperforms both
statistical and dynamical models over comparable historical periods.

1. Introduction

European climate is characterized by four distinct climate zones: Mediterranean climate in southern Europe,
continental climate in eastern Europe, maritime climate in western Europe, and a hybrid maritime/continental
climate in central Europe (Hess & Tasa, 2011). Those climate regions are sensitive to large-scale circulations of
the atmosphere. Even relatively minor modifications of the general circulation results in shifts of the midlati-
tude storm tracks and substantial changes in the climate (Giorgi, 2006; Kröner et al., 2017; Lionello et al., 2006;
Mbengue & Schneider, 2013). The Mediterranean climate is especially vulnerable to climate change due to
its unique topography and geographical location and is therefore considered as one of the primary climate
change hot spots since strong climate changes are projected in this region (Diffenbaugh & Giorgi, 2012;
Dubrovsky et al., 2014; Giorgi, 2006; Intergovernmental Panel on Climate Change (IPCC), 2013). The Mediter-
ranean climate is generally characterized by hot and dry summers as well as by mild winters, with winter
rainfall more than 3 times larger than summer rainfall (Ducrocq et al., 2014; Flaounas et al., 2013). Winter
rainfall is mostly determined by synoptic storms coming from the North Atlantic (Giorgi & Lionello, 2008). In
general, the winter Mediterranean precipitation is related to the North Atlantic Oscillation (NAO) over its west-
ern areas, the East Atlantic (EA), and other patterns over its northern and eastern areas (Giorgi & Lionello, 2008;
Kröner et al., 2017; Lionello et al., 2006; Mbengue & Schneider, 2013; Ullbrich et al., 2006). Other studies argue
that also the El Niño Southern Oscillation (ENSO) affects precipitation in the Mediterranean region (Park &
Leovy, 2004; Shaman & Tziperman, 2011). Both Park and Leovy (2004) as well as Shaman and Tziperman (2011)
suggest that a Rossby wave train originating from the Pacific in autumn might affect the Mediterranean win-
ter climate (Gurmy et al., 2012). Other potentially important factors are sea ice concentration and snow cover
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extent with Eurasian snow cover in autumn significantly correlating with the wintertime Arctic Oscillation and
mean sea level pressure (Cohen & Jones, 2011; Furtado et al., 2016).

Hoerling et al. (2012) show that the Mediterranean region is already drying. In a time period between 1988
and 2008 the region had 10 of the 12 driest winter seasons (Hoerling et al., 2012). Anomalously high seasonal
temperatures or low precipitation in the Mediterranean region have been recently observed decimating agri-
cultural yields and causing damages up to hundreds of millions of dollars each year (Ducrocq et al., 2014).
Future climate simulations project an even stronger trend toward drying (Giorgi, 2006; IPCC, 2013; Paeth et al.,
2017; Xoplaki et al., 2004). Although it is well known that anthropogenic greenhouse gas forcing leads to
enhanced warming in the Mediterranean region, there is uncertainty in projected changes in precipitation
due to large internal variability and a relatively small forced signal (Hoerling et al., 2012; Mariotti et al., 2015).
However, both Hoerling et al. (2012) and Mariotti et al. (2015) show that the probability distribution of future
precipitation anomalies is shifted toward dryer conditions.

Early forecast techniques of seasonal drought like multimodel ensemble predictions, dynamical or statistical
downscaling, and empirical forecast approaches could play an important role in mitigating possible future
impacts. Examples for empirical forecast approaches are multiple linear regressions or canonical correla-
tion analysis (CCA), which is a form of linear multiple regression applied to multivariate pattern predictands
(Barnett & Preisenberger, 1987; Barnston et al., 1996; Chu et al., 2008; Doblas-Reyes et al., 2000; Eden et al.,
2015; Hwang et al., 2001; Yatagai et al., 2014). However, global circulation models have little or no skill
in predicting European precipitation during December-January-February (DJF) (Doblas-Reyes et al., 2009;
Weisheimer & Palmer, 2014). Weisheimer and Palmer classify seasonal forecasts of wintertime rainfall over
the Mediterranean region as only marginally useful for decision makers and policymakers (Weisheimer &
Palmer, 2014). Likewise, previous empirical forecast approaches such as multiple linear regressions or CCA
have essentially no skill over this region for predicting rainfall (Barnston & Smith, 1996; Eden et al., 2015).
For example, Eden et al. developed a simple empirical system for predicting seasonal surface air tempera-
ture and precipitation across the globe using global and local atmospheric and oceanic fields (Eden et al.,
2015). In particular, they used CO2 concentration to predict the climate change signal and additional predic-
tors describing large-scale modes of variability in the climate system (e.g., ENSO) to forecast the variability in
the climate system. The hindcast-observation correlation for the time range 1961–2013 is generally low over
the globe with some parts of northern Eurasia with positive skill. The mean correlation over Europe and the
Mediterranean region is almost zero. Also Barnston et al. (1996) algorithm using CCA to forecast the global
Northern Hemisphere has only weak skill over Europe and the Mediterranean region. Barnston et al. (1996)
used reconstructed sea surface temperature (SST) data set as the only predictor to hindcast near-global SST
and seasonal mean surface temperature and precipitation based on the 1950–1992 period. The hindcast skills
for Europe are generally poor, and the average skill for DJF is roughly 0.1 for zero season lead time. The weak
skills for Europe do not imply that the statistical methods are not suitable for seasonal forecasts. Possible
reasons include also chosen predictors, the chosen predictor regions, or the chosen time lags.

Here we propose a novel empirical prediction system that is more skillful and hence could possibly ease the
decision-making process of stakeholders interested in seasonal prediction (Barriopedro et al., 2011). The nov-
elty of our method to forecast winter European and Mediterranean precipitation is that it accounts not only for
the amplitude of predictors but also for the geographical patterns using clustering techniques. Similar to CCA,
clusters in our algorithm were used to describe the dominant patterns of the precipitation anomalies over
Europe and the Mediterranean region with the advantage that those states do not have to be orthogonal to
each other. The forecast algorithm calculates precipitation anomalies in winter with the analyzed precursors
in autumn.

2. Data and Methods
2.1. Data
In this study, we calculated detrended precipitation anomalies from a gridded data set of precipitation pro-
vided by the “European Climate Assessment and Data Set Project” (Haylock et al., 2008). This data set is
on a 0.5∘ × 0.5∘ grid over the area between 25∘ to 75∘ latitude and −20∘ to 45∘ longitude for the win-
ter time period (December-January-February, DJF) 1967 to 2016. The anomaly fields are smoothed using
a Gaussian filter (!x = 2.7, !y = 2.7). In addition, we used several detrended precursor fields in autumn
(September-October-November, SON) for the overlapping period 1996 to 2015, including sea ice concentra-
tion (sic) from the Met Office Hadley Centre (at 2.5∘ × 2.5∘) for the area between 60∘ to 90∘ latitude and 0∘
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to 180∘ longitude. We further include snow cover extent (sce) provided by NOAA (Robinson et al., 2012) using
the area between 30∘ to 60∘ latitude and 0∘ to 180∘ longitude. The choice of this area is motivated by the
snow advance index, which computes the snow cover extent over the same area (Cohen & Jones, 2011). Fur-
thermore, we include sea surface temperatures (sst) from the Met Office Hadley Centre (at 1∘ × 1∘) using three
different regions: the tropical Pacific (−40∘ to 20∘ latitude and 130∘ to 290∘ longitude), the North Atlantic (0∘ to
65∘ latitude and−35∘ to 6∘ longitude), and the Mediterranean region (30∘ to 50∘ latitude and−6∘ to 45∘ longi-
tude) (Rayner et al., 2013). In addition, we include geopotential height (gph) at 500 mb using the area between
−20∘ to 90∘ latitude and 0∘ to 360∘ longitude (Kalnay et al., 1996). The same area is used for sea level pres-
sure (slp). Atmospheric data are from National Centers for Environmental Prediction (NCEP)/National Center
for Atmospheric Research (NCAR; at 2.5∘ × 2.5∘) (Kalnay et al., 1996). In addition, we calculated the ensemble
model mean for nine models of hindcast experiments provided by the North American Multimodel Ensemble
(NMME: CMC1-CanCM3, CMC2-CanCM4, NCAR-CESM1, NCEP-CFSv2, COLA-RSMAS-CCSM3, COLA-RSMAS-
CCSM4, NASA-GMAO, IRI- ECHAMP4p5-DirectCoupled, and IRI-ECHAMP4p5-AnomalyCoupled) (Kirtman et al.,
2014). NMME System Phase II data (https://www.earthsystemgrid.org/search.html?Project=NMME) were used
in these analyses. The NMME is a multiagency project under the guidance of the United States National
Oceanic and Atmospheric Administration (NOAA). The NMME System is designed to leverage coupled models
from a number of United States and Canadian modeling centers in an ensemble of opportunity supporting
seasonal forecasting experiments (Kirtman et al., 2014). NMME models are coupled to ocean models, and
most of the NMME models have an ice component model. Some models use also a land component model
including soil moisture and snow cover (Collins et al., 2005; De Witt, 2005; Gent et al., 2011; Merryfield et al.,
2013; Saha et al., 2014). The real-time and retrospective forecasts are issued on the fifteenth of each month,
for example, a November 2010 monthly mean forecast is the 0.5 month lead issued on 15 November 2010,
and the December 2010 monthly mean forecast issued on 15 November is the 1.5 month lead and so on. The
hindcast start times should include all 12 calendar months. However, the specific day of the month or the
ensemble generation strategy is dedicated to the forecast provider. Hence, different models are initialized at
a different start day, for example, the model CMC2-CanCAM5 initializes all ensemble models at the first of a
month, whereas CFSv2 initializes all four members (0000, 0600, 1200, and 1800 UTC) every fifth day. In the
present work we evaluated NMME forecasts issued on 15 November and 15 December for the DJF period.

2.2. Clustering-Based Forecast Approach
To obtain the prediction for the winter precipitation anomaly, we proceed as follows (further details as well
as an example using a toy problem are provided in the supporting information, SI). We calculate the cluster
structures by applying hierarchical clustering to the winter precipitation anomalies over the domain of inter-
est. Hierarchical clustering (e.g., Cheng & Wallace, 1993; Feldstein & Lee, 2014; Horton et al., 2015; Kretschmer
et al., 2017; Lee & Feldstein, 2013) is a common and powerful clustering analysis procedure. The precipita-
tion anomaly at each season is arranged as a vector data point. The algorithm then constructs a hierarchy of
clusters by merging one pair of nearest data points or clusters of points at each step (Wilks, 2011). Standard
measures are used to determine when to stop the merging and therefore the appropriate number of clusters,
Nclusters (Figure S3 in the SI).

Each cluster of winter precipitation anomalies groups together seasons with similar spatial patterns of precipi-
tation, and their averages, the clusteroids, represent the most common spatial precipitation patterns. Next, we
find the composites of the different autumn predictors (SST, SCE, SIC, etc) corresponding to a given cluster, by
averaging the predictors over all autumn seasons (SON) for which the following winter precipitation anomaly
is assigned to a given cluster. The predictor’s composites of the ith cluster are combined into one compos-
ite (COMPOSITEi = (SSTi, SCEi, SICi, etc)T ) with i = 1…Nclusters. We use bold upper case variable names to
denote clusters and composites, and lower case bold variable names to denote time series data. Given the
current state of the precursors, we now produce the prediction as follows. First, we find the projection of the
state of the predictors averaged over the autumn of year t (and denoted precursorSON(t)) on the predictor
composites. Each combined predictor composite is associated with a precipitation cluster and therefore pro-
vides information about the amount and spatial structure of winter precipitation anomaly expected given the
autumn predictor composite. This allows us to calculate the expected precipitation pattern due to the projec-
tion of the current state of predictors on each cluster. We expand the current precursor state in terms of the
precursor composites as

precursorSON(t) ≈
Nclusters∑

i=1

ai(t) COMPOSITEi. (1)
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The expansion may only be approximate because the composites are not necessarily a complete set of vec-
tors. To find the expansion coefficients ai(t), we multiply equation (1) by precursor composite COMPOSITEj

and solve the equation for the coefficients ai(t) at every time step (year t) in the data using the SVD-based
pseudoinverse (SI).

Finally, we sum the contributions to the precipitation due to all clusters, each multiplied by the projection of
the current state of precursors, a(i), to obtain the predicted total precipitation anomaly. For example, assum-
ing that snow cover extent is the only predictor and assuming that the current autumn snow cover extent is a
combination of two composites, corresponding to two specific precipitation clusters, then we expect the fol-
lowing winter precipitation to be a combination of those two precipitation cluster patterns. More generally,
the precipitation forecast is given by

prcp(t) =
Nclusters∑

i=1

ai(t) PRCPi. (2)

2.3. Canonical Correlation Analysis
CCA is a statistical technique that identifies the linear associations among two data sets of variables, that
is, it relates variations in predictor fields to variations in predictand fields (Barnett & Preisenberger, 1987;
Barnston et al., 1996; Wilks, 2011; Xoplaki et al., 2004). By construction, the identified linear combinations of
variables are maximally correlated. We apply this method in order to compare our algorithm with the already
established pattern-based method CCA. For comparison, we use the same input predictors as used for the
clustering-based method.

3. Results and Discussion
3.1. Clusters and Composites
The appropriate number of clusters is found to be three, based on standard measures (Figure S3), and the
clusters are shown in Figure 1, ordered by their frequency: 48% of the winter seasons fall within cluster 1
(Figure 1a), 28% within cluster 2 (Figure 1b), and 24% in cluster 3 (Figure 1c).

To explore the possible precursors associated with each cluster pattern, composites for sea ice concentration
(sic), snow cover extent (sce), sea surface temperature in the Mediterranean region (sstMedi), Atlantic (sstAtl),
and tropics (sstTropics), and geopotential height (gph) and sea level pressure (slp) are calculated (Figures
S5–S7). Examples are shown for the precursors sic, sce, sstMedi, and sstAtl for cluster two, because (as shown
below) those three precursors give the best forecast skill across all clusters (Figure 2). We calculated the pre-
cursor anomalies to show the different patterns. In the algorithm we do not use precursor anomalies but the
actual precursor values. The prediction of seasonal precipitation anomalies is then obtained by the procedure
that is described in section 2.3 and schematically shown in Figure S8.

All three clusters of precipitation anomalies exhibit distinct properties: Cluster 1 reveals a weak drying
structure with positive precipitation anomalies across the north of Europe, whereas cluster 2 corresponds
primarily to a positive NAO (Figure 1). The corresponding composites of cluster 2 reveal patterns, which
are associated with a positive NAO pattern. The composites of cluster 3 reveal patterns that are associated
with negative NAO pattern. The typical patterns of the precursors for a positive NAO pattern are shown
in Figure 2: sce exhibits more negative snow anomalies, sic exhibits more positive sea ice concentration
anomalies, sstMedi exhibits more positive temperature anomalies, and sstAtl shows a tripole temperature
anomaly pattern.

Other precursors were investigated but found to be less skillful than the set of precursors sic, sce, sstMedi, and
sstAtl achieving the highest skill score.

The physical mechanisms of the three different precursors leading to more precipitation are the following: The
Mediterranean Sea is a major moisture source (Lionello et al., 2006). In late October and early November low
pressure systems develop in the Mediterranean region due to the convergence of maritime tropical air from
the Atlantic, maritime polar air from the North Atlantic and northwest Europe, maritime Arctic and continental
Arctic air from the Arctic and northern Russia, and continental tropical air from the Sahara. The cyclogenesis
is energized by the sea surface temperature that enhances the evaporation and atmospheric transport and
brings the winter precipitation (Smithson et al., 2013). The Alps deflect the water saturated wind, which can
lead to more rainfall.
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Figure 1. Clusters of precipitation anomalies for the Mediterranean region, ordered by their frequency: (a) Cluster 1 has a frequency of 48%, (b) Cluster 2 has a
frequency of 28%, and (c) Cluster 3 has a frequency of 24%. The clusters are calculated by using hierarchical clustering and represent the dominant patterns
of the precipitation anomalies over Europe and the Mediterranean region.

Positive North Atlantic SST anomalies across the midlatitudes and negative North Atlantic SST anomalies
in the subtropics lead to a southward shift of storm tracks from western Europe toward the Mediterranean
region. The combination of both the shift of the storm tracks and the local cyclogenesis produces the spa-
tial distribution of the precipitation pattern (positive precipitation anomalies over the western and central
Mediterranean region) (Xoplaki et al., 2004).

Sea ice loss in September and October warms the atmosphere and leads to an increase of the geopotential
height, which forces the jet stream southward over east Siberia. This southward shift of the jet stream is asso-
ciated with a southward shift of the storm tracks leading to more Eurasian snow cover in October. In addition,
the ice-free ocean contributes to an increased moisture flux in the atmosphere, which precipitates as snow
southward over Siberia. The anomalously high Eurasian snow cover cools the surface, which increases the
surface pressure and reduces the geopotential heights in the lower and middle troposphere. This planetary
wave configuration enhances vertical wave propagation from the troposphere into the stratosphere, which
weakens the stratosphere and results in a stratosphere warming event. In January and February, the lower
stratospheric anomalies propagate downward into the troposphere inducing a negative phase of the NAO
and hence a shift of the polar jet and storm track equatorward. These displacements are followed by a south-
ward shift in the storm tracks across the midlatitudes and wetter conditions across the Mediterranean region
(Cohen et al., 2014).

3.2. Forecast Using Cluster Analysis and Comparison With NMME and CCA
We calculated the cross-validated correlation between the hindcasts and observations of winter precipitation
anomalies for the time period 1967 to 2016, as well as for the time period 1982 to 2010 in order to compare
the results with the NMME ensemble that is provided for these years. We also present the results of the CCA
empirical prediction method. Therefore, we used all data to compute clusters, composites, and finally, the
hindcast, not using the data from the year we would like to predict. Such a prediction is performed for all years.

Figure 2. Composite mean of (a) sea ice concentration anomalies (sic), (b) snow cover extent anomalies (sce), (c) sea surface temperature anomalies in the
Mediterranean region (SSTMedi), and (d) sea surface temperature anomalies in the Atlantic region (sstAtl) over all autumn seasons assigned to cluster 2.
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Figure 3. Precipitation forecast skill: (a) Cross validated correlation of the cluster-based hindcasts with observations for the year 1967–2016. (b) Same for the
years 1982–2010. (c) Correlation of the NMME hindcasts for the years 1982–2010 with observations. Significant values (P < 0.05) according to the two-sided
Student t test are shown in hatches. The cluster-based forecast performs better than the NMME models according to the cross-validated correlation.

Figure 3a shows the correlation for 1967 to 2016. Significant values (P < 0.05) according to the two-sided
Student t test are shown in hatches. The correlation is in general positive, except for some parts of southern
Sweden, Morocco, some regions of northern Algeria and Libya, as well as Georgia. The mean correlation is
0.22.

In contrast, the correlation between the CCA forecast and observations is mixed, with weak positive correla-
tions in Central Europe, weak negative correlations at the margins of Europe and the Mediterranean region
(Figure 3b), and a mean correlation of 0.05. Both the clustering and CCA approaches use the entire fields of
the predictor and predictand, so one might expect them to perform similarly in terms of prediction skill. It
is possible that the CCA performed less well because it is based on an empirical orthogonal function (EOF)
expansion of the predictor and predictand, while the clusters represent common patterns that are not nec-
essarily orthogonal and are thus less restrictive. We truncated the expansion of the predictor and predictand
at three EOFs, although the skill with only two EOFs was nearly as good. There are possibly additional refine-
ments to the CCA analysis that could have been used, but a more thorough analysis of the difference between
the two approaches is beyond the scope of this paper.

The mean correlation of the NMME is 0.13 whereas the cluster-based method for the same time range exhibits
a mean correlation of 0.20 (compare Figure 3c and Figure 3d). The cluster-based method has high skill over
Central Europe, the Iberian Peninsula, and the Eastern Mediterranean. The NMME forecast shown in Figure 3d
is based on an initialization on 15 November, while the CCA and cluster forecast, being based on seasonal aver-
ages, use data from September, October, and November. An NMME forecast similarly issued on 1 December
is not available, and we present instead the results of the forecast issued on 15 December in the support-
ing information (Figure S10). The mean correlation in that case is 0.21, marginally better than that of the
cluster analysis (0.20) although in this case the NMME prediction is based on December data and provides a
December prediction, explaining the good skill in this case.

To investigate whether the Gaussian filter plays a role in our method, we show in Figure S9a the correla-
tion for the precursors sic, sce, sstMedi, and sstAtl, but without using the Gaussian filter. It indicates that the
correlation structure in central Europe is almost the same, but the Gaussian filter smooths the field lead-
ing to higher-correlation values. Most negative correlations vanish due to the smoothing. We also show
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Figure 4. (a) Pattern correlation of the precipitation hindcasts and observations for the time range 1966 to 2016. The red solid line is the mean pattern
correlation using the cluster-based method for the time range 1966–2016, the red dotted line is the mean pattern correlation using the cluster-based method
for the time range 1982–2010, the black dashed line is the mean correlation of CCA for the time range 1967–2016, and the gray dashed line is the mean pattern
correlation for the NMME models for the time range 1982–2010. (b)Precipitation hindcast for the best pattern correlation (2010). (c)Precipitation observation
for year 2010. (d) Precipitation hindcast for the worst pattern correlation (2003). (e) Precipitation observation for year 2003.

correlations for other precursors sstMedi and sstAtl (Figure S9b), sce and sic (Figure S10c), and all three sst
regions (Figure S9d) for the years 1967 to 2016.

Those plots reveal that the precursors sstMedi and sstAtl are likely more important in predicting
prcp anomalies for southern, central, and eastern Europe, whereas the precursors sic and sce are more rele-
vant to predict prcp anomalies in the southeastern and northern part of the Mediterranean region (compare
Figure S9b and Figure S9c). While the sstMedi and sstAtl as precursors have moderate correlation with observa-
tional data, all three chosen sst regions have a low correlation and are less skillful than sic and sce in predicting
prcp anomalies.

Finally, we compared the pattern correlation of our method for two different time ranges, 1967–2016 and
1982–2010, with the NMME and CCA (Figure 4). It is clearly visible that the pattern correlation using the
cluster-based method is mostly positive for the longer time range with a mean pattern correlation of 0.20 and
only for some years negative (black line in Figure 4a, red line represents the mean value). The dashed black line
shows the mean pattern correlation of CCA with a mean pattern correlation of 0.01. The gray line exhibits the
pattern correlation of the NMME with mean pattern correlation of 0.05, and the red dashed line exhibits the
mean correlation of our hindcast method for the same time range mean pattern correlation of 0.18. Also
the pattern correlation of NMME hindcasts issued on 15 December has a lower value (0.14) than the pattern
correlation of the clustering method and is shown in Figure S10.

The results of the pattern correlations show that the cluster method resembles the observations more
closely than NMME or CCA. We plotted the hindcast with the highest pattern correlation (year 2010) and
the hindcast with the lowest pattern correlation (year 2003) as well as the observed data for those hindcasts
(Figures 4b–4e).

Comparing the time plot of the clusters in Figure S3 with the pattern correlation plot (Figure 4a) reveals
that clusters 2 and 3 have the best forecast skill. This likely stems from the fact that these clusters represent,
respectively, a clear positive and negative NAO state, whereas the other one has a more complicated geo-
graphically distributed structure. This result suggests that extreme NAO states have better predictability than
intermediate states.

4. Conclusion

This study presents a new cluster-based method to predict the precipitation anomalies in the European and
Mediterranean regions using autumn precursors. The advantage of this approach is that both the magnitude
and spatial structure of the precursors are utilized in generating the predictions. Applying hierarchical cluster-
ing, we identified three clusters describing the dominant patterns of the precipitation anomalies over Europe.
From those clusters we calculated the composites of different precursors. To predict precipitation anomalies,
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we first computed the projection of the current state of the predictors onto the composites. Each predictor
composite is associated with a precipitation cluster and provides information about the amount and spatial
structure of winter precipitation expected given the autumn predictor composite. Thus, we can calculate the
expected precipitation pattern by multiplying the projections of each cluster and summing up all products.

The cluster-based method achieves higher forecast skill in time and pattern correlation than a CCA-based
prediction algorithm using the same predictor fields for both methods. In addition, the cluster-based method
performs better than the NMME models in terms of pattern and time correlation.

Our algorithm achieves also higher skill than other empirical methods used in the past such as the
multiregression model developed by Eden et al. (2015) or the CCA-based algorithm used by Barnston
et al. (1996).

The method could be applied to temperature and precipitation anomalies in other regions or even possibly
to forecast extreme weather.
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1. Introduction

The supplemental information contains a description of the clustering-based prediction12

approach, a demonstration of the method using a simple toy problem and a comparison to13

standard regression-based prediction, and eleven additional figures to provide more infor-14

mation of our cluster-based forecast method as applied to the Mediterranean precipitation15

problem.16

2. Cluster-based prediction methodology

Given the time series of the quantity to be predicted (predictand, e.g., anomaly winter17

(DJF) precipitation) and precursors (predictors, e.g., autumn (SON) sea ice cover and18

snow cover extent), we calculate the clusters of the predictand, and then use them to19

construct the prediction, as shown schematically in Fig. S8 and described as follows.20

Consider a forecast of precipitation anomaly time series at several locations, given by21

the predictand vector prcp(t). These precipitation data will be predicted using given22
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precursors, e.g., time series of snow cover extent at several spatial locations given by the23

time-dependent vector sce(t), and time series of sea ice extent at several spatial locations,24

sic(t).25

We assume that there are Nclusters significant precipitation clusters. We use bold up-26

per case variable names to denote clusters and composites, and lower case bold variable27

names to denote time series data. The prediction procedure requires the winter (DJF)28

precipitation clusters PRCPi, i = 1, . . . , Nclusters and the corresponding precursor com-29

posites (e.g., sea ice cover and snow cover extent anomalies from the autumn SON mean),30

COMPOSITEi. The clusters are calculated using hierarchical clustering of the winter31

precipitation anomaly data, while the composites for a given cluster i are calculated by32

averaging the predictors over all times in which the precipitation anomaly is assigned to33

its cluster i.34

We also need a time series of the autumn-mean (averaged over SON) precursor anomaly35

(predictors) precursor
SON

(t), for each spatial location. The time t denotes the year,36

where the precursors are evaluated during the fall (SON) and the precipitation of that37

year refers to the following DJF. For example, if the precursors are sea ice and snow38

cover, the vector of precursors (predictors) time series, and the vector of composites are39

calculated as follows,40

precursor
SON

(t) = (sicSON(t), sceSON(t))
T

COMPOSITE1,2 = (SIC1,2,SCE1,2)
T

To obtain the prediction for the precipitation, we first find the projection of the current41

state of the predictors (snow cover and sea ice) on the Nclusters predictor composites42
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corresponding to the precipitation clusters. Each predictor composite is associated with a43

precipitation cluster and provides information about the amplitude and spatial structure44

of winter precipitation expected given the autumn predictor composite. This allows us to45

calculate the expected precipitation pattern due to the projection of the current state of46

predictors on each cluster. Finally, we sum the contributions to the precipitation due to47

all clusters, to obtain the predicted total precipitation anomaly.48

Mathematically, this proceeds as follows. To calculate the projection of49

precursor
SON

(t) on the composite COMPOSITEi, we expand the current precursor50

state in terms of the precursor composites, to find the expansion coe�cients, noting that51

the composites are not necessarily orthogonal. The expansion takes the form,52

precursor
SON

(t) ⇡
NclustersX

i=1

ai(t) COMPOSITEi.

The expansion may only be approximate because the composites are not necessarily a53

complete set of vectors. To find the expansion coe�cients ai(t), multiply by precursor54

composite COMPOSITEj, remembering that they are not necessarily orthogonal,55

precursor
SON

(t) ·COMPOSITEj =
NclustersX

i=1

ai(t) COMPOSITEi ·COMPOSITEj.

Next, we write this as a matrix equation for the unknown vector a(t) of coe�cients56

ai(t). Define a matrix, Bij = COMPOSITEi ·COMPOSITEj, and the right-hand side57

�j(t) = precursor
SON

(t) ·COMPOSITEj. This leads to the linear equations,58

B a(t) = �(t),
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that may be solved for the coe�cients ai(t) at every time step (year t) in the data. Given59

that the matrix B may be ill conditioned, there may be many solutions for a(t). We60

choose the one with the smallest norm, using the SVD-based pseudo inverse.61

The final expression for the predicted precipitation is obtained by summing the contri-62

bution of all clusters, each multiplied by the projection of the current state of precursors,63

a(i),64

prcp(t) =
NclustersX

i=1

ai(t) PRCPi. (1)

3. Demonstrating the clustering-based prediction approach using a toy

problem

We now consider a toy problem to demonstrate the clustering-based forecast approach65

used in the main paper to predict precipitation, and to test it against a commonly used66

regression-based prediction model. We first create test data for this demonstration prob-67

lem that are characterized by a specified cluster structure (section 3.1). Next, we present68

the regression prediction results (section 3.2), and discuss the di↵erence between the two69

(section 3.3). We emphasize that the intent of the comparison is not to show the superi-70

ority of the clustering or regression approaches, but only to explain the di↵erence between71

the two methods.72

3.1. Creating the data

For this toy problem demonstration of the methodology, we consider a forecast of pre-73

cipitation anomaly time series at three locations, given by the predictand vector prcp(t).74

These precipitation data will be predicted using two precursors: time series of snow cover75
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extent at two spatial locations given by the time-dependent vector sce(t), and time series76

of sea ice extent at two spatial locations, sic(t).77

Normally, one would start applying this prediction approach by clustering the precipi-78

tation data and then calculating the predictor composites. In order to demonstrate this79

approach in the simplest possible scenario, we instead create a data set with a specified80

structure for the precipitation clusters and precursor composites, and create corresponding81

time series for both the precipitation and precursors vectors.82

We start by specifying two winter precipitation anomaly clusters,83

PRCP1 = (p1, p2, p3)
T = (1,�1, 1)T

PRCP2 = (p1, p2, p3)
T = (1, 1,�1)T

The first cluster, for example, implies that the precipitation anomaly in the first location is84

inversely correlated with that in the second location. We associate with these precipitation85

clusters the following specified composites of snow cover and sea ice extent,86

SCE1 = (�1, 1)T

SCE2 = (�1, 0)T

SIC1 = (1,�1)T

SIC2 = (1, 1)T , (2)

such that SCE1, for example, is the snow cover extent anomaly at two locations, corre-87

sponding to the first precipitation anomaly cluster: when the snow cover extent has the88

structure of SCE1, we expect the precipitation anomaly to have the structure given by89

PRCP1. In order to create the time series data for predictors and predictands that are90
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characterized by the specified clusters, we first create a matrix A that relates the precursor91

composites to the precipitation clusters,92

PRCPi = A COMPOSITEi. (3)

This matrix is given by,93

A =

0

B@
1 2 1 1

�1/2 0 �1/2 1
�1 0 �1 �1

1

CA .

We next construct the following idealized time behavior for the two precursors, by adding94

noise to their specified composite structure COMPOSITEi, as follows,95

precursor
SON

(t) = D (COMPOSITEi, �, t) ,

where D is a multivariate Gaussian random distribution with a mean COMPOSITEi96

and root mean square (RMS) equal to �. E↵ectively this means that at every time t, one97

of the composites is selected with some added noise. We construct these time series for98

N = 1000 years.99

Given the time series of the precursors, (scei(t), sici(t)), we can calculate the time series100

of the precipitation for this toy problem, using a two-step procedure. First, we use the101

same matrix used in (3) to relate the precursor composites to the precipitation clusters,102

in order to estimate the precipitation signal due to cluster i, as forced by precursors103

scei(t), sici(t). This signal is equal to the matrix A times the ith precursor. Next, we104

sum over the precipitation of all clusters (two of them in this example), to get the total105

precipitation at a time t. The result for the precipitation vector time series representing106

the precipitation anomaly at four locations is,107

prcp(t) = A precursor
SON

(t).
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Fig. S1 shows the time series for the two sea ice cover precursors, two snow cover extent108

precursors, and scatter plots for the precipitation, snow cover and sea ice data showing109

the cluster structure.110

3.2. Regression model

In a standard regression-based prediction scheme, the prediction for the winter (DJF)111

precipitation anomaly at location i, as function of time, prcp
i
(t), is written as a linear112

function of the precursors (SON sea ice and snow cover) plus a noise term,113

prcp
i
(t) = ai · sce(t) + bi · sic(t) + ⇠.

One then finds the regression coe�cients (both vectors) ai,bi that minimize the distance to114

the observed precipitation at each location at all times. However, in practice, involving all115

grid points of the precursors requires to find many regression coe�cients using insu�cient116

number of observations and therefore results in an over-fitting problem. One therefore117

tries to reduce the number of regression coe�cients that need to be calculated by using118

only, for example, the average of each precursor. In our example, one would use the119

average sea ice extent over all locations and the average snow cover over all locations.120

This would require to find only two regression coe�cients for each precipitation location121

instead of four. The regression model then takes the form,122

prcp(t)i = ai sce(t) + bi sic(t) + ⇠

where sce(t) and sic(t) are the averages of each precursor over all grid points.123

3.3. Comparing the cluster-based forecast method and the regression model
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We now apply the clustering-based prediction method described in section 2 and the124

regression based approach described in section 3.2 to the data created as described in125

section 3.1. The forecast calculated with the cluster-based method coincides well with126

the “observations” (compare black and red lines in Fig. S2). This is to be expected, as127

the “observations” were created using only two clusters, and these clusters therefore lead128

to good predictability. In contrast, the forecast obtained using the regression model fails129

in Figs. S2b and S2c. The regression fails here, simply because our indices reflecting the130

average of sea ice for both grid points and the average of snow cover for both grid points131

are not appropriate indices. Specifically, the average cannot represent the first snow cover132

cluster structure and the first sea ice cluster structure seen in Eqn. (1).133

We emphasize that this is not meant to be a test for the clustering vs regression ap-134

proaches, as the “observations” are, by construction, optimally suited for the clustering-135

based prediction approach, and the predictor indices for the regression approach are poorly136

chosen. Rather, the purpose here is only to explain the di↵erence between the two meth-137

ods.138

D R A F T November 8, 2017, 11:16pm D R A F T



X - 10 MOLNOS ET AL.: WINTER PRECIPITATION FORECAST

Figure S1. (a) 3D scatter plot of precipitation data in toy model, with black dots showing the

clusters. Each axis represents one the precipitation anomaly of one location. (b) 2d scatter plot

of sea ice concentration for all data points, (c) 2d scatter plot of snow cover extent for all data

points. Each axes represents only sce anomaly (sic anomaly) of one location. (d) Time series of

sea ice data at two locations represented by blue and yellow solid lines. (e) Time series of snow

cover extent at two locations represented by blue and yellow solid lines.
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Figure S2. Precipitation anomalies vs prediction using the clustering-based and regression-

based approaches. Red lines represent the artificially created precipitation anomalies, black line

show the forecast calculated using the cluster-based method, and dashed orange lines show the

forecast calculated by a regression model. In subplots (b) and (c) the regression forecast fails.
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Figure S3. Elbow-plot of hierarchical clustering with precipitation anomalies of the Mediter-

ranean region. Only the last 10 steps of the clustering are shown. The blue line represents the

cluster distance. A kink of the cluster distance indicates the optimal number of clusters.
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Figure S4. Cluster-time-plot of the four precipitation anomaly clusters between 1967-2016.

Cluster one appears most often, cluster two is the second most important cluster and cluster

three appears the least likely ocurred cluster.
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Figure S5. (a) precipitation anomaly of cluster one. Composite mean of sea ice concen-

tration anomalies (b) , snow cover extent anomalies (c), sea surface temperature anomalies in

the Mediterranean region (d), sea surface temperature anomalies in the Atlantic region (e), sea

surface temperature anomalies in the Pacific region (f),sea surface temperature anomalies in the

South Pacific, geopotential height anomalies at 500mb (g) and sea level pressure anomalies (h)

over all autumn seasons that were assigned to cluster one.
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Figure S6. (a) precipitation anomaly of cluster two. (b-h) composites over all autumn seasons

that were assigned to cluster two (compare Fig. S1).

Figure S7. (a) precipitation anomaly of cluster three. (b-h) composites over all autumn

seasons that were assigned to cluster three (compare Fig. S1).

D R A F T November 8, 2017, 11:16pm D R A F T



MOLNOS ET AL.: WINTER PRECIPITATION FORECAST X - 15

Figure S8. Forecast scheme. First the precursors are expanded in terms of the composites. In

the next step, the equation is multiplied by another composite. The resulting matrix equation

is solved using the SVD-based pseudo-matrix to find the expansion coe�cients. Finally, the

forecast is calculated by the expansion coe�cients and the precipitation anomaly clusters.
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Figure S9. (a) Cross-validated correlation of the cluster forecast method for the years 1967 -

2016 without the Gaussian filter. (b) Cross-validated correlation of the cluster forecast method

for the years 1967 - 2016, considering sea surface temperature in the Mediterranean region and

Atlantic region as precursors. (c) Cross-validated correlation of the cluster forecast method for

the years 1967 - 2016, considering sea ice concentration and snow cover extent as precursors. (d)

Cross-validated correlation of the cluster forecast method for the years 1967 - 2016, considering

sea surface temperature in the Mediterranean region, in the tropics and the Atlantic as precursors.

Significant values (P<0.05) according to two-sided Student’s t-test are shown in hatches.

Figure S10. Cross-validated correlation of the DJF NMME hindcast for the years 1982 - 2010

issued on the initial conditions from December 15th. (b) Pattern correlation of the precipitation

DJF NMME hindcast between 1982�2010 issued on initial conditions from December 15th. The

black line is the pattern correlation and the red solid line is the mean pattern correlation.
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