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The Mediterranean Outflow as an Example of a Deep Buoyancy-Driven Flow

EL1 TZIPERMAN!
Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge

Motivated by the Mediterranean outflow into the North Atlantic, a simple diffusive layer model of a
deep buoyancy-driven circulation driven by a middepth inflow from the eastern boundary is developed.
Cross-interfacial velocities are allowed and are related to the stratification through a density equation.
The horizontal circulation, cross-interfacial (vertical) velocities, and density stratification are all coupled
and are determined by the model as part of the solution. The importance of water masses injected into
the ocean interior in driving the deep circulation is demonstrated. The inflow from the eastern boundary
turns northward before reaching the western boundary current region and flows along the eastern
boundary. The westward distance traveled by the inflow before turning northward can be derived by
considering the dissipation of long westward traveling Rossby waves by the vertical density diffusion.
Layers above and below the inflow are also set in motion, and their circulation is southward along the
eastern boundary, opposite to the direction of the circulation in the inflow layer. The vertically integrated
circulation of the model is similar to that in a Stommei-Arons model with the mass source on the eastern
boundary: Most of the inflow flows to the western boundary current region, spreads there along the

boundary, and reenters the interior as a broad northward current.

1. INTRODUCTION

The understanding of buoyancy-driven flows is important
for determining the effects of buoyancy forcing on both the
wind-driven and the deep circulation, but their modeling is
complicated by many difficulties. Analytic solutions are diffi-
cult to obtain because of the high-order partial differential
equations describing diffusive flows, and numerical methods
suffer from the very long convergence times due to the long
diffusive adjustment time scales.

In this work a simple model of a deep buoyancy-driven
circulation is presented. The physical problem modeled is of a
middepth inflow from the eastern boundary and the resulting
large-scale interior circulation. The dynamics are geostrophic,
hydrostatic, mass conserving, and diffusive. The mathematics
is simplified by using layer formulation instead of continuous
stratification. This allows us to include most of the important
physical mechanisms relevant to diffusive flows. The model is
generally motivated by the Mediterranean outflow into the
North Atlantic.

Mixing, advection, and density stratification are all coupled
and determined by the model. Previous efforts to model the
interior buoyancy-driven circulation have usually dropped
one or more of these ingredients by specifying them and pro-
ceeded to solve for the rest.

Olson [1985] used a density equation of the form dp/dt = G
where G is the density flux convergence. The horizontal struc-
ture of G was related to the heating or cooling at the surface
by the atmosphere, while the vertical structure of G was speci-
fied and assumed not to depend on the stratification. Rhines
[1986], Pedlosky [1986], and Luyten and Stommel [1986] all
specified the interior cross-isopycnal velocity field and calcu-
lated the resulting horizontal circulation patterns in order to

“study the effects of buoyancy forcing on the wind driven circu-
lation. Arhan [1987] used the same approach as Luyten and
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Stommel to model the effects of double diffusion on the dy-
namics of the Mediterranean outflow, by specifying the cross-
interfacial velocity in the interior.

Specifying the interior cross-isopycnal velocities or relating
them directly to atmospheric heating does simplify the prob-
lem but also causes difficulties. One does not expect the direct
atmospheric heating to penetrate beyond the depth of the
mixed layer and directly affect the deep flows, while observa-
tions indicate that interior mixing depends on the interior
stratification through a density equation of the form u - Vp =
(kp.). [Gargerr, 1984]. In the model presented below, the
cross-isopycnal velocities (which force the horizontal circu-
lation) are calculated from the density stratification using the
density equation.

Other approaches to modeling buoyancy-driven flows in-
clude linearization of the equations about some mean specified
state [e.g., Gill, 19857 and similarity solutions for the diffusive
thermocline equations (Veronis [1969] or more recently
Young and Ierley [1986]). In both cases the mathematical
simplification involved enables one to obtain continuous solu-
tions to the problem, but the physics suffers limitations. These
models include a diffusion term in the density equation and
therefore allow the model to determine the forcing of the hori-
zontal circulation. But the average vertical stratification is still
specified in the linearized case, and the similarity solutions are
very restricted by the assumed similarity form.

In the following sections the layer model is formulated (sec-
tion 2), equations of motion are derived (section 3), and then a
series of problems of increasing complexity are solved. First, in
section 4, the ideal case (no diffusion) is solved. Then the
diffusive case of three moving layers is solved, with the vertical
density equation wp_ = Ap_, only (section 5), and finally the
effects of horizontal advection of density are included (section
6). The relation of the results to different observations is dis-
cussed in section 7, and some of the more important con-
clusions are summarized in section 8.

The purpose of the model is to demonstrate the general
physical principles governing deep buoyancy-driven flows
rather than to realistically model the Mediterranean outflow.
The model does suggest, however, a possible mechanism for
the spreading of the Mediterranean water and makes clear
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what parameters one needs to calculate from the data to
better understand such a circulation. A one-moving-layer dif-
fusive solution for the model developed here, as well as some
more detailed results, can be found in the work by Tziperman
[1987].

2. THE MoDEL

The layer model used is shown in Figure 1. The inflow from
the eastern boundary is confined to a limited latitude band,
¥1 <y < y,,in one layer (layer 0) only, which is assumed to be
below the wind-driven circulation and above the bottom
water circulation. No transport of water across the basin
boundaries (e.g., cross-equatorial flow) is allowed, and to keep
the total amount of water in layer O constant, the water en-
tering layer O from the eastern boundary has to leave this
layer through interior cross-interfacial fluxes. These fluxes are
analogous to cross-isopycnal fluxes in a continuously stratified
model and are present in the model because diffusion of heat
and salt across the interfaces between layers is allowed and is
represented by a diffusion term in the density equation.

The vertical circulation in the model can be described sche-
matically as follows. Deep water masses are formed in some
polar basin, sink to the bottom, and spread in the ocean in-
terior. This water then upwells through cross-isopycnal veloci-
ties balanced by diffusion and appears in the model as an
upwelling across the lower interfaces of the model. At the
depth of layer O this upwelling is joined by the water coming
from the eastern boundary, making the total upwelling at the
top of layer O larger than that at the bottom. This larger
upwelling leaves the upper layers of the model; some of it
flows into the marginal sea to reappear later as the inflow
from the eastern boundary; a larger portion flows poleward,
where it loses heat and sinks to the bottom. Western bound-
ary currents are needed to close the interior horizontal circu-
lation and to connect the interior with the region of bottom
water formation. The effects of mixing and cross-isopycnal
fluxes in the western boundary current region are assumed
negligible in comparison to those of mixing in the entire in-
terior of the basin.
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A schematic picture of the inflow and layers (a) from above
and (b) in a zonal section.

X

Fig. 1.
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The dynamics we use are geostrophic, hydrostatic, and dif-
fusive. The equations for the nth layer are

fu,=——p, (1a)
Po
1
Jo,=— P, (1b)
0
Doz = —9Ph (1c)
V-u,=0 (1d)

where x = R¢ cos 0, dy = R db, (¢, 0) are the longitude and
latitude, w, = (u,, v,, w,), and R is the radius of the Earth. The
function f(y) = 2Q sin 6 is the Coriolis acceleration, and we
also use B(y) = df /dy. The B plane approximation is not made,
and both f and f are functions of latitude. The density equa-
tion is
d*p

up, +vp, + wp, = 2gVyip + iy, P )

and will be expressed later in terms of the layer thickness
instead of continuous stratification. There are two observa-
tions we can make to simplify the problem.

First, following Warren [1977], consider the following
simple scaling argument showing that the dominant balance
in the density equation for the middepth circulation is simply

%p

2 3

wp, =4y
Let Ayp and A,p be the variations of the density on the
horizontal (L) and vertical (D) scales of motion, respectively.
For the middepth circulation, where the density surfaces are
nearly flat, the ratio ¢ = A,p/A,p is a small parameter (about
0.2 according to Warren). Nondimensionalizing the density
equation (2) and using the scales (4, v) ~ U and w ~ UD/L, we
find that the nondimensional density equation is

Ay \ @%p Au\y 2
gup, + vp) + wp, = wp) 52 Y oL Vu @

With

W =10"° cm/s D=1km L = 5000 km

Ay =5x10° cm?s™! Ay

=1cm?s™!

the leading order balance in (4) is the vertical density equation
(3). In section 6 we use a perturbation expansion in powers of
¢ and examine the effects of the horizontal diffusion and ad-
vection which are ignored now. In the same section, ¢ is also
expressed in terms of the forcing (inflow) parameters, and the
explicit conditions that make it small are made clear. It turns
out that ¢ is small when the transport of the inflow is weak.
Writing (3) in density coordinates and then in finite difference
form, in terms of the layer thickness h,, we have

An+ lp/hn+l _ Anp/hn
Pn+1 — Pn

w, =4,

n &)
where w, is the vertical velocity across the interface between
layers n and n + 1, p, is the density of the nth layer, and A,p is
the density range represented by the nth layer. See Tziperman
[1986] for a more detailed derivation of the above parame-
terization of diffusion in layer models.
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To further simplify the problem, it is assumed that the hori-
zontal velocity fields above and below the inflow decay away
from layer 0. For layers far enough from layer O the layer
thicknesses then become uniform in (x, y) and by (5) so does
the cross-interfacial upwelling w which is also depth indepen-
dent. Although we were not able to prove that such a decay
must occur, it can be justified heuristically by considering the
forcing of each of the layers. It was already mentioned that the
total upwelling at the top of layer 0 has to be larger than that
at the bottom of this layer in order to balance the mass input
by the inflow. This makes W o, — Wo potom (OF Wp,) POSitive,
therefore forcing a northward flow in the interior through
Bv = fw,. The circulation in layer 0 is a combination of the
westward flow entering from the eastern boundary and the
northward flow induced by w, > 0. The motion in layer 0
induces variations in the thickness of that layer and of adja-
cent ones.

Consider next the situation in layers —1 and + 1. Because
there is no inflow into these layers, the horizontally averaged
Witop — Wn.bottom Vanishes. Still, the variations in the thickness
of these layers due to the motion in layer 0 induce local vari-
ations in w, ., — W, pouom through the density equation (5).
Consequently, these layers are moving. Because the direct
forcing due to the inflow and that due to the requirement that
§Twnote basinWatop — Wabonom) dX dy > 0 are missing now, the
circulation in layers +1 and —1 and the variations in their
thickness are weaker than for layer 0. Considering layers
which are even further away from the inflow, we see that their
circulation is even weaker, and their thickness becomes uni-
form in (x, y).

We assume below that the horizontal velocities vanish in
layers far enough above and below the inflow and that only a
finite number of layers around the inflow at layer O are at
motion. (Note again that in the diffusive case only the hori-
zontal velocities vanish far above and below the inflow, while
the vertical velocity becomes uniform in (x, y), and constant in
z.) This assumption will enable us to solve for the circulation
in the layers assumed moving. In the diffusive solution to the
three-moving-layer model (section 5) the circulation above
and below the inflow is weaker than that at the inflow depth.
This confirms the above argument about the decay of the
solution away from the inflow. Ideally, the height scale of the
circulation driven by the inflow should be determined by the
model, but we are forced to assume only a finite number of
moving layers due to the difficulty in solving for a large
number of moving layers.

3. EQUATIONS OF MOTION FOR THE
THREE-MOVING-LAYER CASE

As explained in section 2, the horizontal velocity and pres-
sure gradients are expected to weaken with increasing distance
from layer 0. We now assume that the horizontal velocities
vanish for all but three layers (—1, 0, and 1) and that the
pressure gradients in layers —2 and +2 are already very small
and can be taken to be zero. The actual pressure gradients in
layers —2 and +2 are not exactly zero, and they affect the
circulation in layers —1, 0, and 1. The solution derived below
for the circulation in the three moving layers is valid as long
as |Vypy 2| < |Vgpo.+1|. Physically, the vertical decay of the
horizontal velocity fields should be determined by the model
itself. The solution is truncated somewhat arbitrarily here be-
cause of the technical difficulty of solving for a large number
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of moving layers. The truncation is justified if the addition of
more moving layers does not drastically change the circu-
lation found when these layers were assumed at rest.

The equations of motion are given by (1), and the vertical
diffusion equation (5) is used. In the ideal case discussed in
section 4 the total three-dimensional velocity field vanishes for
the layers assumed at rest. In the presence of diffusion (section
5), only the horizontal velocities vanish for the layers assumed
at rest, while the vertical velocity is independent of depth but
is not necessarily zero. The diffusive solution for the resting
layers is analogous to an exponential density profile in the
continuous diffusive case: p = exp (z4,/W), W = const, and
u=v=0.

From the hydrostatic equation (1c)

1 1
- VHpn+ 1= Vﬂpn + ynVHzn(xa y) (6)
Po Po

where y, = g(p,.1 — P.)/Po and z,(x, y) is the height of the
interface between the n and n + 1 layers. Because layers other
than —1, 0, and 1 are at rest, Vyp, = 0 for n # —1, 0, 1. Using
(6), we find

Vuz,(x, ) =0 n# -2, -10,1 (7
so that only five layers (—2, —1, 0, 1, and 2) have varying
thicknesses which need to be solved for. By (7) the thickness of
all other layers is uniform in (x, y). From (6) we also find

1
— Vup-,=0= —y_oVulhy + hy + B + h_,)
0

=y Vylhy + hy + ho) — YoVulh, + hy) — 71Vuh, (8a)
1
— Vup_1=—y_2Vuh_» (8b)
Po
1
p_ VupPo = —71Vuhs — 7oValhs + hy) (8¢c)
0
1
— Vupy = —7:1Vuhy 8d

[

From (1) the vorticity equation for the moving layers is
[Pedlosky, 1979]

Bux, Mh(x, ) =f W, (X, y) = wix, ¥)] )

n=—1,0,1
Using (1) and (8), we can write (9) as
oh 2
N (10a)
0x By hy
oh f? 1 y oh
Pe (W, o)——(—‘ 1) =2 (10)
ox Bvo ho Yo
oh_, f?
= - Wy —w_y)— (10¢)
ox By : ' h_,

The vertical velocities can be written in terms of the h, using
the density equation (5). Denoting the thickness of the layers
on the eastern boundary south of the inflow by H,, we can
derive two more equations from (7) and (8), expressing the
assumptions that V4p_, = 0 and that the interfaces enclosing
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layers —2,---, 2 are flat
P oo=—y by +hy+ho+h_))—y_hy+ h; + hy)
—7yolhy + hy) — y,h, = const
=—y_JH,+H, +H,+H_,)—y_H,+H, +H,)

—7YolH, + H,) —y,H, (10d)

2

Y hix,yy=const=H_,+H_,+Hy+H, + H, (10¢)
n=-2
so that we have five equations (equation (10a){10e)) for the
five unknowns h_,, ---, h,. Using (10d) and (10e) to express
ho(x, y) and h_,(x, y) in terms of h_,, h,, h,, and the H,, and
substituting them into (10a)-(10c), the set (10a)«(10e) can be
reduced to three coupled first-order ordinary differential equa-
tions (ODE:s) for h _,, h,, and h, of the form

~

oh

6’: = ?/'-n[h—z(x, )’), h](x, .V)5 hz(x’ y)s H,,,,f(y)] (11)

n=—2,1,2

The layer thickness on the eastern boundary is determined
from the specified inflow. Let the inflow velocity as function of
latitude y be (see Figure 1)

uo(x, ¥) = Uo folf

uO(xgo y) = 0

W<Yy<y;
(12)
elsewhere

where f, =f[(y, + ¥,)/2] and U, =const. Using fu,=
(—1/po)po, and (8) with (12), we find

hy(x,, ¥) = H, (13q)
U
, Voo

0

hy(x,, y) = H, =y (13b)

1 1
ho(x,, y) = H, “‘foU0<v_ + —)(y - 1) (13¢)

-1 Yo
h_y(xe ) =(H, + Ho + H_,) = [ho(x,, y) + hy(x., )] (13d)
h_yx,, y)=H_, (13¢)
where, again,
H, = h(x, yy)

Before solving for the layer thickness and circulation in the
diffusive case by integrating (11) from x,, it is useful to exam-
ine the solution to the problem when the diffusive effects are
ignored, assuming that density is conserved. This will give
some measure of the importance of diffusion in this problem.

4. THE NONDIFFUSIVE CASE

Assume that the diffusive effects in the ocean interior are
very weak, so that the diffusion coefficient 4, can be set to
zero, and use the ideal fluid geostrophic equations. The solu-
tion is then not unique, and there are many possible interior
circulations consistent with a given specified inflow into layer
0. The circulation found will depend, for example, on the
specified transport from the western boundary current into the
layers above and below the inflow.

Consider now the simplest problem, where there is no
inflow from the western boundary current into layers above
and below layer 0. Only layer O is moving, and we can solve
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for its thickness and velocity for a given inflow from the east-
ern boundary. From (1), (8), and (9) the vorticity equation for
the inflow layer is

Y
Bvohy = —pB 70 hychg =S Wo.100 — Wo.bottom) (14

The vertical velocities are zero for the resting layers —1 and
+1 and therefore also at the interfaces of layer O [Pedlosky,
1979]. The forcing on the right-hand side of (14) vanishes
therefore, and the circulation in layer 0 is simply a zonal flow
with the thickness of the layers equal to that on the eastern
boundary as given by the boundary condition (13)

volx, y) =0 wo(x, y) =0

(15)

Uo(x, y) = (X, ¥)
hn(x7 y) = hn(‘xe’ y)

Note that H,, the thicknesses of all layers on the eastern
boundary, south of the inflow, have to be specified. The H,
represent the basic density stratification and cannot be found
by the model in the absence of diffusion in the physics.

We now proceed to the diffusive case, with several questions
in mind: Can the addition of diffusion to the physics resolve
the nonuniqueness problem? Can the H, be found as part of
the solution? How does the circulation change in the presence
of diffusion, and does the diffusive solution reduce to the
above ideal fluid solution as 4, — 0?

n=-2,—-1,0, +1, +2

5. THE DIFFUSIVE CASE:
THREE MOVING LAYERS

Consider now the diffusive solution for the three-moving-
layer case. Simultaneously integrating the set (11) of ODEs
from the eastern boundary, where the h, are given by the
boundary condition (13), we obtain the thickness of layers —2,
1, and 2 in terms of the eastern boundary stratification from
the H,, which must be specified at this stage. The solution for
h_, and h, is then found from (10d) and (10e). But with diffu-
sion included in the physics, we expect to be able to determine
the basic stratification of the model, as represented by the H,.
The H, are now found by requiring the solution to satisfy
integral constraints on the cross-interfacial fluxes, making sure
that the total mass in each layer is constant in spite of the
inflow into layer 0 and the cross-interfacial velocities.

Consider the integral constraints. The circulation in the
moving layers depends on the values of the vertical velocities
at the top and bottom interfaces of these layers through
Bv,h, = f(w,_, — w,). With three moving layers there are four
enclosing interfaces at which the vertical velocity must be cal-
culated correctly by the model. Because the horizontal veloci-
ties are assumed to vanish for |n| > 2, we do not need to
worry about the value of w at other interfaces. This leaves four
constraints on the vertical velocities w_,(x, ), - - -, w,(x, y). To
find what the constraints are, consider again Figure 1. The
schematic figure shows that the total mass flux through the
lower interface of layer O is equal to the amount of bottom
water formed per unit time. The total flux through the upper
interface of layer O is equal to that through the lower interface
of that layer plus the inflow from the eastern boundary. A
similar condition applies for the layers above and below the
inflow. By assumption there is no fluid leaking from any of the
layers, except through interior cross-interfaced velocities. All
the fluid leaving the interior into the western boundary layer
region, for example, is assumed to flow back into the same
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layer when returning to the interior. Once the transport of the
inflow, M, and the amount of bottom water formation,

inflow?

M . om aT€ specified, the constraints become

n=—10

J] Wn(x’ y) dx dy = M bottom
(16)

J‘J‘ Wn(x’ y) dx dy = Mbotlom + Minflow n= 1’ 2

The double integral in (16) is taken over the entire area of the
interior of the basin. The transport of the inflow from the
eastern boundary is

Y2
Minﬁow = J. u()(xe7 y)ho(x(p y) dy
y

1

Jo 1 1
= _[[Uo —:I[Ho _foUo<_ + —)(y - yl)] dy  (17)
S Y-1 Yo

Specifying the velocity uy(x,, y) and the transport of the
inflow, M, .. is equivalent by (17) to specifying H,. The four
equations (16) can then be used to solve for the four remaining
stratification parameters H_,, H_,, H,, and H, using the
following procedure. For given values of the H, the thickness
of the layers h(x, y) can be calculated everywhere by inte-
grating (11) from the eastern boundary. The left-hand side of
the constraints (16) can then be evaluated, using (5) to express
w, in terms of h,, and used to define a function of the stratifi-
cation parameters

2 2
g(H—z’H—l’Hl’H2)= Z (JJW"(X,_V)dXdy—M,,>

(18)

where w, is the local upwelling velocity across the nth inter-
face and M, is My ,om for n= —1,0 and My yom + Misaow fOr
n = 1, 2. The absolute minimum of this function, when ¢ =0,
corresponds to the H, that satisfy the constraints (16). A
quasi-Newton minimization routine was used to find the
values of H, for which % = 0 and therefore complete the solu-
tion for the stratification and circulation in the model. Equa-
tion (18) is obviously highly nonlinear in the parameters H_,,
H_,, H, and H,, and we have found no mathematical proof
for the uniqueness of the solution obtained for these parame-
ters from (18). The physics of the problem and some experi-
mentation with the routine used to solve for H, suggest that
the solution is unique.

Results and Discussion

Figure 2 shows the pressure in layers —1, 0, and + 1. Note
that although it was not so required a priori, the circulation in
layers —1 and 1 is weaker than that of layer 0. This justifies
(or at least is consistent with) the truncation of the model to a
finite number of moving layers, in order to approximate a
solution for the circulation in the layers assumed moving. (In
the full problem, however, the vertical extent of the circulation
must be determined by the dynamics). The solution is shown
for the parameters M, .., = 2.5 x 10® m?/s = 2.5 sverdrup
(Sv), Uy = 0.2 cm/s, M, g, = 0.3 Sv, and 4, = 1 cm?/s. The
difference wg o, — Wo potome integrated all over the basin, is
positive and equal to the transport of the inflow. This ensures
that the total mass in layer O is constant, although water is
entering it from x, and leaving through cross-interfacial up-
welling. The positive Wg ., — Wo bottom induces a northward ve-
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locity through the vorticity equation (9), therefore turning the
inflow northward, as seen in Figure 2. This northward flow is
forced by the cross-interfacial velocities which are present due
to the vertical mixing. It does not exist in the ideal fluid case
presented in the previous section.

Examining Figure 2, note that the inflow proceeds westward
a distance Ly, which is only about a half of the basin width
before turning northward. One would like to know what de-
termines this distance and whether it can become so small as
to form a narrow eastern boundary current, with friction or
nonlinearity dominating the dynamics and where the physics
of the model is no longer valid.

Ly From Rossby Wave Argument

It is possible to derive an expression for Ly by considering a
linearized time dependent problem. The argument is similar to
that used to explain the existence of the western bourdary
current (WBC) in terms of Rossby waves [Pedlosky, 1979]. In
the WBC case the balance is between eastward propagation of
short Rossby waves and their dissipation (and trapping) by
horizontal friction. Here westward propagating long Rossby
waves are dissipated and trapped near the eastern boundary
by the vertical density diffusion.

Consider a continuously stratified ocean, and linéarize the
equations of motion about a basic state of rest and a linear
vertical density profile j(z). The linearized equations for the
small perturbations about the basic state are

1
fu=——p, (19q)
Po
1
Jo=—px (19b)
Po
p.= —9p (19¢)
P+ Wh, = AP, (194)
u,+v,+w,=0 (19¢)

From (19) a single equation for p(x, , z, t) can be derived

B

Dozt + 5 P = APz (20)
" fp.po) v
Substituting a wave solution
p= eikx+imz—iat (21)
we find the dispersion relation
— Bk
4 im*A (22)

T

The real part of o is the frequency of a westward propagating
long Rossby wave. The imaginary part is the decay due to the
vertical diffusion. A wave generated at the eastern boundary
will travel westward at a speed C,, = — B/(m*f*/N?), with its
amplitude decaying with the e-folding diffusion time

ty=(m*2)"! (23)
The distance such a wave travels westward is
Ly=|C Ita=——ﬂ—— (24)
g.x m4(f2/N2)/1y

which is the expression we were after, as can be further verified
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Fig. 2. Pressure in layers (a) 1, () —1,and (c) O for the three-moving-layer solution of section 5.

by experimenting with the size of the mixing coefficient and
the latitude of the inflow [ Tziperman, 1987].

After turning northward the flow becomes narrower. This
effect is entirely due to the variation of the Coriolis parame-
ters f and B with latitude and the resulting slower speed of the
Rossby waves north of the inflow region, as given by the
expression (24) for Ly. The dependence on the vertical wave
number m simply expresses the fact that an inflow of smaller
vertical scale will have a smaller Ly because it will be dissi-
pated faster by the vertical diffusion.

The setup of a deep buoyancy-driven circulation was dis-
cussed by Wajsowicz [1983] and Kawase [1987], among
others. There, Kelvin and Rossby waves complete against dis-
sipation and are responsible for the penetration of the circu-
lation from the boundaries or source region into the basin
interior.

The vertical velocity difference across layer 0 is shown in
Figure 2d. Its horizontal distribution is similar to that of the
horizontal circulation in layer 0, and it is clear that specifying
uniform vertical velocities would result in wrong circulation
patterns.

As the fluid flows northward and the current becomes nar-
rower, the Rossby and Ekman numbers may become large
and violate the assumption of geostrophy. Writing these non-
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Fig. 2d. The vertical velocity difference across the inflow layer, w,
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dimensional numbers in terms of the problem’s parameters, we
find that they are, in fact, small for the parameters used to
obtain the above solution. The northward flow, although
narrow relative to the basin width, is therefore still in geo-
strophic balance, with the linear vorticity equation (9) gov-
erning the dynamics.

It is instructive now to compare the diffusive solution found
above to the ideal fluid case examined in section 4. The circu-
lation is obviously different, owing to the meridional flow
forced by the vertical diffusion, as opposed to the purely zonal
flow in the ideal fluid case. Another difference, perhaps more
fundamental, is in the number of boundary conditions that
may be applied and the amount of information that can be
extracted from the model as part of the solution. The addition
of vertical diffusion to the dynamics enables one to add
boundary conditions on the upwelling across the layer inter-
faces and in return to calculate the average vertical stratifi-
cation, as represented by the H,. Note that we cannot specify
the upwelling locally, but can only specify it in an integral
sense, by specifying the total upwelling across a given inter-
face. The local variations in the cross-interfacial velocity are
determined by the model itself (Figure 1).

As 4, — 0, the diffusive solution changes in two ways. First,
the interior is not diffusive enough to support the specified
amount of cross-interfacial flux, and as a result the integral
constraints (16) cannot be satisfied by realistic values of the
H,. The reason for this is that as 4, becomes smaller, the
depth scale of the density field, 4,/w, becomes smaller, too,
and at some stage the finite layers cannot resolve the vertical
density structure and the solution breaks down. For the pa-
rameter range examined here, this happens for 4, < 0.5 cm?/s,
and one must then specify the eastern boundary stratification
and drop the additional boundary conditions (16). Then, with
the H, fixed and specified, as 4, gets even smaller, the circu-
lation reduces to a zonal flow as in the ideal fluid case. One
assumes that mixing in the western boundary current takes
care of the integral constraints on the total mass in each layer
by allowing large enough cross-interfacial fluxes there. It is
also possible that the inflow leaves layer 0 across the basin
boundaries (e.g., across the equator).

The Circulation Above and Below the Inflow,
the Vertically Integrated Circulation

To understand the circulation found for the layers above
and below the inflow (Figure 2), consider the vertically inte-
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Comparison of (a) the vertically integrated circulation forced by the inflow and (b) the combined transport of

layers —1, 0, and 1 calculated by the three-layer model. See text.

grated circulation forced by the inflow. We have assumed that
far above and below layer 0 the horizontal velocities vanish,
the layer thickness becomes uniform in (x, y), and because the
vertical velocity depends on the layer thickness through the
density equation, it also becomes uniform in (x, y). The verti-
cal velocity at layers far enough above the inflow is therefore

+ M,

inflow

Wiop = (Mpotom Y/area = const

and far below the inflow

wbolmm = Mboilom/area = const

Integrating the vorticity equation over all the layers in be-
tween, we obtain the total northward transport forced by the
inflow,

B X

all moving layers

vnhn :f(wmp - wbotlom) :fMinflow area

The transport stream function for this flow is shown in Figure
3a. Comparing Figure 3a and the circulation in layer 0 (Figure
2), we see that the vertically integrated circulation does not
turn northward near the eastern boundary, as found for layer
0. Instead, most of the inflow flows westward to the western
boundary current region and then returns to the interior and
flows northward, filling the basin width as in a Stommel-
Arons type model [Stommel and Arons, 1959].

The difference between the vertically integrated signal and
the circulation in layer 0 means that somewhere above and
below the inflow there must be a southward circulation near
the eastern boundary, canceling the signal of the narrow
northward flow in layer 0. Examining now the solution for
layers +1 and —1 (Figure 2), we see that there is such a
return flow in both layers near the eastern boundary. Figure
3b shows the transport streamlines for the three layers togeth-
er, and one can see how the transport in layers +1 and —1
modifies that of layer 0, so that the total horizontal circulation
of the three layers is very close to that of the Stommel-Arons
type solution (Figure 3a). The small differences between Fig-
ures 3a and 3b are presumably taken care of by the weak
circulation ignored by the present model in layers above layer
—1 and below layer +1.

6. EFFECTS OF HORIZONTAL ADVECTION

So far, the horizontal advection and diffusion terms in the
density equation were ignored on the assumption that iso-
pycnal surfaces are nearly horizontal (¢ = Ayzp/A,p « 1). In
this section the conditions for these terms to be small are
derived by expressing ¢ in terms of the forcing parameters.
Then the effects of the horizontal advection are incorporated
into the model using a perturbation expansion in powers of ¢.

The scale for the horizontal variation in density, Ayp, may
be taken to be equal to the variation of the density across the
inflow on the eastern boundary. The thermal wind relation to
the inflow region, fu, = (9/po)p,, gives the scaling relation

SU, _ gApp
H, Poy2 — ¥1)

or
[U(y; — y)Holpo f pof

Ayp = =M, 25
Hp gHo2 inflow gHoz ( )

This gives

M,
- p0f02 inflow (26)
HogAyp

where A, p = Ayp is the density range represented by layer O.
As long as the transport of the inflow, M, ., is relatively
weak, ¢ is small and the density equation is (3) to a good
approximation. With the parameters used to obtain the solu-
tions in Figure 2,

po=1g/em’ f, =f<%—yg>=7x 1075 s
(27)
Hy=350m Ay, p = 0.0002 g/cm?

M =0.3 Sv

inflow
wefindex 6 x 1072« 1.

Although small, the O(c) deviations from the vertical density
equation (3) will affect the solutions for the thickness and
circulation derived above. For ¢ « 1, it is possible to calculate
the corrections due to horizontal advection by expanding all
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variables in powers of ¢

u,=u, P +eu,P+0E?) h,=h"+ed,+0@EH) - (28)

Consider now the problem of three moving layers, as dis-
cussed in section 5, but with the full density equation (2) in-
stead of the vertical one (equation (3)). After substituting the
perturbation expansion in (1) and (2), the O(1) equations are
simply the equations used in section 5. It is possible to pro-
ceed, as was done in section 5, by calculating the O(1) thick-
ness fields in terms of the H, and then to calculate the H, by
applying the constraints (16). In this section we are interested
in the corrections due to horizontal advection, and for that
purpose the O(¢) equations and the appropriate boundary con-
ditions need to be considered. The O(e) equations are

1
fun(l) = - pnv(” (29a)
Po
1
fo, 0 =—p, @ (29b)
]
pnz(l) = —gPn (290)
u, M+, P +w, D=0 (294)
0.\ 1
w(l) — }‘V<£> + [_u(o)px(o) + U(O)py(o) + 1"V"2p(0):| o
P, Pz
(29¢)

The addition of the O(¢) horizontal diffusion may cause the
perturbation expansion to break down in places where O(1)
fields have discontinuous first derivatives. Also, boundary
layers of O(¢) width may be required near horizontal bound-
aries to assure the no-flux condition at the boundaries. To
avoid these problems, we assume that the horizontal diffusion
is very weak even in comparison with the horizontal advec-
tion, set A, = 0, and solve for the second-order effects due to
the horizontal advection only.

To derive an equation for the O(g) thickness corrections d,,,
start with the O(g) voriticity equation, derived from (9) and
(28),

Blv,d, + v, 8,7 = fIw,_, Vx, y) — w,Dx, ¥)] (30
In density coordinates, w'") from (29¢) can be written as
o 17w
w) = /‘LV - + 40z © 4 ;0 ©0) (31)
op z, x y
which can then be written in discrete layer form
A A (1)
w, M = 2p(ppey — P! (0,),+1P G L
hn+1 +8dn+1 hn +£dn
+ 4,9z, @ 4 p @7 © (32

Here w, " is the O(¢) correction to the vertical velocity across
the interface between the n and n + 1 layers and z,” and is
the O(1) height of this interface. Expanding the first term on
the right-hand side of (32) gives

=Ay 1P —Ap

w, N = Ao, 1 — Pn)_l[m dyiy — [h O d"]

0 ©0) (0), ©)
+u, Znx + v, Zny

(33)

To obtain an equation for the d, from (30), it is necessary to
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express the O(e) velocity v,V in terms of d,. The hydrostatic
equation applies to the O(g) fields, and by assumption the
horizontal pressure gradients vanish for layers other than +1,
0, and —1. We can therefore express the Of(¢) pressure in
terms of the O(e) thicknesses d,, as in (8), with d, replacing h,
and p,'" replacing p,. Such a relation can be used together
with the geostrophic equations (29) to express v,") in terms of
ad /dx. Substituting (33) and v, into (30), one gets a coupled
set of first-order differential equations for the d,, in the form

0

— dx, y) = F (h,, d,) (34

0x
These equations can now be integrated from the eastern
boundary to give the corrections to the layer thickness every-
where. At the eastern boundary, d,(x,, y) = 0, because the total
thickness there, h, + &d,, is given by the boundary condition
(13) and is satisfied by the O(1) thickness h,.

Figure 4 shows the solution to (34) with the parameters as
in the O(1) solution of section 5. The effect of the O(g) horizon-
tal advection in the density equation is to move the stream-
lines in the direction of the O(1) flow. In regions of westward
0(1) flow the total O(1) + O(¢) flow extends further westward,
while north of this region, where the O(1) flow is in the north-
east direction, streamlines of the O(1) + O(g) circulation are
pushed eastward. The results can be interpreted in terms of
Rossby waves, extending the arguments of section 5 to include
the effects of advection on the propagation of the waves. Here
the waves are advected by the flow, in addition to propagating
westward, so that they reach points more or less further west-
ward, depending on the direction of the advecting flow, before
being dissipated by the vertical diffusion.

7. RELATION TO OBSERVATIONS

The Mediterranean Outflow

The most obvious feature of the solutions presented in the
previous sections is in the turning northward of the flow en-
tering from the eastern boundary (Figure 2). Arhan [1987]
presented and analyzed observations indicating that the Medi-
terranean outflow turns northward, in a way resembling the
model results presented above, after entering the eastern
North Atlantic. In particular, he showed dynamic height maps
at the depth of the Mediterranean outflow from Maillard
[1986] and salinity maps from Kdse and Zenk [1987], all
indicating that the Mediterranean outflow turns northward
before getting to about 30°W. His analysis seemed to show a
northward flow of the upper Mediterranean water, and a
southwest flow of the lower Mediterranean water. He tried to
explain both these features by cross-isopycnal velocities re-
sulting from double-diffusive mixing activity in the Medi-
terranecan tongue region. The resemblance of the above obser-
vations and present model results is appealing, and we would
like now to study the sensitivity of these results to the model’s
assumptions in order to examine the relevance of the dynam-
ics used in the model to the Mediterranean outflow.

An important assumption made here is that all the mass
entering some density range (layer) from the eastern boundary
must leave this density range through interior cross-isopycnal
velocities. This assumption is the basis for the application of
the integral constraint (16) of constant total mass of water of
given density. There are two possible problems with this as-
sumption. First, if the interior mixing is too weak, the interior
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Effects of horizontal advection terms in the density equation: (a) O(¢) and (b) O(1) + O(e) pressure in layer 0 from

the solution of section 6. The O(1) solution is as in Figure 2.

cannot support a large enough cross-isopycnal mass flux, and
the integral constraint based on this assumption cannot be
used. This case was discussed in section 5, where the ideal
limit of the diffusive solution was analyzed. Another possi-
bility is that the diffusion (mixing) is large enough but some of
the inflow into a given layer leaves this layer across the gyre
boundaries (across the equator in the western boundary cur-
rent region, for example), instead of through interior cross-
interfacial velocities.

Figure 5 shows the circulation when none of the inflow
mass is absorbed by the interior cross-isopycnal velocities.
Solutions are shown for both the f plane case (f is constant
unless differentiated, and B is constant) and the variable f and
B case. The integral constraint applied in this case is

j_[ w, dx dy = My yom n=-10,1,2 (35)

instead of (16). The averaged vortex stretching in the inflow
layer in this case is zero,

J:[ (wO,top - WO,bottom) dx dy = 0 (36)

and the vorticity equation Bvohg = f(Wg 10p — Wo pottom) implies
a southward as well as a northward circulation in the interior.
In the B plane case, with fand f constant, the inflow is equally
split into southward and northward parts (Figure 5b). When
the B plane approximation is not made and both fand § are
functions of latitude, this symmetry is broken (Figure 5a) and
the southward flow is much weaker.

This significant difference between the f plane case and the
variable f and B case is a result of the integral constraints (16)
and demonstrates the importance of calculating the correct
basic stratification as part of the solution. In the § plane case
a given difference Aw = w; ,, — Wg poyom fOrces the same me-
ridional circulation everywhere. The condition (36) results,
therefore, in a symmetric vertical velocity distribution and
horizontal velocity field (Figure 5b). Note that because the
vertical velocity field is coupled to the horizontal velocity field
through the vorticity equation and the stratification, contours
of Aw look like the streamlines of the horizontal flow.

When fand B are functions of y, there can be no flow across
the equator, where f= 0, and streamlines of the southward
flow must hit the western boundary before they reach y = 0.
The constraint (36) is satisfied in this case by balancing a large
region of small and negative Aw with a smaller region of large
and positive Aw. This vertical velocity distribution forces, in
turn, a weak southward flow and a stronger northward flow,
as seen in Figure 54. One may conclude that even when not all
the inflow is absorbed by the interior cross-isopycnal veloci-
ties, it will still tend to flow northward as seen for the Medi-
terranean outflow.

Another assumption made in the model is of a constant
diffusion coefficient in the density equation. Although a more
realistic parameterization should probably have a mixing coef-
ficient which varies with the buoyancy frequency [Gargett,
19847, this should not change the horizontal circulation found
here very much. As long as [§ (W 0, — Wo bottom) = Mingiow > 0,
the vorticity balance implies a northward flow, and this does
not depend on the parameterization of the mixing. A variable
diffusion coefficient means that the vertical velocities are bal-
anced by the mixing in a different manner, the basic stratifi-
cation may change, and the westward penetration distance of
the inflow may be different. But the average structure of the
vertical velocity field, the basic vorticity balance, and therefore
the northward flow will not change significantly.

A final assumption we discuss in relation to observations
is that the density surfaces are nearly horizontal (¢ =
Aup/A,p « 1). When leaving the straits of Gibraltar the Medi-
terranean water is heavier than the bottom water of the North
Atlantic. There is, as a result, a large horizontal density vari-
ation there. This variation is not, however, the Ayp used for
the scaling arguments of sections 2 and 6. The heavy Medi-
terranean water flows along the shelf, entrains lighter sur-
rounding water, increases in volume, and decreases in density,
until it reaches a depth where its density is equal to that of the
surrounding stratification and it can spread horizontally. In
the model presented above, the inflow from the eastern
boundary represents the inflow of the diluted Mediterranean
water, of density equal to that of the density surface it spreads
on. There is no contrast in density between the water of the
inflow and the interior stratification, and the scale for Agp is
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calculated from the transport of the inflow, keeping ¢ not too
large. It is difficult to estimate the actual transport of the
diluted Mediterranean water from observations and therefore
difficult to estimate ¢ for the Mediterranean outflow. As stated
before, we have not tried to use “realistic” values for the prob-
lem and preferred concentrating on the understanding of the
physics of the problem.

To summarize, the tendency of the inflow to turn northward
is a fairly robust feature of the model, which also has some
support in observations of the Mediterranean water circu-
lation in the North Atlantic. For a more quantitative compari-
son of model and observations one needs to obtain estimates
of the magnitude of the mixing coefficient, of the transport of
the Mediterranean water after it entrains North Atlantic water
and starts spreading horizontally, and of how much of the
Mediterranean water is transformed to other density ranges
by interior mixing.

(right), with f and B functions of latitude. (b) Same as in Figure 5a, for the plane f plane case.

Eastern Boundary Currents

The Rossby wave argument in section 5 indicates the possi-
ble existence of broad eastern boundary currents in a stratified
ocean. These boundary currents exist due to the dissipation
and trapping of long westward propagating Rossby waves by
vertical diffusion of density and cannot exist without both the
stratification and the diffusion. This is, perhaps, a possible
explanation for the deep flow calculated by Saunders [1982] at
a depth of 850-1200 m in the eastern North Atlantic.

A completely different mechanism for explaining these ob-
servations was suggested by Schopp and Arhan [1986]. They
used an ideal ventilated model in which the northward mid-
depth flow was driven by Ekman pumping far to the north.

8. CONCLUSIONS

We repeat some of the more general conclusions concerning
the modeling of buoyancy-driven flows. When modeling deep
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flows, where the buoyancy forcing is due to mixing rather than
to direct atmospheric heating, the model must determine the
cross-interfacial velocities as part of the solution by relating
them to the stratification through the density equation. Deter-
mination of the correct average vertical stratification (repre-
sented by H, in the model presented above) is an important
part of the solution. Wrong average vertical stratification will
drive the wrong horizontal circulation and may not satisfy the
condition of constant mass in a given density range (layer).
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