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Abstract

A Primitive Equation Ocean General Circulation Model (PE OGCM) in a global configuration similar
to that used in coupled ocean-atmosphere models is fitted to climatological data using the adjoint method.

The ultimate objective is the use of data assimilation for the improvement of the ocean component of

coupled models, and for the calculation of initial conditions for initializing coupled model integrations. We

argue that ocean models that are used for coupled climate studies are an especially appropriate target for

data assimilation using the adjoint method.

1. Introduction

Ocean climate models that are used in coupled
ocean-atmosphere model studies are an especially
important target for data assimilation efforts. Data
assimilation can be used to improve model parame-
terizations, and to calculate their poorly known pa-
rameters such as eddy coefficients, surface boundary
forcing fields, etc. The assimilation methodologies
can also be used to find optimal initial conditions for
coupled model climate simulations. The improved
ocean model parameterizations and the initial con-
ditions obtained through data assimilation should

clearly lead to an improved climate simulation of

the coupled ocean-atmosphere model.

The combination of OGCMs and oceanographic
data for the above purposes can be formulated as
an optimization problem by minimizing a cost func-
tion which measures the degree to which the model
equations are satisfied, as well as the distance of
the model results to the data. The minimization
of this cost function may be obtained using itera-
tive algorithms such as the conjugate gradient al-
gorithm, with the gradient of the cost function ef-
ficiently estimated using a numerical model based
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on the adjoint equations of the original model equa-
tions. Thus this optimization approach is often re-
ferred to as the “adjoint method” (e.g. Le Dimet and
Talagrand, 1986; Thacker and Long, 1988; Wunsch,
1988; Tziperman and Thacker, 1989). The opti-
mization approach to data assimilation is the only
methodology allowing an efficient estimation of a
large number of internal model parameters and thus
has the potential of leading to the model improve-
ment that is clearly required for climate studies. In
addition, the computational cost of both the adjoint
method and coupled ocean-atmosphere climate sim-
ulations limits them to about the same degree of
model resolution (presently medium to coarse reso-
lution ocean models). Hence the data assimilation
problems related to coupled models are an excellent
match to the capabilities of the adjoint method.
The work described here is a step towards the
ultimate goal of using the adjoint method with
the ocean component of coupled ocean-atmosphere
models and has three specific objectives. First, we
would like to investigate the issue of model formula-
tion for such optimization problems, and in partic-
ular the surface boundary condition specification.
Second, we shall examine the optimization prob-
lem formulation for PE models and its effects on
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the success of the minimization. Finally, we shall
demonstrate methods for efficiently initializing the
gradient-based optimization with solutions obtained
using simpler, sub-optimal, assimilation methodolo-
gies. This report summarizes the main findings of
Sirkes et al., (1996, hereafter STT96) and the reader
is referred to that work for details not provided here.

Throughout this report, we concentrate on techni-
cal issues that must be confronted if full-complexity
ocean models are to be used with optimization ap-
proaches such as the adjoint method. Because of
the coarse resolution of the ocean models used in
climate studies, our objective cannot be the optimal
estimation of the state of the ocean. We can only
expect to improve the simulation of the these models
as much as is allowed by their coarse resolution, and
thus increase the reliability of coupled models incor-
porating such coarse ocean models. The estimation
of an optimal ocean state from observations must be
done using higher resolution models, and probably
using simpler and less computationally demanding
assimilation approaches.

While there is little doubt that future applica-
tions of the adjoint method to ocean GCMs should
use time dependent models, we still maintain the
steady state assumption in this work, because it pro-
vides a relatively simple framework for studying the
many still un-encountered problems involved in for-
mulating optimization problems based on a primi-
tive equation OGCM.

Although the combination of 3D ocean climate
models with data is of obvious interest, it is surpris-
ing to realize that there have only been very few
efforts so far trying to apply the adjoint method
to full complexity 3D ocean models. Tziperman et
al. (1992a,b) have examined the methodology using
simulated data and then real North Atlantic data;
Marotzke (1992), and Marotzke and Wunsch (1993)
have considerably improved on the methodology and
analyzed a North Atlantic model; Bergamasco et
al. (1993) used the adjoint method in the Mediter-
ranean Sea with a full PE model, and Thacker and
Raghunath (1993) have examined some of the tech-
nical challenges involved in inverting a PE model.
All of these studies, including the present one, are
based on the adjoint of the Geophysical Fluid Dy-
namics Laboratory (GFDL) model developed by
Long et al., (1989), and generously made publicly
available. Recently, Schiller (1995) and Schiller and
Willebrand (1995) used an approximate adjoint of
the GFDL PE model to calculate surface fluxes and
to estimate the North Atlantic hydrography. It is
worthwhile noting that such adjoint models can also
be used for somewhat different data assimilation ap-
proaches than used here, such as the approach of
Bennett and Mclntosh (1982).

In the following sections we describe the model
and data used in this study (Section 2), and discuss
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the formulation of the optimization problem (Sec-
tion 3). We then briefly present some results demon-
strating the general issues discussed here (Section
4), and finally discuss the lessons to be learned for
future work and conclude in Section 5.

2. Model and data

One of our main ultimate objectives is to use data
in an effort to improve ocean models used in climate
simulation runs. When choosing a model for the in-
verse/ assimilation, we therefore take the approach,
that it should be possible to run independently in
a simulation mode. This determines our choices of
model and surface boundary condition (b.c) formu-
lations. We use the GFDL PE model, in a coarse
resolution global configuration (roughly a 4 degrees
resolution in the horizontal and 12 levels in the ver-
tical, see STT96 or Bryan and Lewis, 1979). The
Arctic Ocean is not included in our model. The
model geometry and resolution are also similar to
those presently used by coupled ocean-atmosphere
models. ‘

The choice of surface boundary condition formu-
lation turns out to be a crucial factor in the op-
timization problem that we have set out to solve
here. There are two commonly used surface bound-
ary condition formulations: flux conditions, in which
the heat flux is specified independently of the model
sea surface temperature (SST), and restoring condi-
tions in which the heat flux is calculated by restoring
the model SST to a specified (possibly to the ob-
served) SST distribution. Similarly, specified fresh
water flux or restoring conditions may be used for
the salinity surface boundary conditions.

Previous applications of the adjoint method to 3D
GCMs used flux conditions in an effort to calculate
the surface fluxes that result in a good fit to the ob-
served SST as well as to the interior temperature.
Unfortunately, the results were not satisfactory, and
a large drift of the surface temperature from the ob-
served one is found, up to 6 degrees at some places.
Tziperman et al. (1992b) suggested that this drift is
the result of using flux boundary conditions, rather
than restoring conditions that are normally used in
ocean modeling. Marotzke and Wunsch (1993) pro-
posed that this drift might be a result of the use of
a steady model which lacks the large seasonal sighal
in the SST, and that this problem might be resolved
using a seasonal model. ‘

It is well known that ocean GCMs give very poor
results when driven by specified surface heat fluxes
rather than using restoring to the observed surface
temperature. It is also known that when run un-
der restoring conditions to observed SST and surface |
salinity, ocean models fit the observed temperature
and salinity quite well, yet produce very poor esti-
mate of the surface fluxes of heat and fresh water,
and therefore of the meridional fluxes of heat and
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fresh water (Tziperman and Bryan, 1993). Boning
et al. (1994) suggested that the poor simulated
meridional fluxes are due to the non realistic merid-
ional circulation in most ocean models. We would
like to suggest that this deficiency of ocean mod-
els, rather than the lack of a seasonal cycle, is the
reason for the inability of previous inverse studies
to obtain a reasonable solution for the temperature
distribution.

Now, in coupled model studies, it is presently
more crucial for the ocean model to get the SST
right than the heat flux, as the latter may be cor-
rected for, if needed, using the artificially added
flux correction. This dictates our choice of sur-
face boundary condition formulation that is different
from what was used in previous applications of the
adjoint method to similar models, namely a restor-
ing boundary condition rather than flux boundary
conditions. Under restoring boundary conditions
the model is driven with an implied air-sea heat flux,
HS5ST  that is calculated at each time step from the
difference between the model SST and the SST data.
Similarly, an implied fresh water flux, [E — P]55,
is calculated from the difference of the model sea
surface salinity (SSS) and the surface salinity data
(see, for example, STT96 or Tziperman and Bryan
(1993) for the explicit expressions for these fluxes).

With the above model and using the restoring
boundary conditions, our model produces as good
a simulation as one normally obtains in such coarse
model simulations without data assimilation, and
the detailed results are shown and analyzed in
STT96. These results still leave plenty of room for
improvements through data assimilation.

The data used in this study are the annually av-
eraged temperature and salinity analysis of Levitus
(1982); the annually averaged climatologies of heat
flux from Esbensen and Kushnir (1981), of fresh wa-
ter flux ([F — P]) from Baumgartner and Reichel
(1975) and of winds from Hellerman and Rosenstein
(1983). The large errors expected in these climato-
logical data sets, especially in the surface flux data,
dictate the values of the weights used in the cost
function formulation (STT96).

3. Optimization problem

One of the main lessons that have been learned
over the past few years while trying to combine sim-
plified 3D ocean models and data, is that the totrect
formulation of the inverse problem is of crucial im-
portance to the success of the optimization, and that
much thought and understanding of the dynamics
should enter the process of posing the optimization
problem. We find that a Primitive Equations model
is even more sensitive to the precise problem speci-
fication.

Once the data and model formulation have been
specified, the next stage in the formulation of the
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inverse problem is to specify a measure (cost func-
tion) for the success of the optimization.. In our
case the cost includes dynamical constraints which
require the solution to be as close as possible to a
steady state of the model equations.
straints are estimated following Marotzke’s (1992)
suggestion by running the model N time steps and
including in the cost function the squared differ-
ence between the temperature at time step N and
the temperature at the beginning of the integration
(n = 0) at each horizontal grid point (4, j) and level
k, (T7EN — Tp°)?. Similar terms penalize the de-
viation from steady state of the salinity S, of the
horizontal velocity field at all levels (u,v), and of
the barotropic stream function . The model inte-
gration time N At should be of the order of the time
scale of physically relevant processes in the model,
and is set here to two years. The cost also includes
data penalty terms that are simply the square of
the difference between the data and the model solu-
tion. The complete cost function may be written as
follows, '
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In this equation, a superscript ()¢ denotes the data;
Tn=0, gn=0 yn=0 =0 4"=0 are the initial condi-
tions for the temperature, salinity, horizontal veloc-
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ities and barotropic stream function searched for by
the optimization; H and [E — P] are the optimal
heat and fresh water fluxes also searched for by the
optimization when flux conditions are used in the
_optimization, together with term [VI] which requires
the optimal fluxes to be close to the observed ones.
When restoring conditions are used as. we suggest
here, term [V] may be used instead of [VI] in order to
. force the fluxes calculated from the restoring condi-
tions to be close to the flux data. W:, Wf, Wf, w*
are the weights for the steady penalties at each level;
wI, WS WH WIE=P] are the weights for the tem-
perature, salinity, heat flux and [E — P] data penal-
- ties. The cost weights for the data and steady terms

are discussed in detail in STT96. Generally, each’

weight reflects the squared inverse expected error
in the corresponding cost term, and is normalized
by the number of penalties in each cost term. Due
to the weight normalization, if the deviation of the
model solution in each cost term from its corre-
sponding data is of the order of its expected error,
the value of each term is expected to be of order one.
Once the cost weights are chosen, a given constraint
can be said to be consistent with the assumed error
level if the corresponding term in the cost function
is less than one. Larger values of the temperature
and salinity data penalties (term II in (1)), for ex-
ample, would indicate that the solution is not con-
sistent with the Levitus analysis. A large steady
penalty contribution (terms LIII and IV) indicates
that the solution is not consistent with the steady
state model equations. An optimal solution that is
consistent with the data and the model equations
should therfore have all terms, representing dynam-
ical constraints as as well as data constraints, of the
same magnitude and smaller than one. In addition,
the residuals in a consistent solution must be ran-
domly distributed in space (assuming the errors are
homogenous, as implied by our choice of weights).
This full cost function, treated as a function of
the initial conditions for the temperature, salinity,
velocities and stream function presents a difficult
optimization problem. We now need to use our
knowledge of the dynamics of the oceanic general
circulation in order to simplify and reduce this opti-
mization problem to a more manageable form, while
not changing the actual problem to be solved. This
reduction procedure has three partss-a-reduction of
the cost formulation, a reduction of the space of con-
trol parameters, and a calculation of an initial guess
to the optimization solution using simpler assimila-
tion techniques. The combination of all three steps,
together with the careful model and boundary con-
ditions formulation presented above, is a necessary
condition for a successful assimilation effort.
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3.1 Reducing the cost form: Dynamical constraints
for velocities and barotropic stream function

Under the primitive equation approximation,
there are 5 prognostic fields:  temperature, salin-
ity, two horizontal baroclinic velocities and the
barotropic stream function. . In principle, each of
these needs to be required to be at a steady state
if such a model solution is desired. But note that
given the density stratification, the velocity field in
a rotating fluid adjusts to the density stratification
within a few pendulum days (equatorial regions may
have a longer adjustment time due to the larger ra-
dius of deformation there). Therefore, there seems
to be no point in penalizing the velocity field (terms
IIT and IV in (1)) separately from the temperature
and salinity fields (term I). Once the temperature
and salinity steady penalties (I) are minimized by
the optimization, the velocity field just adjusts to
the optimal stratification. Indeed, removing the ve-
locity and stream function penalties from the cost
function resulted in our experiments in an imme-
diate improvement of the convergence of the opti-
mization. The steady velocity penalties were still
reduced by the optimization to an acceptable level
although not explicitly in the cost function.

It is interesting to note that this issue did not arise
in the previous studies of Tziperman et al., 1992a.b;
Marotzke, 1992 and Marotzke and Wunsch, 1993.
These studies all used the simpler GCM developed
in Tziperman et al., 1992a, in which the momentum
equations were diagnostic, and therefore did not re-
quire separate steady velocity penalties. The issue of
dynamical constraints for the velocity field in a PE
model is one of the new insights we seem to have
gained by going to a full PE model in the present
study.

3.2 Reducing the space of control variables for a PE
optimization

A primitive equation' ocean model such as we

use here requires the specification of temperature,

salinity, horizontal baroclinic velocity field and the

barotropic stream function as initial conditions.

‘This multiplicity of initial conditions that must be

calculated by the optimization algorithm poses two

- potential difficulties. First, the parameter space is

significantly larger due to the addition of the baro-
clinic velocities and stream function as control vari-
ables, and hence more iterations are required to find
the cost minimum. Second, the additional control
variables are very different from the temperature
and salinity initial conditions, and thus pose new
conditioning problems (Thacker and Raghunath,
1993).

As in the previous sub-section, we can use our’
knowledge of the physics to formulate the optimiza-
tion problem in a way that is more likely to result
in an efficient solution. We noted above that given
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the density stratification, the velocity field in a ro-
tating fluid must adjust to the density stratification
within a few pendulum days.- It seems most rea-
sonable, therefore, that one would not need to cal-
culate initial conditions for the velocities, and re-
strict the optimization problem to finding only the
optimal temperature and salinity. The optimal ve-
locity field will be found by the model after a very

short initial adjustment period. This short adjust-

ment period should not have a significant effect on
the cost function that is based on the difference in

temperature and salinity over an integration period

of years. These considerations are not restricted to
steady state problems. In time dependent problems,
where the adjoint method is used to estimate the
initial conditions, the above arguments still hold if
the integration time is significantly larger than the
velocity adjustment time.

This procedure indeed results in a significantly
better conditioning of the optimization problem due
to the significantly reduced number of control vari-
ables, as further discussed and demonstrated using
specific examples in STT96. We note that Schiller
(1995) and Schiller and Willebrand (1995) have also
used only temperature and salinity as their control
_variables, as necessitated by their approximate ad-
joint approach. Their calculation seemed to con-

verge successfully in spite of not using the velocity

field as part of the control variables, in agreement
with the above arguments. ‘

3.8 Initial guess

If started too far from the absolute minimum of
the cost function, the gradient based optimization
could lead to a local minimum of the cost function
which does not represent the optimal combination
of dynamics and data (Tziperman et al., 1992b).
Initializing the optimization with a solution that is
close to the optimal solution can reduce the possi-
bility of falling into a local minimum, as well as save
much of the effort of minimizing the cost function
through the expensive conjugate gradient iterations.-

Such an initial guess for the optimization solution
can be obtained by using simpler assimilation meth-
ods that are not optimal in the least square sense,

yet have been shown to produce very good approxi- -

mations for the optimal solution. One such method
is the robust diagnostic method (Sarmiento and
Bryan, 1982), which has been shown by Tziperman
et al., (1992b) to produce a good approximation to
optimization problems trying to combine tempera-
ture and salinity data with dynamical constraints. A
second such approach (which we term “extended ro-
bust diagnostics”) has been proposed by Tziperman
and Bryan (1993) in order to produce an approxima-
tion to optimization problems that seek a solution
consistent with both air-sea flux data and surface
properties data (SST and surface salinity). In both
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cases the simple assimilation methods are straight-
forward to implement. They involve adding simple
nudging terms to the temperature and salinity equa-
tions, and running the ocean model to a steady state
in order to obtain the desired approximate optimiza-
tion solution.

- 4, Results

We now briefly discuss specific optimizations
demonstrating some of the above ideas concerning
the formulation of the model, boundary conditions,
and optimization problem, as well as the initializa-
tion using simpler assimilation methods. The full
analysis of these runs is given in STT96, including
many plots of the data, solution, residuals, etc.

We first note that both the Levitus data and the

~ steady state model solution obtained with no as-

similation are characterized by large values of the
cost function (entries (a) and (b) in Table 1), in-
dicating that both are far from being optimal as
reflected by their large cost values. For the steady
state solution this indicates that the solution is not
sufficiently close to the observations, so-that model
improvement is indeed needed.

4.1 Boundary condition formulation

In order to examine the issue of boundary con-
dition formulation for inverse problems involving
ocean GCMs, we have performed two optimizations.
In the first (entry (c) in Table 1), we have followed
the procedure used in previous inverse studies and
used fixed flux conditions. In this case, the air-sea
heat and fresh water fluxes are among the control
variables varied in this optimization in order to es-
timate the optimal heat flux resulting in minimal
cost function. In the second optimization (entry (d)
in Table 1) we have not included the surface fluxes
as control variables, but have used instead a restor-
ing flux formulation in which the surface fluxes are
calculated at each model time step from the SST
and SSS. In both cases the surface flux data penal-
ties (that is, V and VI in (1)) are not included in
the cost function. The cost function for these runs
included only terms I and II in (1).

As can be seen from Table 1, entries (c) and (d),
both runs result in consistent solutions of seemingly
acceptable cost function (that is, each term smaller
than one), and a well balanced distribution of the to-
tal cost between the different cost terms. However,
it turns out that the optimization using flux condi-

" tions converged to a solution that is characterized

by large deviations of the SST from the observed
one. The large SST deviations are similar to those
found by Tziperman et al., 1992b and Marotzke and
Wunsch (1993). These SST deviations are not re-
flected in the temperature data terms in the cost
function (Table 1) because these terms include both
the surface and deep temperature data penalties.
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Table 1. Summary of model runs and assimilations used in this study. Terms in brackets “()” were not
actually part of the cost function used in the optimization and are only given for comparison with

the other runs.

Run Cost Parts _ |Comments
data T'|data S|steady T |steady S|steady u,v|steady |data H|data [E — P)
(a)| 000 [ 0.00 | 9.18 8.98 11.97 3221. 0.15 1.87 data
(b) | 19.41 | 61.29 0.01 0.02 0.00 '0.00 0.25 1.92 steady state
(c) | 0.28 | 0.32 0.58 0.75 (0.06) (1.73) | (0.12) (1.03) optimization, flux b.c
(d) | 031 | 0.32 0.32 0.42 (0.03) (2.17) | (0.15) (1.81) optimization, restoring b.c
(e) | 0.31 | 0.32 0.51 0.49 0.06 1.47 0.15 1.81 robust (restoring b.c)
()| 031 | 0.35 0.51 0.50 0.06 1.48 0.10 0.66 extended robust

But an examination of the SST solution shows that
it is, indeed, very far from the data. This problem
does not exist when restoring boundary conditions
are used (run (d)), supporting our suggestion that
restoring conditions seem a preferable choice. More
detailed results and plots are given in STT96. Note
that the flux-conditions optimization of entry (c)
was not included in STT96, where less direct ways
of comparing the flux and restoring conditions were
used. This additional optimization, and its compar-
ison to (d) further strengthen STT96’s conclusions
concerning the boundary condition formulation in
inverse models.

4.2 Using simple assimilation methods to initialize
the optimization

Entries (e) and (f) in Table 1 demonstrate the ef-

ficiency of initializing the optimization with the ro-
bust diagnostics (Sarmiento and Bryan, 1983) and
extended robust diagnostics (Tziperman and Bryan,
1993) approaches. Note that the simpler assimila-
tion techniques provide a most significant cost re-
duction as compared with the cost value for both
the data and the steady state model solution. Their
efficiency and ease of implementation clearly justify
their use for initializing the gradient-based adjoint
optimization. 4

In fact, the additional cost reduction obtained by
the optimization (entry (d) in Table 1) which was
started from the robust diagnostics solution (entry
(e) in Table 1) is not very large, although the im-
provement is significant when the residual fields are
examined in detail (STT96). Clearly, when the op-
timization approach will be used for parameter es-
timation problems which cannot be done.using the
simpler assimilation methods, the inherent advan-
tages of this approach will be made even more ap-
parent.

5. Conclusions

This paper, which is a summary of the work more
fully described by Sirkes et al. (1996), presents a step
towards using the adjoint method of data assimila-
tion with the ocean component of coupled ocean-
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atmosphere models. The ultimate purposes of such
an effort are two: first, the improvement of ocean
climate models so that their simulations are closer
to the observed ocean even when they are run with-
out data assimilation; and second, the calculation of
an ocean state based on the available data and the
model equations, which can then be used to initial-
ize' coupled ocean-atmosphere climate simulations.
While we have not achieved these goals as yet, we
believe that an important progress was made. Let us
briefly summarize the main lessons we have learned
here:

Because our goal is to work with ocean models
that can also be run without data assimilation, we
have taken the approach that the model used for the
inverse calculation must be formulated so that it can
run independently in a simulation mode. A partic-
ular consequence of this approach has been the for-
mulation of the surface boundary conditions. Large
SST drifts have been encountered in previous inver-
sions using the adjoint method (Tziperman et al.,
1992b; Marotzke and Wunsch, 1993). These inver-
sions used a fixed-flux surface boundary condition
formulation. Marotzke and Wunsch have suggested
that the drift in their model towards colder surface
temperatures is due to a tendency of their model
towards “winter conditions” which results from the
lack of a seasonal cycle in their steady model. We
have shown that the drift in SST can be elimi-

nated in our model by using restoring surface bound-

ary conditions. Such boundary conditions are also

" more physical because they reflect a feedback be-

tween the SST and heat flux, as in the actual ocean-
atmosphere system. Previous inverse calculations
ignored this feedback, resulting in solutions charac- -
terized by a combination of a cooling surface flux
and very cold SST. In the real ocean-atmosphere
system, cold SST would be balanced by surface heat-
ing, as will be the case when restoring conditions
are used. We suggest, therefore, that the use of flux
conditions, together with the poor simulation of the
meridional circulation (and thus the meridional heat
flux) by many ocean models (Boning et al., 1994)
may be the cause of the SST drifts, rather than the
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lack of a seasonal cycle in the inverse model.

Our optimization approach provided a better so-
lution than both the steady state model solution ob-
tained with no data assimilation and the original
climatological data sets. This solution was much
more consistent with both the data and steady con-
straints, and therefore significantly more optimal in
the least square sense. In the context of coarse cli-
mate ocean models such as used here, we view “op-
timal” as a state of the ocean that can be used to
initialize coupled model climate simulations in a bet-
ter way than initializing from the data alone, or from
the model steady state, as is done today.

The use of a PE model in this study, as opposed to

simpler models used in our previous efforts, resulted
in some novel findings concerning the formulation of
inverse problems for such models. We have shown
that it does not seem necessary to include explicit
dynamical penalties for the baroclinic velocities and
barotropic stream function, because of the fast ad-
justment of the velocity field to the stratification in
a rotating fluid. It seems sufficient to penalize the
deviations of the temperature and salinity from a
steady state. The fast adjustment of the velocity
field to the stratification has also led us to suggest
that one can do well by using only the temperature
and salinity as control variables to be calculated by
the optimization. This suggestion is consistent with
the experience of Schiller and Willebrand (1995) and
should result in an improvement of the conditioning
of optimization problems based on PE ocean mod-
els. :

A most successful part of this study has been the
use of simple assimilation method to obtain good
approximations to the optimization problem. These
approximations are then used to. initialize the op-
timization, significantly reducing the minimization
effort in the optimization itself, as well as the possi-
bility of encountering local minima that may prevent
the optimization from finding the desired optimal
solution.

We feel that the technical aspects of inverting
complex PE ocean models treated here, as well as
the more general issues we dealt with, should be
useful to future studies directed at using data as-
similation with ocean climate models. There is a
clear and urgent necessity of improving ocean mod-
els used for climate studies, and of using these mod-
els to estimate the ocean state as well as is 4llowed
by the available data. We have argued here that
the adjoint method is a most appropriate tool for
obtaining these goals, and we feel that they should
and can be achieved in the near future.
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