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ABSTRACT

An efficient procedure is presented for analyzing oceanographic observations with the aid of a general circulation
model. Poorly known model parameters, such as eddy-mixing coefficients, surface forcing and tracer boundary
fluxes, can be calculated by fitting model results to observations. Optimal estimates for all model fields, including
the observed ones, can then be computed by running the model with the best-fit values of the calculated
parameters. Information about the resolution and the error-covariances of the model parameters can be computed.
This information is shown to be very valuable for critically evaluating how well the data determine the parameter’s
values. An adjoint model, similar in structure to the numerical model, uses information on model-data misfit
to improve estimates of the unknown model parameters, and improve the fit to observations. The procedure
is illustrated using simulated data and a simple, barotropic, nonlinear, quasi-geostrophic model. Examples are
discussed in which friction parameters, wind forcing, and the steady-state circulation are determined from

simulated vorticity and streamfunction observations.

1. Introduction

Any analysis of oceanic data uses a model in the
hope of explaining the data and improving the less
well-known aspects of the model. A major challenge
confronting numerical modelers and observational
physical oceanographers is to analyze the large quan-
tities of oceanographic data of many types with the aid
of complex numerical general circulation models
(GCMs). Numerical models have become quite so-
phisticated in recent years, but they must still be given
many poorly known inputs such as eddy-mixing coef-
ficients, surface forcing by heat and momentum fluxes,
and tracer boundary fluxes. There is normally no direct
information on many of these input parameters in
oceanic measurements, and numerical models are
‘presently not capable of using the existing data for the
interior temperature, salinity, and/or currents to de-
duce the unknown model inputs. The oceanic data it-
self is noisy and incomplete in spatial and temporal
coverages, and one would like to be able to use the
numerical model to obtain a better estimate of the ob-
served fields while improving the model itself.

The determination of a model’s input parameters is
usually referred to as an inverse problem, the direct
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problem being the simulation of the ocean assuming
values for the inputs to be given. Inverse models, unlike
numerical GCMs, are capable of using various types
of data in order to calculate mixing coefficients and
velocity field, but presently suffer from some limitations
as well. The model is often formulated as a set of linear
equations relating data and unknown parameters,
written in matrix form and solved by methods such as
singular value decomposition, or linear programming.
Computations are generally carried out in such a way
that the matrices, having dimensions of (number of
unknowns X number of equations ), must be stored in
the computer memory. One finds that the computa-
tional requirements with this approach rapidly increase
with model complexity, and in particular the storage
of the matrices becomes a limiting factor. As a result,
the models have been limited to low spatial resolution
(for box models, Wunsch 1978) or to simple local dy-
namics disregarding boundary conditions and mass
continuity (Olbers et al. 1985). :

A specific example may clarify the problem of large
matrices. For a GCM of the North Atlantic, with a 30
by 30 horizontal grid, eight vertical levels, and five fields
(two components of horizontal velocity, temperature,
salinity, and some passive tracer), the number of un-
knowns, not counting momentum and heat fluxes at
the surface, is 30 X 30 X 8 X 5 = 36 000. This is also
the number of model equations for these unknowns,
50 that the dimension of the matrix involved in using
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the aforementioned methods would be 36000
X 36 000, or more than 10° numbers. This is obviously
unacceptable for a model of such modest resolution,
and the storage requirements for a full oceanic GCM
would be formidable.

An inverse problem can also be formulated as an
optimization problem, in which case nonlinear models
can also be accommodated (Schroter and Wunsch
1986). A cost function measuring the model-to-data
distance is minimized with the model equations treated
as constraints. The minimum is computed by solving
a large system of coupled nonlinear equations for all
model variables (velocities, temperature, wind, etc.),
which is not a trivial task. With no information on the
gradient of the cost function with respect to all model
variables and inputs, the search for the minimum of
the cost function with respect to its many arguments
is very inefficient and can be very slow. In addition,
the optimization algorithm must be based on the Hes-
sian matrix of second partial derivatives of the cost
function (e.g., in Newton’s method), so it is again nec-
essary to confront a matrix whose dimensions are the
square of the number of unknown model parameters.

In order to work with large GCMSs, one needs an
efficient and storage effective way of computing the
gradient of the cost function for an oceanic inverse
problem involving a GCM. Then attention should be
focused on finding gradient-based algorithms that can
find the minimum efficiently. This is the approach
taken here.

An efficient way to calculate the gradient is provided
by the adjoint-equations technique, which is widely
used in engineering ( Hasdorff 1976). It has been pro-
posed for use in meteorological data assimilation (Le
Dimet and Talagrand 1986) and also for oceanographic
data assimilation (Thacker and Long 1988). The basic
idea is that the gradient can be computed using an
adjoint model, which integrates the adjoints of the par-
tial-differential equations that define the numerical
model. The first and most significant advantage of this
approach is that it allows the gradient vector to be ac-
curately evaluated for a computational expense roughly
equivalent to a single model run. This advantage is
easily appreciated by comparing this approach with
that of evaluating the gradient by finite differences,
which would require additional model runs for each
of the many variables. In addition, the adjoint tech-
nique provides a way to avoid having to work with
large matrices, and the resulting storage problems.

The purpose of this paper is to demonstrate how the
adjoint technique makes feasible the use of a full size
GCM for the analysis of oceanographic data. The ad-
joint technique serves as an efficient and powerful in-
verse method: unknown model parameters are calcu-
lated by fitting the model results to the data, and an
optimal estimate of the observed fields is obtained as
well. A solution for the model parameters is incom-
plete, however, without error and resolution infor-
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mation, and these can also be calculated using the
present approach. The method allows the use of steady
data such as averaged temperature, salinity and current-
meter measurements, as well as time-dependent data
such as transient tracers or observations of seasonal
processes. A simple barotropic nonlinear quasi-geo-
strophic model and simulated data are used here to
demonstrate the method. The steady circulation, wind-
forcing and friction parameters are calculated from
vorticity or streamfunction observations, and the im-
portance of the resolution information is demonstrated.

The present approach is closely related to the model
fitting discussed by Thacker and Long (1988), who
used a simple equatorial wave model to calculate op-
timal initial conditions in order to fit simulated obser-
vations. Thacker (1987) also discussed the calculation
of the covariance matrix for the calculated parameters,
and this is further developed here, extended to include
resolution information, and demonstrated by a specific
example. Wunsch ( 1988) has discussed the application
of optimal control methods to the oceanic transient-
tracers problem, demonstrating their advantages in the
case of time-dependent data. He used a matrix for-
mulation of the optimal control technique, in principle
equivalent to the one used here, although difficult to
apply to larger GCMs, as discussed above. Variational
data assimilation (Le Dimet and Talagrand 1986), ad-
joint sensitivity analysis (Cacuci 1981; Hall and Cacuci
1983), and other variational methods (Bennett and
Mclntosh 1982), are all based on similar approaches
to that discussed here. In addition, although using a
different methodology, Schroter and Wunsch (1986)
have used the same QG model we use here, and have
asked similar questions. The major difference between
their work and the present one is in the methodology
used. They have emphasized the discussion of the re-
sults, ignoring questions of efficiency and feasibility of
using the method with larger realistic GCMs, while as
shown above, one has to take care of these questions
in order to be able to use even a very simple oceanic
GCM with oceanographic data. Some of the specific
results concerning the QG model, as well as the dis-
cussion of the possibilities of using a numerical model
within an inverse procedure, are to some extent similar
in the two works,

Given a set of measurements of various quantities
related to the general circulation, the adjoint approach
proceeds as follows: A cost function is defined, mea-
suring the distance between model results and obser-
vations. The cost function is therefore a function of
both the observations and the unknown model param-
eters. Given an initial guess for the model parameters,
the numerical model is used to calculate the value of
the cost function. An adjoint numerical model is then
used to calculate the gradient of the cost function with
respect to the many unknown model parameters. Next,
an optimization algorithm (e.g., conjugate gradient)
uses the gradient information to obtain a new guess
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for the parameters, reducing the value of the cost func-
tion. Several such iterations are needed to obtain the
minimum value of the cost function, where model re-
sults and observations are as close as allowed by the
level of measurements noise. The optimal estimate for
the parameters is that corresponding to the minimum
value of the cost function. Having obtained the estimate
for the unknown parameters, the Hessian matrix can
be used to obtain error and resolution information that
is necessary in order to evaluate the computed solution.

Section 2 describes the methodology, including the
quasi-geostrophic model description (section 2a), the
definition of the cost function (section 2b), the deri-
vation of the adjoint equations and the optimization
procedure (section 2¢), and the calculation of error
and resolution information from the Hessian matrix
(section 2d). Some specific results of the quasi-geo-
strophic model runs are given in section 3, and we
conclude in section 4.

2. Method

a. Model, data and problem definition

The model used here to demonstrate this optimal-
control /adjoint-equations approach to studying the
general circulation is based on the nonlinear, quasi-
geostrophic, barotropic vorticity equation, in a closed
rectangular domain. The nondimensional equation is
(Veronis 1966; Pedlosky 1979):

V3, + ¥x + RI(Y, V)
= —V + ¢V + curlr(x, y), (1)

where (x, y) and (u, v) are the (east, north) coordinates
and velocity components respectively, 0 < x, y< 1, ¢
is the streamfunction, ¥, = v, —y,, = u, and the non-
dimensional friction parameters and Rossby number
are given by

o =Kn o _ Kb "
" e T gpL’ B2LD’

where § = df/dy is the gradient of the Coriolis param-
eter, D is the depth of the rectangular basin, L is the
horizontal scale of the basin, W is the magnitude of
the wind-stress, and K, and K, are coefficients of bot-
tom and horizontal friction. Two boundary conditions
are needed at each point on the boundary, due to the
horizontal friction term (Pedlosky 1979). The no-flux
and no-stress boundary conditions are used:

¥=0, {=vy=0, (2)

with { denoting vorticity. The finite-difference model
is described in appendix A; starting with an initial vor-
ticity field, the streamfunction is found by solving a
Poisson equation, and then the vorticity is advanced
in time. Computations are on a grid of I uniformly
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spaced grid points in the x-direction and J in the y-
direction.

The steady state streamfunction and the forcing
curlr, at all grid points, as well as the friction parameters
¢, and ¢, are regarded as unknowns, which are to be
calculated by fitting the model to observations. In the
examples described below, simulated observations were
used. These were obtained by running the model to
steady state, using curlr = —sin(wx) sin(wy), ¢ = 0.05,
e, = 0.0001 and R = 0.01, and saving the final stream-
function or vorticity to be used as data. Similar values
were used by Schréter and Wunsch (1986), and by
Veronis (1966). At these values the model is fairly
nonlinear, and the corresponding steady-state solution
for Y and { is shown in Fig. 1.

b. The cost function

Given the model and the observations defined in the
previous subsection, a cost function measuring the fit
of the model results to the observations now needs to
be chosen. We start by defining the cost function for
the quasi-geostrophic example used in this work, and
then make a few more general comments.

Suppose that the model (Al) is given some initial
conditions for the vort1c1ty ¢%, and is stepped forward
to calculate 1[/,,, §‘,J, and ¥} ij» where {7; and yj; denote
the vorticity and streamfunction at horizontal location
(i,J), and time level n. If {{ is in fact the steady-state
solution, the difference between the initial conditions
and the solution after one time step should vanish. In
addition, the model-to-data fit requires the difference
between the model solution and the observations to be
as small as possible. A cost function is therefore defined,
measuring the departure of the model solution both
from steady state and from the observations. For this
example assume that observations ¥ and { of stream-
function and vorticity are available at every grid point,
realizing that such datasets are highly artificial. The
cost function:

n=ZI1c’w

iJj
+ D (Wl — )
+ CPR - 62+ DY (8= )21 (3)

is a function of the unknown wind-stress curl and fric-
tion parameters via {};, which must satisfy the model
equations. Observation errors at different locations are
assumed to be uncorrelated, so C,,k) can be taken to
be elements of the inverse error-covariance matrix of
the observations ( Thacker 1987). Similarly, the coef-
ficients D ,Jk (k = 1, 2) can be interpreted as elements
of the inverse error-covariance matrix of bogus obser-
vations that indicate no time change in the stream-
function and vorticity.

Because the simulated observations are completely
consistent with an exact steady-state model solution,

- 5011)2

J(curlry, €, €,
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FiG. 1. The steady-state solution for streamfunction ¢ and vorticity {, used as simulated observations. The parameters used

to obtain this solution were R = 0.01, ¢, = 0.05, ¢, = 0.0001, curlr =

the optimal value of the cost function is J = 0. The
unknown parameters are then expected to be at their
“true” values, and the initial conditions fg found by
the optimization are the exact steady-state solution. In
a more realistic situation the data will not be consistent
with a steady-state model solution; the minimum of J
can be expected to be positive, and the optimal initial
conditions can be expected to differ both from the ob-
servations and from a perfectly steady state.

With noisy observations, one might need to add a
penalty term [ for example, the square of the Laplacian
of the vorticity (V?¢)? to the cost function, to ensure
a spatially smooth solution (Bennett and Mclntosh
1982; Thacker 1988)]. The terms proportional to
D fjk) can be thought of as penalty terms requiring the
solution to be in a steady state. In the limit that these
coeflicients get arbitrarily large, the initial conditions
will correspond exactly to a steady solution of the
time-dependent model. The ratio of C,,k) to D ,jk de-
termines how near to a steady state the solution will
be. In order to examine the performance of the adjoint
procedure under the simplest possible circumstances,
no noise was added to the simulated observations in
the runs described in section 3. Nevertheless, as will
be seen below, some interesting results and difficulties
are found.

Let us make a few general comments concerning the
general application of this approach to the general
oceanic circulation. In the place of the barotropic vor-
ticity equation, which is used here as an example, there
might be a primitive-equation model with capability

—sin(wx) sin(wy).

of simulating the transport of passive tracers, and in
the place of the artificial, model-generated stream-
function and vorticity data, there would be actual
oceanographic observations. Consider first the case of
time-dependent data such as transient-tracers data, or,
when modeling the seasonal variability of the ocean,
data that resolves the seasonal variability. For transient
tracers, every run of the forward model must span the
time over which observations are available, and the
cost function will contain appropriate terms measuring
the distance between tracer observations at different
times, and model results for the same tracers at the
times of the observations. The velocities, temperature
and salinity will still be required to be in a steady state,
usm penalty terms similar to those multiplying the
D in (3). When modeling the seasonal variability,
one may require the solution to have a one-year cycle,

using some appropriate terms in the cost function. Each
iteration will then involve running the forward and
adjoint models for one year.

Note also that terms maximizing and minimizing
different quantities of interest may be added to the cost
function in order to find the upper and lower bounds
on these quantities consistent with the data and the
model (Wunsch 1984; Schréter and Wunsch 1986).

With the definition (3) of J, our inverse problem is
to find the values of curl7, j, €, ¢ and {9 that mini-
mize the cost function J, therefore giving the best fit
of the model to the observations. The procedure used
to minimize J and calculate the correct parameters is
described in the following subsection.
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¢. Adjoint model, optimization procedure

The strategy for computing the minimum of the cost
function is to use a gradient-based iterative algorithm,

I-1J-1 N -1 J
L=J+2 2 ZujlV¥i—-$1+ 2
i=2 j=2 n=0 =2 J

+ RI(YY

where N is determined by the number of time levels
that appear in the data and therefore also in the cost
function. For the cost function (3), data enter only at
n = 0 and terms measuring departures from the steady
state involve n = 0 and n = 1, so set N = 1 for the
present example. In general, the boundary conditions
should also appear as constraints with their own La-
grange multipliers; however, for prescribed values at
the boundaries, it is simpler to exclude the boundary
values from the set of unknowns. At the constrained
minimum of J, the Lagrange function L has a sta-
tionary point with respect to Y7}, {7, N}, u};, curlry, e,
¢, and the initial conditions §‘° Statlonarlty with re-
spect to the Lagrange multlphers dL/oN}; = 0 and
dL/ou}; = 0, gives the original model equations,
whereas stationarity to streamfunction and vorticity,
oL/3yj = 0 and dL/3{}; = 0, gives a set of adjoint
equations for the Lagrange multipliers. The finite dif-
ference form of the adjoint equations is given in ap-
pendix A.

An adjoint can also be derived from the continuous
equation (1) (see appendix B), and is more conve-
niently presented this way:

VA + A+ RIJ(N, V) — V2I(A, ¥)]

= VA — VA + 8, (5)
where the forcing term &, which contains information
about the model-data misfit, depends upon the specific
definition of the cost function J. Note that the frictional
terms appearing in the adjoint equation are identical
to those of the forward equation (1), except for an
opposite sign; because the adjoint equation is integrated
backward in time (Hall and Cacuci 1983; Thacker
1987), the frictional terms do not cause numerical in-
stability, and the adjoint problem is well posed math-
ematically. The physical significance of the adjoint
variable () is in propagating information about the
sensitivity of the cost function to variations in the
physical variables (y) (Hall and Cacuci 1983). The
adjoint variables collect information on the misfit of
model and data through the adjoint forcing terms in
(5), and are later used to calculate the gradient of the
cost function with respect to the unknown parameters.
A variety of discrete adjoint models could be derived
from (5) using different discretization methods. How-
ever, the only one that would be the adjoint of the
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since the gradient can be computed at low cost using
an adjoint model. To derive the adjoint model equa-
tions (Thacker and Long 1988), form a Lagrange
function by adding to the cost function the finite-dif-
ference model equations (appendix A):

-1 N
E z {)\Z[(fg - 1)/At + (¢1+l g l—l j)/Ax
=2 n=1

~1y + ell ' — AV f}_l - curlr;1},

(4)

finite-difference model is the one obtained using the
Lagrange multiplier technique; the others may intro-
duce truncation errors into the gradient of the cost
function.

The boundary conditions for the adjoint equations
are derived directly from the Lagrange function (4).
These turn out to be homogeneous:

Ni=ul=0 on the boundaries.

(6)

Note that there are no Lagrange multipliers associated
with the boundary points in the definition of the La-
grange function (4); introducing them as boundary
conditions is simply a convenience. Similarly, setting
to zero all Lagrange multipliers outside the time inter-
val over which the cost function J is defined results in
homogeneous initial conditions:

N+1 _— | N+1
N = it =0,

y

(7)

signifying that at the initial time for the adjoint run
the adjoint variables do not contain any information
on model-data misfit (Thacker and Long 1988; Hall
and Cacuci 1983).

The next step is to use the Lagrange multipliers to
evaluate the gradient of the cost function. Note the
important fact that the partial derivatives of the La-
grange function with respect to the unknown model
parameters, taken as if ¥, {7, A}, n}, curlry, €, €,
and ;g are all independent, are equal to the corre-
sponding derivatives of the original cost function, taken
with only the model input parameters varying inde-
pendently:

aL(‘plja ijs ;;’ p'lja Curl‘rija €p, €p, fg)
6a1

_ dd(curlry, e, e, £3)

, (8
de (8)
where a;, /=1, - - -, Lare the unknown inputs curlr;;,
€p, €, and §',J Wrmng the components of the gradient
of the cost function explicitly for all a;:

aJ I-1J-1 N
de B 5 2N
b =2 n=1
aJ I-1J-1 N
—= DD VAVA ccut
aeh i=2 j=2 n=1 Y 7
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—=-x)/A 9

where \); does not multiply any equation in the cost
function, and is obtained by stepping the adjoint equa-
tion an additional time step from n = 1 to n = 0 (see
appendix A).

The above expressions allow the calculation of the
gradient of the cost function with respect to the many
parameters of the problem with only one forward run
of the quasi-geostrophic model and one backward in-
tegration of theé adjoint model. A calculation of the
gradient by perturbation analysis ( varying the param-
eters by a small amount and recalculating the cost
function by forward runs) would require a number of
forward model runs equal to the number of unknown
parameters—a much less efficient procedure. This is
also the basis for using the adjoint method for sensi-
tivity analysis of large numerical models (Hall and
Cacuci 1983).

A descent algorithm can be used to minimize the
cost function according to the following procedure:

1) Start from an initial guess for o;.

2) Run model forward in time, calculate the cost
function. '

3) Run the adjoint model backward in time.

4) Calculate V,J using (9) with the solutions for ¢,
¢, A and u from steps 2 and 3.

5) Use an optimization procedure [conjugate gra-
dient (Gill et al. 1981) was used here], with the infor-
mation on the value and gradient of the cost function,
to obtain a new set of values for the parameters, and
return to step 2. Continue iterations until cost function
1S at its minimum value.

d. Conditioning, resolution and error analysis

In order for the solution for the unknown parameters
to be compilete, it needs to be supplemented with error
estimates and resolution information, and these can
be obtained through the eigenvalues and eigenvectors
_of the Hessian matrix. As explained in the Introduction,
the Hessian for even simple GCMs may be too large
to handle directly, and in fact this is one of the main
motivations for using the adjoint method. Unfortu-
nately, in order to analyze the solution of the inverse
problem, one must again confront the Hessian. There
are several ways one might approach the problem of
- dealing with the large Hessian in this context. Assuming
that the Hessian matrix is not rapidly varying for ele-
ments representing spatially close variables, one could
calculate the Hessian for only a subset of the variables
(say wind and streamfunction at only every second
grid point in our model), and analyze the resulting
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smaller matrix. Another possibility, which we have
chosen to use in the examples given below, is to cal-
culate the Hessian for a model of a coarser resolution.
The resulting resolution and error information may
not be strictly correct for the higher resolution model,
but as will be seen below, it still gives the necessary
information on the validity of the solution. By reducing
the size of the Hessian for the purpose of resolution
analysis, the amount of storage needed for the eigen-
vectors is also reduced. There are other methods of
using sparsity of the full Hessian both to reduce storage
and to make its calculation more efficient (Ypma
1987). We wish to emphasize, however, that dealing
with the full or even reduced Hessian matrix is not
necessary for obtaining the solution itself.

To calculate the Hessian matrix G, we have used
simple finite differencing of the first derivatives,

I (83| 3|\ L
o 5&1' ’

0(1,'6(1}' ~ aa,' (97;,-

(10)

oty

where the first derivatives dJ /de«; are calculated from
the forward and adjoint solutions. With L parameters,
this requires L runs of the forward and adjoint models,
equivalent to 2 L forward time steps in the present ex-
ample. Note that the computational cost required to
calculate the Hessian matrix may be much larger for
time dependent data, where more than a single time
step is needed at each forward or adjoint model run
(see section 2b). An alternative procedure for calcu-
lating the Hessian matrix for nearly linear models, al-
though at a similar computational cost, is discussed by
Thacker (1987).

Once the Hessian has been evaluated, its eigenvalues
and eigenvectors are required for analyzing resolution
and variance. This is a significant computational prob-
lem for such large matrices, so some attention should
be given to it in the future. Here we simply used a
NAG library routine (Numerical Algorithms Group
1984).

1) CONDITIONING

In order for the conjugate-gradient descent algorithm
to work efficiently and to converge to the minimum
of J in a few iterations, the Hessian matrix, G = {3°J/
da;0a;}, i, j =1, + -+, L must be well conditioned.
Because G is symmetric and positive (at least near the
minimum), its eigenvalues are real and positive. If they
are indexed from largest to smallest y; = «++ = v,
= 0, the conditioning number is defined as the ratio
v1/ 7. If the conditioning number is large, numerical
difficulties can be anticipated (Gill et al. 1981).

Consider the significance of the eigenvalues and ei-
genvectors of the Hessian matrix. Being a symmetric
matrix, the Hessian may be written in terms of its ei-
genvalues and eigenvectors as G = VI'VT where I'is a
diagonal matrix whose elements are the eigenvalues of
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G ordered in decreasing magnitude, and the columns
V; of the matrix V are the corresponding eigenvectors
of G. Suppose now that a small vector Aa = €V; is
added to the solution vector « at the minimum of J,
where dJ/da’; = 0. The resulting change in the cost
function is

AJ =~ AadTGAa = VI(VIVTV; = e2y;.  (11)

It can be seen that the largest change in the value of
the cost function is in the direction of the eigenvectors
corresponding to the largest eigenvalues. When search-
ing for the minimum of the cost function, the conju-
gate-gradient descent algorithm prefers to search in
these directions. As a result, these are the best deter-
mined directions in the parameter space, or in other
words, the best determined linear combinations of the
model parameters. The conjugate gradient algorithm
will not search in directions in parameter space char-
acterized by the very small eigenvalues, because there
is no change of the cost function for these directions.
As a result, there is no information about the linear
combinations of parameters corresponding to the small
eigenvalues.

Small or zero eigenvalues of the Hessian can result
from lack of data, and one might want to add smooth-
ing terms as bogus data in the cost function representing
prior knowledge, in order to supplement the actual
measurements ( Thacker 1988). This is necessary be-
cause small eigenvalues mean the Hessian is ill-con-
ditioned, and therefore convergence to the minimum
of the cost function is very slow. After adding the bogus
data, there may be enough information on all unknown
parameters to improve the rate of convergence.

If the conditioning number is too big, it is possible
to speed up convergence by transforming to a new set
of unknowns o/ = W'« for which the transformed
Hessian G’ = {9°J/da0a)} = WTGW is better con-
ditioned (Gill et al. 1981). The optimal parameters of
the new unknowns can be computed in fewer iterations,
and then the optimal values of the original unknowns
are given by the inverse transformation. The strategy
is to find an easily invertible transformation that will
improve the conditioning. In many cases a simple scal-
ing transformation (a diagonal W matrix ) is sufficient,
and proves very useful. Preconditioning may be nec-
essary even when a nondimensionalized model equa-
tion such as (1) is used. As an example of a nondiagonal
preconditioning transformation, note that the initial
conditions sought by the optimization algorithm in the
present example may be either the vorticity {J or the
stream function ¢$. It was found that vorticity initial
conditions are preferable, as using streamfunction ini-
tial conditions resulted in a very noisy gradient of the
cost function and slow convergence to the optimal so-
lution. Thus the transformation from streamfunction
to vorticity is a preconditioning transformation, which
corresponds to the choice W~! = V?; on the other hand,
if the initial conditions were already in terms of the
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vorticity, then transforming to streamfunction would
make the problem more ill-conditioned. In general,
however, the preconditioning transformation need not
define variables with any simple physical interpretation.
Inverse problems involving large GCMs are quite likely
to be ill-conditioned, and efforts will be needed to find
preconditioning transformations that will speed up
convergence.

2) RESOLUTION

Once the optimal solution for the unknown param-
eters has been found, it is useful to construct a param-
eter resolution matrix, similar to that used when solving
linear systems by singular value decomposition ( Wig-
gins 1972; Wunsch 1978). the resolution matrix in-
dicates which parameters are in fact resolved by the
data. This may be necessary, for example, when using
the model and its adjoint for the purpose of experiment
design, where one may want to find out what param-
eters are resolved by a particular set of data, and how
accurate measurements should be.

The idea behind the resolution matrix is that eigen-
vectors of the preconditioned Hessian with large ei-
genvalues are well-determined linear combinations of
the model parameters, while those with small eigen-
values are poorly determined combinations (11). The
data fail to resolve those linear combinations whose
eigenvalues are too small. There are several possible
ways of choosing what is too small for this purpose,
and one of the simpler criteria is used below (see Wig-
gins 1972, for a detailed discussion).

To derive the resolution matrix, suppose that the
observations, and therefore also the elements of the
Hessian (calculated for the cost function with the real
data only, without the smoothing terms), are given in
p significant decimal digits. Then only eigenvalues v;
of G’ satisfying

vil vi > 1077 (12)

are significantly different from zero. The eigenvectors
corresponding to the eigenvalues that are too small are
the linear combinations of model parameters about
which the data have no information. Given that k ei-
genvalues of G’ are significantly different from zero,
the search for the minimum point in the parameter
space is performed only in the direction of the first &
corresponding eigenvectors of G'. In order for a given
parameter ¢y, to be resolved independently of other o,
a search should be possible in the direction of the vector
05, (1 in the /y location, zeros elsewhere). In other words,
ay, is resolved if §;, can be written as a linear combi-
nation of the first k eigenvectors V; of G'. It can be
shown (Wunsch 1978) that the closest one can get to
0y, is with the linear combination .

. k

6[0 = z VIoiVi:

i=1

(13)



1478

where V; is the [, component of the ith eigenvector
V. But (13) is also the /, column of the matrix

R = VkaVZXk, (14)

which is termed the parameter resolution matrix, where
V. xk is a matrix whose columns are the first k eigen-
vectors of G'. Having calculated the resolution matrix,
we examine its columns. The diagonal elements of R
indicate how well is each parameter resolved, while the
off-diagonal elements indicate what are the other vari-
ables from which a given parameter cannot be inde-
pendently resolved. (See Wiggins 1972, for more details
on the use and interpretation of the resolution infor-
mation.)

3) ERROR ANALYSIS
Suppose the cost function were simply:
J=' - PTAW - ¥) (15)

where ¥/,  are column vectors containing the stream-
function for the initial time and the streamfunction
observations at all grid points; the following discussion
can easily be extended to include the other terms ap-
pearing in the cost function given by (3). Following
the standard approach to least-squares problems
(Mood et al. 1974), the difference between the data
and their model counterparts ¢ = ¢° — ¢ can be
thought of as normally distributed random error with
zero mean and with error covariance matrix A~!. Min-
imizing the cost function thus provides a maximum-
likelihood estimate for the model parameters.

Let a denote the column vector of model parameters
and a* the best-fit values. Then by expanding J in a
power series about a*, we can see that to lowest order
in a,

J =~ Jpin + (o — o*)TG(a — a*), (16)

where higher-order terms resulting from nonlinearities
of the model have been neglected. If the neglected terms
are sufficiently small, then the error in the model pa-
rameters Aa = @ — a* can also be assumed to be nor-
mally distributed with zero mean and with C = G™!
as the error-covariance matrix (Thacker 1987).

To obtain the error covariance matrix, the Hessian
G must be inverted. Care must be taken, however, to
avoid problems of ill conditioning when some of the
eigenvalues of the Hessian are not significantly different
from zero, as discussed above. The inverse Hessian can
be written in terms of the preconditioned Hessian as
C=G"!=(WT'G'"'W~!, Writing the precondi-
tioned Hessian matrix as G’ = VI'V?, its inverse is
G'~! = VI'"'VT, But if there is no information about
some linear combinations of parameters, the resulting
very small eigenvalues will result in very large confi-
dence intervals (terms of G '), because of the inverse
of the eigenvalues entering the calculation of C. To
avoid this problem, a generalized inverse of the Hessian
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must be used. With k significantly nonzero eigenvalues
¥i, i =1, -+ -, k, the error covariance matrix is
C= G—l = (wT)—-lGl—lw—l

=(WH VI 'vTIw (17)
where T',™! contains 1/+; in the first k& diagonal loca-
tions, and zeros elsewhere. However, it is important to
recognize that the covariance given by (15) does not
include the contribution of the combinations of pa-
rameters corresponding to the zero eigenvalues, and it
is therefore an underestimate of the full error covari-
ance matrix for those variables that are not fully re-
solved by the model. The covariance information must
therefore be used together with the resolution infor-
mation for a consistent interpretation. This is further
discussed by Wiggins (1972).

3. Results

We first describe three experiments demonstrating
the use of an adjoint model in estimating model pa-
rameters. For the third example, the results are ana-
lyzed using the resolution information provided by the
Hessian matrix. Then, the utility of the information
contained in the Hessian for experimental design is
demonstrated.

Unless otherwise stated, the simulated observa-
tions used in the following experiments were of vorticity
¢ at all grid points, and the cost function is given by
(3)with C” = D} = 0.

First (run A), the wind-stress curl and initial vorticity
fields are assumed to be unknown, while the friction
parameters ¢, and ¢, are set to their correct values (those
used to obtain the observations). The optimal values
for the initial conditions {J and the forcing curlr;; are
calculated using the descent algorithm. Figure 2 shows
the value of the cost function J, and the distance of
the initial conditions and wind curl from their correct
values, as a function of iteration number. The initial
guess for the parameters in this run was zero vorticity
and a random (with zero mean) wind-stress curl. It is
important to note that the solution for the unknown
parameters was independent of the initial guess in the
many experiments performed for this case.

As can be seen in Fig. 2, the descent algorithm first
improves the estimate for the initial conditions, and
then starts improving both the initial conditions and
the wind-stress curl. Within about 175 iterations the
cost function is at its minimum (zero—or in fact 1072,
due to computer round-off error—as there is no ob-
servational noise). The curl is then correct to about
0.01%, as is the vorticity. Each iteration includes one
time step of the forward model and one step of the
adjoint model, making the calculation equivalent to
about 350 forward time steps. This convergence is quite
fast compared, for example, to the time needed to reach
a steady solution by stepping the forward model
[O(1000) time steps]. The fast convergence is partic-
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100 140

lteration

180

FIG. 2. Results of run A: The approach of the unknowns—wind-
stress curl and vorticity initial conditions—to their correct values, as
a function of iteration number. The vertical axis is the log of the
least-square distance between the parameters in the optimization,
and their true values. For the vorticity initial conditions this is
log{Z ({3 — §)?}"/2, and the curve is marked A{Y. Similarly, the

i

distance between the value of the wind-stress curl during the opti-
mization and its true value is shown by the curve marked A curlr;.
Also shown is the value of the cost function J. All three curves are
normalized by their initial values. Each iteration consists of one for-
ward time step of the quasi-geostrophic model, and one backward
time step of the adjoint model.

ularly encouraging, because the calculation shown in
Fig. 2 involves quite a large number of unknown pa-
rameters: a 33 by 33 grid, for which there are 31 X 31
unknown values for the wind-stress curl and initial
conditions, a total of 1922 unknowns. The whole op-
timization took no more than 5 cpu minutes on an
IBM mainframe (model 3081D).

Run B
1.0y
\}
0O8H
06}
04t
oz}
A Acn
J Sl ! \
0 N 1 o A '
60 100 140 180
Iteration

FIG. 3. Results of run B: As in Fig. 2, but this time the unknowns
in the optimization are the vorticity initial conditions and the friction
parameters. The curves marked Ae, and Aey, show the distance of
the friction parameters from their true value as function of the it-
eration number. The vertical axis is their linear distance from their
correct values.
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FIG. 4. Results of run C: As in Fig. 2, except that the unknowns
are the vorticity initial conditions, bottom friction, horizontal friction
and wind-stress curl. Note that the wind and friction parameters do
not converge to their true values in this case (curves marked Ae,
Aej and A curlr; do not reach zero value). Still, the initial conditions
reach their true value and the cost function reaches zero value (curves
for initial conditions and cost function overlap and are marked
A% and J; both approach zero fairly quickly).

Next (run B), the wind forcing was assumed known,
and set to its correct value, and the procedure was used
to calculate the friction coefficients ¢, and ¢, along with
the initial vorticity field. Figure 3 shows the conver-
gence of the parameters and cost function to the op-
timal values, and again the convergence to the true

_ in curl

\-v
\
|

QN
Ny

F1G. 5. Final solution for curlr for run C shown in Fig. 4. Note
the strong forcing (by curl of wind stress) in the western boundary
current, balancing the dissipation there due to the too large values
for the friction parameters found by the optimization.
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RESOLUTION MATRIX
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FG. 6. (a) (upper panel) A contour plot of the resolution matrix for run C, using cutoff value of 0.001 for the eigenvalues (section 2d).
Separate contours are not distinct here, but the figure gives a general impression on what elements of the resolution matrix are nonzero
(black parts of the figure). The resolution information in Figs. 6 and 7 is calculated for a coarser-grid model than used in the optimization
shown in Figs. 2-5 (17 by 17 grid, instead of 33 by 33 grid). The unknowns are arranged in the following order for the calculation of the
resolution and error covariance matrices: {curlry, {7, €, and €, }, where only 15 X 15 = 225 interior values for the wind-stress curl and
initial conditions need to be considered. In the figure, therefore, locations 1-225 on the axes correspond to the wind-stress curl at all interior
grid points, locations 226-450 to the interior initial conditions searched for the optimization, and locations 451 and 452 are for bottom and
horizontal friction correspondingly. Note that the wind-stress curl and friction parameters are not fully resolved, but only in combination
with the wind-stress curl at some locations. (b) (lower panels) The off-diagonal terms of the resolution matrix describing the dependence
of the bottom friction and the wind-stress curl. This plot is equivalent to the first 225 locations of rows 451, and 452 in (a). It is plotted in
the x—y plane to show that the solution for curlr in the western boundary region is not independent of the friction parameters.
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solution did not depend on the initial guess for the
unknowns.

Finally (run C), friction parameters, wind forcing,
and initial vorticity were all treated as unknowns, and
were simultaneously calculated by the optimization.
Poor results could be anticipated, since the number of
observations is now two less than the number of un-
knowns. [ The penalty terms multiplied by the D,(jz) in
(3), requiring the solution to be in a steady state, can
be counted as bogus data at each grid point ( Thacker
1988).] The descent algorithm did converge to a min-
imum of the cost function—in fact to J = 0, corre-
sponding to a steady-state solution that perfectly fits
the observations—but not to the correct solution. The
wind curl and friction coefficients found by the opti-
mization were not the ones used to obtain the obser-
vations. The solution (Fig. 4) is characterized by fric-
tion coefficients larger than the true values, and wind
forcing with large amplitude in the western boundary-
current region. The optimal solution also varied with
the initial guess for the parameters, and one such so-
lution is shown in Fig. 5. The solution was checked by
using the calculated wind and friction parameters in
the forward model and stepping it a large number of
time steps; it was found to be a stable steady-state so-

Iution. It seems that the larger values of the friction

coefficients are balanced by vorticity input by the strong
wind forcing calculated in the western boundary cur-
rent region. This balance resulted in vorticity and
streamfunction fields identical to the observations.

The solution for the unknown parameters should be
supplemented with resolution information and error
analysis, and these are given below. In examining this
additional information, it will become obvious that the
model cannot resolve the wind-stress curl separately
from the friction parameters using these data. We had
already anticipated this result, based on the fact that
there were more unknowns than data, even when pen-
alty terms were counted. Nevertheless, it is still useful
to go through this additional analysis of the fit, as it
illustrates how to test whether the recovered values
might be wrong—even without knowing the true
values.

Figure 6a shows the resolution matrix calculated at
the minimum point of J. The cutoff value for the ei-
genvalues used to obtain these matrices was 0.001 [p
= 3 in (12)]. The curl of the wind stress is not fully
resolved (diagonal elements of the resolution matrix
smaller than one), and is not independent of the es-
timate obtained for the friction coefficients, as indicated
by the nonzero off-diagonal terms of the resolution
matrix (Fig. 6b). The error covariance matrix gives
similar information on the dependence of the estimates
for the wind and friction parameters. The solution for
the initial conditions, on the other hand, is fairly well
resolved (diagonal elements nearly one in resolution
matrix ), in agreement with the fact that the solution
found for the vorticity is the correct one.
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In order to be able to resolve both friction and wind
parameters, some additional a priori information must
be used. This could be, for example, a requirement
that the calculated curl of the wind stress be smooth,
by adding an appropriate term to the cost function.
Such a term will prohibit the kind of a solution shown
in Fig. 5, having large gradients of the wind-stress curl
near the western boundary region. In any case, the
above result of many possible solutions even for the
present simple model, indicates that one has to be
careful when interpreting the results of the optimization
and the calculated parameters. Treating the model pa-
rameters as unknowns clearly opens many new and
interesting questions not normally encountered in the
more traditional approach to numerical modeling of
the oceanic general circulation,

These results also raise a more general possible
problem of oceanographic models that try to calculate
parameters from data. In a situation where several pos-
sible solutions are consistent with the data,’and none
of them is unreasonable, it is obviously meaningless to
try and determine the correct value of these parameters.
In that case, the purpose of the modeling effort must
be redefined. It may be possible and useful in such a
case to try and put bounds on these unknown param-
eters, by looking for their minimum and maximum
values that are consistent with the data, as discussed
in section 2.

The information contained in the Hessian matrix
can be very valuable in the process of experiment de-
sign. Given some parameters that need to be calculated
(e.g., wind forcing or mixing coefficients), and limited
resources, one would want to choose the observational
strategy maximizing the information on the desired
parameters. The choice could be, for example, between
taking a hydrographic section in the western boundary
current region, or in the interior, or between putting a
current meter and making a hydrographic section.

As an example that is meant to be instructive rather
than realistic, suppose one must decide whether to ob-
tain streamfunction or vorticity observations in order

1 L 1 L 1 Pl J

0 200

1
100

FIG. 7. The eigenvalues of the Hessian for both streamfunction
(dotted line) and vorticity (full line) cost functions (C"> = D) =0
and C? = D = 0 in (3) correspondingly), with only the wind-
stress curl and initial conditions considered unknowns.
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FIG. 8. First two eigenvectors of the Hessian matrix calculated for the vorticity observations, (see Fig. 7). Each eigenvector is made of
wind and initial conditions parts, corresponding to locations 1-225 and 226-450 of the full eigenvectors (see caption to Fig. 6). These parts

are plotted in the x—y plane.

to deduce the wind-stress curl. It is assumed (certainly
not realistically ), that within the experimental budget
either vorticity or streamfunction can be measured at
every grid point to the same relative accuracies. Two
cost functions can be defined: one for streamfunction
data with C ,(jl) = ij” = 0 and the other for vortic-
ity data with C ,5-2) = ,5»1) = 0. In both cases the steady
state can be enforced using vorticity penalty terms and
the,initial conditions can be taken to be the initial vor-

ticity field. We now examine which of the two datasets
is more appropriate for the calculation of the wind-
stress parameters.

Figure 7 shows the eigenvalues of the Hessian for
the two cost functions on a logarithmic scale. [ Note
that a model of coarser resolution (17 X 17) was used
for this calculation, while the (33 X 33) resolution was
used in the actual optimizations discussed above.] The
eigenvalues for the vorticity cost function (full line in
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Fig. 7) are divided into two groups, and within each
group all eigenvalues are very nearly of the same mag-
nitude. Figure 8 shows the first two eigenvectors. The
parts of the vectors corresponding to the wind and ini-
tial conditions parameters are plotted separately on the
(x, y) plane. Examining the eigenvectors it becomes
clear that the first group of eigenvectors resolves linear
combinations of wind-stress curl and initial conditions
without resolving either independently at any single
location. This is indicated by the equal structure of the
wind and initial conditions parts of the eigenvectors.
The second group of eigenvectors corresponds to the
separation of the wind from the initial conditions. This
is seen by the similar structure, but opposite sign of
the wind and initial-conditions eigenvectors for the
second group (not shown in the figure). The sharp
drop between the two groups of eigenvalues means that
the model has difficulties in resolving the initial con-
ditions separately from the wind-stress curl.

For the streamfunction data, the eigenvalues span a
much wider range of values (dotted line in Fig. 7).
This difference affects the calculation of the unknown
parameters in two ways. First, the convergence of the
preconditioned conjugate-gradient descent algorithm
to the optimal set of parameters was much faster when
the eigenvalues of the Hessian are grouped as for the
vorticity observations (Gill et al. 1981). The accuracy
and the resolution of the calculated parameters are also
affected by the difference in range of eigenvalues for
the two cases. According to the truncation criterion
(12), fewer eigenvectors participate in the resolution
matrix (14) for the streamfunction observations than
for the vorticity observations, for a given accuracy of
the observed streamfunction and vorticity. The pa-
rameters are therefore better resolved when using the
vorticity observations. The smaller eigenvalues of the
Hessian for the streamfunction observations also cause
larger errors in the parameters, as calculated in the
error covariance matrix (17). The superiority of the
vorticity measurements for the calculation of the dif-
ferent model parameters seem to result from its being
more sensitive to changes in the parameters. The
streamfunction is found by twice integrating the vor-
ticity, and its therefore less sensitive to these changes.

We may now conclude that, given the assumption
of equal cost and accuracy of measurement, vorticity
observations are preferable to streamfunction obser-
vations for determining the calculation of the wind-
stress curl. More generally, this example shows how
the information contained in the Hessian matrix may
be used for the purpose of experiment design.

4. Conclusions

We have demonstrated, using a quasi-geostrophic
model as an example, the use of the adjoint technique
in analyzing oceanographic data with the aid of a gen-
eral circulation model. The method is capable of effi-
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ciently combining a complex dynamical model, and
comprehensive datasets. Unknown model parameters
can be calculated, and an improved estimate for the
observed fields is obtained. These are complemented
with the important resolution and error information,
making the method in fact a very powerful inverse pro-
cedure.

In addition, the method can be used in the process
of experiment design to decide how effective particular
data types are for deducing certain unknown param-
eters. It is also possible to predict the needed accuracy
of measurements for the estimated parameters to be
well resolved, and within reasonable error bounds.

The adjoint (or optimal control) method is concep-
tually simple, and the effort required to prepare an
adjoint model for a given numerical model is not large
considering its many possible uses and advantages.

As more types of data from satellites and remote
sensing methods become available, and as numerical
models become more and more realistic, the adjoint
method can be expected to play an important role in
the study of the oceanic general circulation.

Acknowledgments. Thanks to L. Feliks and I. Yavneh
for helping in the development of the numerical model.

APPENDIX A

Finite-Difference Formulation of the Forward
and Adjoint Models

Quasi-geostrophic model. Let {}; and ¢, denote the
vorticity and streamfunction at horizontal location (i,
J), and time step n. The model is advanced in time
using a diagnostic equation for the streamfunction and
a prognostic equation for vorticity:

v = 1]
(ST = S At + (Yhrj — Y1)/ Ax + RI(Y, O)
= “Ebﬂ} + e,,V2 ?}‘i‘ curl‘r,j (Al)

where V2 and J denote the five-point Laplacian and
Arakawa’s nine-point conservative Jacobian (Arakawa
1966). The stream function is calculated by solving a
Poisson equation, and then vorticity is advanced in
time.

Adjoint model. We now write the adjoint equation
in finite-difference form, with the cost function J un-
specified. The cost function may include data distrib-
uted over N time steps and different possible choices
of penalties to enforce spatial smoothness and temporal
steadiness:

Vul — (NF — N2 )/ Ax

0.
J 0

— RI(N™, ¢nyy + — =
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(N} = NFTYY/ At — RI(Y", Ny + e\

2yn+l _ . n _(?i —
exVNG py+ 3 0.
The adjoint variable X is stepped (backward) in time,
while p is calculated by solving a Poisson equation at
every step. Note that V2 and J again represent the five-
point Laplacian and Arakawa’s Jacobian. Also note
that the partial derivatives of J are evaluated with J
considered to be a function of a// model variables. For
the cost function (3), involving only time levels »
= 0 and n = 1, the equations for A}, u}; and u$ are

1
Vil = 2D (¢~ ¥
2
M/at=pk—2DP (85— £9).
Vud = (M1 — Mo )/ Ax + RI(NY, £°);
—2[C (WS = V) + D (W5 — w1 (A3)
There are no A\ multiplying any equation in the defi-
nition of the Lagrange function, but it is convenient
to introduce such variables, since A} can be recognized
to be the negative of the components of the gradient
of the cost function in the directions associated with

the initial conditions; they can be calculated by stepping
the adjoint equation for A from » = 1 ton = 0.

N/ AL = N/ AL+ RIGY, Ny — e\l + V2N
+ = 2[C0 (55— ) + DP (55— $h1. (a4)

APPENDIX B

(A2)

Derivation of the Adjoint Equations
in Continuous Form

We now derive the continuous form of the adjoint
equation from the continuous quasi-geostrophic equa-
tion (1) and the continuous form of the cost function
(3), using the calculus of variations (Courant and Hil-
bert 1953).

As in the finite-difference form, we wish to minimize
the cost function measuring the distance between ob-
servations and model results, subject to the dynamic
equations as constraints. For the continuous derivation,
the data are assumed to be sufficiently continuous and
differentiable, even though this restriction is not needed
in the discrete case. The continuous cost function is
(omitting the terms multiplying the D, which can
easily be added to the derivation)

T

L, L,
J(curlr, ¢, ) = f dxf dy dt
x=0 y=0 =0

X [CO(x, y, )(Ux, p, 1) — Ux, ))?
+ CP(x, y, )($(x, y, 1) = $(x, ¥))°1 (B1)

where T is the time period over which the model is run
at each iteration. Note that time-independent data are
compared with the model at all times; for consistency
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with Eq. (3), the weight functions C*” should be dif-
ferent from zero only near the initial time ¢ = 0. The
derivation is somewhat simpler if we write the quasi-
geostrophic equation as two equations

G+ U+ RIW, §) = —e ¢ + &V + curlr
VY=gt (B2)

Forming a Lagrange function by adding the constraints
multiplied by the Lagrange multipliers, we have

L(CurlT, €b, €, \09 §, A> I"') = J(CurlT’ €bs 6h)

x=0

Ly L, T
+f dx dyf At {N(x, 3, DG + ¥
y=0 =0

+ RI(Y, §) + ¢ — V3¢ — curlr]

+ ulx, y, IV = £1}. (B3)

Actually, the boundary conditions should also be in-
troduced as constraints in order to deduce the boundary
conditions for the adjoint equations, but since the pro-
cedure is similar to that for the interior equations, those
details are omitted to simplify the discussion.

At the minimum of J, L has a stationary point. Its
first variation with respect to all of its arguments must
vanish there. The first variation of the Lagrange mul-
tipliers A and u gives the original model equations. The
variation with respect to {is

Ly

oL = dx fLy dy fT dt{2C(§ — P)s¢
0 y=0 V=0

+ M8§: + ¥x + RI(Y, 88) + 568 — &V75{]

= u(x, y, )8} = 0.

After integration by parts, since the boundary condi- |
tions for ¥ and ¢{ cause the boundary terms to vanish,
Ly

oL =

L, T
dx dyf dré{(x, y, t)
x=0 y=0 =0
X {2CP(¢ - §) = N = RI(Y, N)
+ A — VPN — u} =0, (B4)

Similarly, the variation with respect to the stream-
function gives after integration by parts

L, L, T
oL = dx dy | dioy(x, 1)

x=0 y=0 =0
X {2C(Y — ) = Ao — RI(X, §) + V2u} =0,

(B5)

The coefficients of 6 in (B5) and &¢ in (B4) must
vanish, which gives us two equations for A and u. Sub-
stituting one in the other, we obtain the adjoint (5) to
Eq. (1).

One disadvantage of this continuous derivation is
that it does not prescribe the discrete form of the dif-
ferential operators that appear in the adjoint equations.
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It is important that they be the adjoints of the finite-
difference operators that are used in the model. A care-
ful derivation based on the discrete equations shows
that centered spatial differences and Arakawa’s Jaco-
bian should also be used in the adjoint model, whereas
the model’s forward time step becomes a backward
time step in the adjoint model. Also, because the so-
lution of the Poisson equation (A1) in the forward
model may be an approximate solution, it is important
that the Poisson solver in the adjoint model (A2) be
the adjoint of the approximate Poisson solution of the
forward run. This is achieved by introducing Lagrange
multipliers at each step of the algorithm, just as they
are introduced for each time step of the prognostic
equation. However, rather than doing this, we took the
alternative of forcing the Poisson solver to converge to
machine accuracy for all Poisson solutions, so that the
question of finding the appropriate adjoint of an un-
converged approximation could be avoided.
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