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ABSTRACT

Tziperman, E., Thacker, W.C. and Bryan, K., 1992. Computing the steady oceanic circulation using an
optimization approach. Dyn. Atmos. Oceans, 16: 379-403.

The traditional method for computing the steady oceanic circulation has been by stepping an
oceanic model forward in time until transients are damped by friction. An alternative method, which
has the potential for being more economical is to minimize the sum of the squares of the residuals of
the steady model equations. A variety of algorithms might be considered for computing the minimum;
attention here is focused on preconditioned conjugate-gradient descent with the gradient computed
using an adjoint model. The choice of variables, i.e. the preconditioning transformation used in the
optimization process, is found to be critical to the efficiency of the method. An appropriate precondi-
tioning transformation can be suggested by a heuristic analysis similar to that commonly used to test the
stability of numerical models. The method is demonstrated within the context of the barotropic vorticity
equation.

1. INTRODUCTION

Oceanic dynamics are characterized by a wide range of temporal scales.
The high frequencies, which are associated with gravity waves, set the
upper limit for the size of the time step for most numerical models; the low
frequencies, which are associated with the slow mixing processes involved
in the establishment of water-mass distributions, determine the number of
time steps needed to spin the model up. Consequently, computing the
steady oceanic response to steady forcing can be quite expensive. As the
resolution of the model is increased, so is the computational expense.
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In response to the need for accelerating the computation of the equilib-
rium circulation, Bryan (1984) suggested a two time-scale approach. When
implemented, the value for the time step used in the momentum equations
is essentially that set by the Courant condition for numerical stability, while
the value used in the computation of salinity and temperature is much
larger. Thus, his method is one of false transients, which should converge
to a steady solution, if one does in fact exist. Data can also be used to
accelerate the model spin-up (Sarmiento and Bryan, 1982). A restoring
term forcing the temperature and salinity fields to be near the observed
values is added to the model equations, thus guaranteeing that the density
field is reasonable and allowing the momentum field to come quickly into
adjustment. Both of these devices were used by Semtner and Chervin
(1988) in spinning up a global, eddy-resolving model. The question we ask
is whether there are other, more efficient methods that have not yet been
considered. A variational counterpart to the nudging procedure of
Sarmiento and Bryan has been presented in a recent paper (Tziperman and
Thacker, 1989). Here we would like to point out that, in the absence of
data, this variational approach can also yield the steady model circulation.
The computational strategy is to define a function of the model unknowns
that has a minimum when these unknowns exactly satisfy the steady model
equations, and then to seek the minimum of this function (termed the
objective function or cost function). Such a computation of the steady
circulation would not be characterized by transients, true or false, as there
would be no time-stepping; instead, there would be a converging sequence
of approximations to the steady circulation produced by an iterative opti-
mization algorithm. (It should be noted that some iterative methods are
closely related to time stepping, but in our case there is no reason to expect
the converging sequence of iterative solutions to behave like a time history
of the corresponding time-dependent model that is stepped to equilibrium.)

Before proceeding with the discussion of this method, it is useful first to
pause and consider whether such a computation would really be appropri-
ate. A principal concern is that the steady state might not exist. For
example, Cox (1987) and Semtner and Chervin (1988) find transient eddies
in response to steady forcing. If an optimization procedure would produce
a solution to the steady model equations, what would it mean? Would it be
stable, i.e. when used as initial conditions for the steady model, would it
evolve into something else? In practice the steady state would never be
found exactly; if the solution is unstable, the small errors due to incomplete
convergence would be amplified. When used as initial conditions for a
time-dependent simulation, would an unstable steady state quickly produce
eddies and resemble what is obtained by a time-stepping spin-up? Another
possibility is that no steady state exists, stable or unstable. If this is the
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case, what would the computations yield? Since the function to be mini-
mized is defined as the sum of the squares of the residuals of the steady
model equations, the minimum should be the best approximation to a
steady state in a least-squares sense. Would such a solution look anything
like that found by spinning the model up by time stepping? As the model is
non-linear, another concern is whether the solution is unique. There may
be several stable steady states, i.e. distinct minima of the cost function that
might also be found by time stepping from different initial conditions; these
different solutions might correspond to physically plausible steady circula-
tion modes of the ocean that might be realized if circumstances could
provide the necessary sequence of forcing.

Although these questions are interesting and worth pursuing, they will
not be explored here. Still, the optimization approach should provide the
means to answer them. Another way of looking at the steady circulation is
as a long-term temporal average of the actual time-varying eddy-containing
circulation. By properly parameterizing the Reynolds fluxes accounting for
the transport by the ignored time-varying eddies, it should be possible to
define a model with a statistically meaningful steady state. Perhaps studies
with eddy-resolving models will be helpful in determining these parameteri-
zations. Once such parameterizations are formulated, the optimization
approach suggested here should be considered for computing the statisti-
cally steady circulation.

The variational approach to computing the steady circulation will be
discussed here within the context of a simple barotropic vorticity-equation
model. When compared with a fully three-dimensional, baroclinic, primi-
tive-equation model, it is obvious that many challenging complications are
ignored, so generalizing the results found here will not be trivial. Neverthe-
less, the transparency in understanding how the computational method
works, which is obtained within the simpler context, more than offsets
these disadvantages.

An efficient variational computation of the steady state requires the
careful selection of the algorithm used to seek the minimum. Most opti-
mization algorithms can be classified into three categories: (1) those using
only the values of the objective function; (2) those using both values and
gradients; and (3) those using values, gradients, and the Hessian matrix
(the matrix of second partial derivatives of the objective function). Owing
to the large number of unknows, algorithms in the first category can be
eliminated as being too slow. Also due to the large number of unknowns,
those in the third category might also be eliminated as requiring too much
storage, although they might actually be feasible if sparse-matrix tech-
niques can be used. This leaves the second category, which comprises
conjugate-gradient methods. Each iteration of a conjugate-gradient method
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starts with approximate values for the model inputs, (e.g. stream function);
the model code is used to evaluate the objective function and an adjoint-
model code to compute its gradient; next, a descent direction is determined
from the gradient together with information obtained in previous itera-
tions; finally, an approximation to the minimum along that direction is
found, which provides a new set of inputs that reduce the value of the
objective function.

For conjugate-gradient methods to be efficient (i.e. to require few
iterations), it is important that the problem be well conditioned. In other
words, it is important to take care in choosing variables in which the
optimization problem is posed. For the barotropic vorticity-equation exam-
ple, one could search for the optimal stream function or for the optimal
vorticity field; having either, we can compute the other. The optimization
variables need not have any particular physical significance; in fact, the
physically meaningless variables for which the computations are most
efficient, might be related to familiar physical variables by a complicated
preconditioning transformation. In the examples discussed below, the pre-
conditioning transformations are restricted to those defined by the V2 and
V# operators acting on the stream function . The choise of optimization
variables is crucial for the computation to be efficient. As preconditioning
is an important aspect of any optimization problem, in particular the
variational approach to data assimilation by fitting dynamical models to
observations (Thacker and Long, 1988; Tziperman and Thacker, 1989), our
purpose here is to gain some intuitive understanding of the way precondi-
tioning works, at least within the context of computing the steady circula-
tion.

In Section 2, using a simple model based on the barotropic vorticity
equation, we formulate the calculation of the steady oceanic circulation as
an optimization problem; in Section 3 we discuss preconditioning and its
relationship to the temporal scales of the unsteady model and to the
spectrum of eigenvalues of the Hessian matrix; specific computational
examples with the simple model are given in Section 4; and we conclude in
Section 5.

2. OPTIMIZATION FRAMEWORK FOR SOLVING THE STEADY VORTICITY
EQUATION

The evolution of the model ocean is governed by the barotropic vorticity
equation on a B-plane:

o )
E+BE+J(¢’{)+K£—EV {=x (1a)
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where the vorticity ¢ is related to the stream function ¢ via a Poisson
equation:

Vg =¢ (1b)

The circulation is forced by the curl of the wind stress, denoted here by y.
The Jacobian determinant J(i, {) =&y, {)/dx, y) accounts for advec-
tion of vorticity by the oceanic flow. Two types of friction are incorporated
into the model, Newtonian bottom friction characterized by the coefficient
x and horizontal eddy-viscous friction with coefficient e. Both coefficients
are assumed to be constant, independent of time ¢ and of location (x, y).
For simplicity, the ocean basin is taken to be square and to have uniform
depth. To satisfy the no-normal-flow and no-slip boundary conditions, both
the stream function and the vorticity must vanish at the boundaries.

Given values for the initial vorticity field, the initial stream function can
be found by solving eqn. (1b). Then, the vorticity field can be advanced in
time using eqn. (1a). For computational purposes, partial derivatives are
replaced by finite differences. A forward temporal difference is used along
with Arakawa’s (1966) conservative form of the Jacobian determinant, the
usual five-point Laplacian, and centered differences for the B-term; details
of the finite-difference equations are readily available (Tziperman and
Thacker, 1989) and will not be repeated here.

For the circulation to be steady, the temporal derivative of the vorticity
in egn. (1a) must vanish; in the discrete model this is accomplished by
requiring that there be no change from one time level to the next. The
usual method for computing the steady state is simply to march the model
forward under steady forcing until friction damps out transients. Alterna-
tively, consider solving the system of equations obtained by omitting the
temporal differences from the discrete model. For notational convenience
they are presented in terms of partial derivatives, but should be interpreted
as finite differences:

3
R=B£ +J(Y, V) + Vi — eV —x =0 (2)

This is a large system of coupled, non-linear, algebraic equations, and a
variety of techniques for computing the solution might be tried; some
useful references are the textbooks of Gill et al. (1981), Dennis and
Schnabel (1983), Strang (1986) and Fletcher (1987).

One possibility that might be considered is Newton’s method. In solving
a non-linear system of equations, this method requires that a sequence of
linear systems must be solved. These linear systems are obtained by
linearizing the equations about a guess for the steady state, i.e. they
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comprise equations for perturbations p about the guess stream function
¥o:

L(¥y)p = —R, 3)
where the linear operator L(i) (with coefficients depending on ) is:

)
L(¢)p=B£ +J(¢, V) +J(p, V?¢) + &V — eV =0 (3a)

and where R, is the residual (eqn. (2)) evaluated for ¢,. The solution p of
the linear system provides a correction to the guess ¢, and the improved
guess can then be used to define a new linear system for the next
correction. Unfortunately, the large linear system is not symmetric, so it is
difficult to solve. Moro (1988) has used a variant of Newton’s method to
compute steady solutions for a similar quasi-geostrophic model, but he did
not address the question of relative computational efficiency.

The approach considered here, is to formulate the computation of the
steady state as an optimization problem. One way of doing this is to
minimize the sums of the squares of the residuals of the steady model
equations:

/=%/R2dxdy (4)

where R is defined in eqn. (2). A stream function for which 7, =0
satisfies the steady model equations; if no steady solution exists, 7, > 0.
The computational problem now becomes one of finding the minimum of

Z, where the gradient of _# must vanish:
0.7
= 50 =

The functional derivatives should be interpreted as partial derivatives with
respect to the discrete variables representing the stream function at the
interior grid points; boundary conditions are known, so they do not
contribute to the gradient. It is not difficult to carry out the variations to
obtain an expression for the gradient:

g 0 (5a)

g=L*(¢)R (5b)
where

oR
L*(y)R = —B—a;—VzJ(a,l/, R)—J(R, V2¢)+KV2R—5V4R (5¢)

(Note that L*(i) is the adjoint of L(y).) The finite-difference expressions
for the partial derivatives in eqn. (5¢) are determined by the finite-dif-
ference forms used in the model; it is not difficult to show that Arakawa’s
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Jacobian and centered differences in eqn. (2) require that Arakawa’s
Jacobian and centered differences also be used in eqn. (5¢) (Tziperman and
Thacker, 1989). The boundary conditions of the model constrain the
variations of _# at the boundaries, determining the form of the operators in
eqn. (5¢) at the boundaries, i.e. the boundary conditions for eqgns. (5a) and
(5b). Once the physical problem is formulated and the boundary conditions
specified, however, the form of the operator eqn. (5¢) is uniquely deter-
mined and quite easily derived. Now we are faced with solving a large,
symmetric system of coupled, non-linear, algebraic equations (eqns. (5)) for
.

Newton’s method might be considered for solving eqns. (5). It would
require at each iteration an explicit representation of the Hessian matrix of
the cost function _#:

827
G(y) = 507 (6a)
At each Newton iteration, the following linearized system is solved to
compute the correction p, to the previous approximation ¢, _, for the
steady-state solution:

G(Y1)Pi= —8x—1 (6b)

where the subscript indexes the Newton iteration. (If the model were
linear, the cost function would be quadratic, eqn. (5) would be a linear
system, and only one Newton iteration would be needed.) Although deter-
mining the Hessian could be tedious for a three-dimensional, baroclinic
ocean model, it is not too difficult in this case. The Hessian at ¢ acting on
p is (see Appendix):

G(¥)p =L*()L(¥)p ~J(R, V?p) —~ V3J(p, R) (6¢)
where R is the residual eqn. (2) evaluated for ¢, L is the linearized model
operator, L* is its adjoint, and J is the Arakawa Jacobian. The Hessian of
# 1s sparse, so it wouldn’t require an overwhelming amount of storage; in
fact, multiplication by the Hessian matrix could be coded like a finite-dif-
ference model involving higher derivatives.

If the terms involving the residual R in eqn. (6¢) are neglected, the
Hessian is the product of the linearized model operator with its adjoint.
These terms are due to the non-linearity of the model and should be small
when the flow is nearly linear. Because they depend on the residual, they
also vanish at the minimum of _#. When these terms are neglected, the
Hessian is simply the linearized model operator times its adjoint, and its
eigenvalues are, therefore, the squares of the moduli of the complex
eigenvalues of the linearized model operator. Consequently, the condition
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number of the optimization problem is the square of that of the original
problem, and the equations to be solved in the optimization approach can
be expected to be much more ill conditioned than the original equations.

To compute each Newton iteration to machine accuracy would be a
time-consuming task. A better idea might be to solve for the correction
only approximately and then move on to the next linearization. This is
essentially what the conjugate-gradient algorithm does. Conjugate-gradient
descent can also be thought of as an improvement over the method of
steepest descent. For steepest descent, the new guess is obtained by moving
in the steepest downhill direction from the previous guess:

Pr= —0;_18k_1 (72)

where «,_, is determined by searching for the minimum along the direc-
tion determined by the gradient. If the constant-cost contours are circles,
then steepest descent converges in a single iteration, but if they are
significantly non-circular, convergence will be extremely slow, since the
steepest downhill direction is not in the direction of the minimum. The
improvement offered by conjugate-gradient descent is in using a direction
d,_, that takes into account previous descent directions:

pr=—0;_1d;_, (7b)

If the cost function is quadratic, then, neglecting round-off errors, the
conjugate-gradient descent algorithm is guaranteed to converge to the
minimum in as many steps as there are unknowns to be found, with the
best performance when cost contours in a large subspace are nearly
circular. For a quadratic cost function the conjugate-gradient descent
direction is:

T
818k
dp= -8+ —F——dp_; (7¢)
8i-18k-1
with d,= —g,. If _# is not quadratic, due to model non-linearities, then

eqn. (7b) can still be used to improve the guess for the solution, but some
generalization of eqn. (7c) might be preferred for computing the descent
direction:

dk= —Bkgk (7d)

where B, is an approximation to the inverse of the Hessian matrix of #
built from the previous few directions and gradients. (If it were the inverse
of the Hessian, it would be optimal in the sense that a single conjugate-
gradient step would be as good as a Newton step). The advantage is that
the Hessian is never needed, only the gradient vectors, which can be
computed from eqn. (5b) or equivalently using an adjoint model (Thacker,
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1989; Tziperman and Thacker, 1989). The improvement at each step is not
expected to be as good as for Newton’s method, but the amount of work
per step is certainly much less. The performance of conjugate-gradient
descent can be improved by posing the problem in terms of variables for
which the cost contours are nearly circular, i.e. by preconditioning, which is
closely related to the question of choosing the best descent direction.
Computations presented below have been made using a conjugate-gradient
routine from the NAG library (Numerical Algorithms Group (NAG),
1984).

3. PRECONDITIONING

If convergence is slow when time stepping to the steady state, then,
owing to the condition-number considerations above, i.e. to the fact that
the Hessian is approximately the square of the model operator, optimiza-
tion with conjugate-gradient descent can be expected to converge slowly
also. The reason for slow convergence of the conjugate-gradient descent is
that the cost function is more sensitive to some variables than to others.
Geometrically, this amounts to the cost surface being too flat in some
directions of the parameter space. One way to get around this problem is
by changing variables, so that in terms of the new variables the constant-cost
contours are more nearly circular; this is referred to as preconditioning. If
M~y is the vector of new variables defined by a transformation matrix M ,
then the transformed gradient vector is M Tg and the transformed Hessian
matrix is M TGM. If the transformed Hessian is the identity matrix, then a
single conjugate-gradient (steepest-descent) step is equivalent to a Newton
step; but the amount of work is exactly the same as solving the original
linearized problem, since M would be the inverse of the linearized model
operator. The idea behind preconditioning is to find some middle ground,
so that the additional work required for accelerating convergence is more
than offset by the savings in the number of iterations. This is a rather vague
objective, and to accomplish it seems to be more of an art than a science.
Some examples will be discussed below. Hopefully, the ingredients of the
art will be made clear enough that they can be applied to other problems,
in particular to that of computing the steady state for large oceanic
circulation models.

The eccentricity of the constant-cost contours is indicated by the eigen-
values of the Hessian matrix (Thacker, 1989) so the eigenvalues can be
helpful in suggesting a preconditioning transformation. Although the eigen-
value spectrum is unknown, it is possible to get some idea what it might be
like. The real, positive eigenvalues of the Hessian are the squares of the
moduli of the complex eigenvalues of the linearized model operator, which
can be identified with the complex frequencies of the time-dependent
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model. Thus the rate of convergence is tied to the disparity of the temporal
scales that are described by the model. Focus attention first on the complex
eigenvalues; they should already be familiar from their role in determining
the size of the largest stable time step for the unsteady model (Vichnevet-
sky and Bowles, 1982). Using the same sort of reasoning involved in
estimating the Courant condition, i.e. by assuming that all coefficients are
constant even though they really are not approximate eigenvalues can be
obtained, which correspond to approximate eigenvectors that are sinusoids.
Taking the perturbations p to be proportional to expli(k,x + k,y)], the
eigenvalues of the linearized model operator defined in eqn. (3a) are given
by:

Mk, k) =iBk, — (iUk, +iVk,)(k2 + k2) — (k2 + k2) - (k2 + k2)’
(8a)

where for a square basin of length and width L = NA, A being the grid
spacing, (k,, k,)=m(l, m)/L,l,m=1,...,N—1. The spatially varying
velocity components — 3y, /0y and dy,/0x are estimated by the constants
U and V, which might not be a particularly good approximation, but it is
the best that can be done without much more work. Similarly, from eqn.
(6¢c), if the contributions from the non-linear-correction terms are ne-
glected (they would vanish at the minimum of _# or for a spatially constant
residual), the eigenvalues of the Hessian might be estimated by:

Ak, k,) =Bk, = (Uk, + Vi, ) (k2 + 2]’

+|k(k2+k2) +e(k3+k§)2]2 (8b)

In order to account for the effects of truncation errors on the eigenvalue
spectrum, in the place of k, and k, there should actually be trigonometric
functions of k,A and k,A resulting from the action of finite-difference
operators (instead of partial-differential operators) on the complex expo-
nential eigenfunctions:

A(k,, k,) =B sin(k,A) — 2(U sin kA +V sin k,A)
(cos k A+ cos k,A— 2)1\‘2]2A‘2
+|2x(cos kA + cos k,A-2)
+4¢€(cos kxA+cos kyA—2)2A_2]2A_4 (8¢)

The B-term should dominate these expressions for the eigenvalues for
large scales (x = L), but depending upon the model resolution and the
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magnitude of the friction coefficients, this will probably not be the case for
smaller scales (x = A). Still, it is clear that the small scales will be
responsible for the large eigenvalues and the large scales for the small
eigenvalues. In other words, large-scale features are harder to compute
than small-scale features on a high-resolution grid. This is exactly the same
problem that plagues the Poisson equation. For the Poisson equation, the
eigenvalues are proportional to k2 + k2 so the condition number is
kii./k2..=N? where N characterlzes the number of points across the
grid. For the optlmlzatlon problem addressed here, depending on the
values of the model’s parameters, the condition number here might be
more like N* or even as large as N8 The problem for the Poisson equation
is not as bad, and fast algorithms for solving it already exist, which suggests
that the Poisson equation might provide an effective preconditioning trans-
formation.

Suppose that the model had been formulated in terms of vorticity rather
than stream function. Then, if o =V?p is the correction to the guess for
the vorticity field, eqn. (3) would be:

B +J(y, o) +J(V 20, V) + ko —€eVia = —R, (9a)

ox
and the transformed gradient would be V~2g so the eigenvalues of the
Hessian with respect to these variables would be:

A(k,, k,) = [ka(kg + kg)‘1 — (kU + kyV)r + K +e(k2+ kﬁ)]2 (9b)

Similarly, if the optimization were cast in terms of V2 = V*y, then the
eigenvalues Hessian for that transformation would be:

Ak, k) = | B (k2 +K2) 7 - (ka+kyV)(k§+k§)_l]2

+[K(k§+k§)_l+e]2 (10)

Clearly, the net effect has been to divide each term by (kZ+k2)? in the
first case and by (k] +k2)* in the second. Consequently, to a different
extent for the two cases, the domination by the small scales should be
diminished and the influence of the large scales should be enhanced.
Depending on the values of the model parameters, it could be possible that
either or both of these transformations could result in a transformed
Hessian with a smaller condition number.

To give some idea of the effect of these transformations the approximate
spectra have been computed for a case in which the non-dimensional
model parameters have the following values: k /LB = 0.05, € /L*B? = 0.0001
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Fig. 1. Eigenvalue spectra estimated using eqns. (8b), (9b) and (10) with « /BL = 0.05,
€/BL*=0.0001, and U=V = 0. Full line, dash and dot curves correspond, respectively, to
¥, ¢, and V¢ as the optimization variables and to the identity operator, V-2, and V~* as
the preconditioning operators. The eigenvalues are indexed in order of their magnitudes
and normalized by dividing by the largest, so that all three curves can be conveniently
displayed on a single plot.

Log (Eigenvalue/ Maximum)

and U/L*B =V/L*8 =0.0001. The non-dimensional wavenumbers have
the values: k, L =Im and k,L=mmw, [, m=1...23, corresponding to a
computational grid of 25 X 25 points. To show the three spectra conve-
niently on the same plot (Fig. 1) the eigenvalues have been normalized by
dividing by the largest and arranged in descending order. The condition
number is the reciprocal of the smallest normalized eigenvalue; the small-
est condition number results from the preconditioning transformation from
¢ to ¢ (eqn. (9b)) and the largest from transforming to V?{ (egn. (10)).
Figure 2 shows the corresponding results when the horizontal friction
coefficient was set to be 100 times larger than in the standard case of Fig.
1. In this case the best conditioning number (flattest spectrum) is that
obtained when using the Laplacian of the vorticity as the control variable.
We shall return to this case in the numerical examples given below, confirm
the conclusion concerning the choice of the best preconditioning for this
parameter range, and explain this observation using the above analytic
expressions for the eigenvalue spectrum (see end of Section 4).

More information about the rate of convergence is provided by the
shape of the eigenvalue spectrum; the more clustered the eigenvalues, the
better. However, the results of this approximate analysis on the clustering
of approximate eigenvalues is probably less reliable than those concerning
the condition numbers.

The price that must be paid for faster convergence associated with the
preconditioning transformation from ¢ to ¢ is that two Poisson equations
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Fig. 2. As in Fig. 1, but using a horizontal friction coefficient that is 1lOO times larger:
€ /BL?=0.01. Full line, dash and dot curves correspond to the same cases as in Fig. 1.

must be solved for each iteration, one to evaluate the stream function
perturbation in order to compute the residual and the other to evaluate the
transformed gradient. As long as the additional cost of the Laplacian
inversions is not too high, this transformation is worthwhile. Fortunately,
this is the case; we use a fast multigrid Poisson solver, which is described by
Brandt (1984). (That same report suggests that multigrid methods might be
more efficient than conjugate-gradient descent for computing the steady
state).

4. COMPUTATIONAL EXAMPLES

The computational examples presented here illustrate the potential of
the optimization approach for computing the steady state. In every case
steady flow is computed for a square basin of depth D and breadth L
represented by a 25 X 25 grid, and for the particular wind forcing y =
—A sin(wx /L) sin(mry/L). The examples are determined by the choice of
values of the non-dimensional friction parameters ' =«/BL and €' =
€/BL? and by the choice of the preconditioning transformation. The value
of the Rossby number 4 /B*L? is always taken as 0.1.

Computations were made using a slightly modified version of a code
originally intended for fitting the time-dependent vorticity-equation model
to model-generated observations (Tziperman and Thacker, 1989). That
code sought the minimum of a cost function with two types of terms: those
measuring the difference between the observations and their model coun-
terparts, which have been omitted here, and those measuring the departure
of the model from the steady state. The part that has been retained, i.e. the



392 E. TZIPERMAN ET AL.

Stream Function Vorticity

5 10 15 20 15 20 25
X X

Fig. 3. Steady stream function and vorticity for k /8L = 0.05, € /BL*> = 0.0001, and A /B2L?
= 0.1 (case 1 in Table 1).

sum of the squares of the rate of change of the vorticity over a single time
step, is the same as the cost function defined in eqn. (4). The gradient is
computed by taking a single time step forward with the model and then a
step backward with the adjoint. Note that the present problem is not time
dependent, and, therefore, time does not enter explicitly. Yet, the compu-
tation is done using time-dependent codes for the model and adjoint
model, and the forward and backward steps are simply a device for
computing first the residual (eqn. (2)) and then the gradient (eqn. (5b)),
with the minimum of change to be existing time-dependent model-adjoint
code. The only other modifications were associated with the implementa-
tion of the preconditioning transformations.

First, consider what we refer to as the standard case having values of
k' =0.05 and €’ = 0.0001, respectively, for the non-dimensional Newtonian-
and Laplacian-friction parameters. The steady stream function and vortic-
ity are shown in Fig. 3. This solution has been computed in four different
ways: (1) using a traditional time-marching approach with the maximum
stable time step and a single multigrid Poisson iteration per time step; (2)
using the optimization approach with the stream function defining the
space in which the mimimum is sought; (3) using the optimization approach
with vorticity; and (4) using the optimization approach with the Laplacian
of vorticity. These examples allow us to compare time-stepping with opti-
mization and to demonstrate the importance of preconditioning. Figure 4
shows the rates at which the various methods converge.

For time-stepping, the logarithm of the ratio of the cost to the initial cost
is plotted as a function of the number of steps used to spin the model up.
In the first 20 or so time steps the cost increases, but thereafter it decreases
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Fig. 4. Convergence rates for time-stepping (unmarked curve), for conjugate-gradient
descent with no preconditioning (using stream function as optimization unknown, curve
marked ), for conjugate-gradient descent preconditioned by V2 (marked ¢), and for
conjugate-gradient descent preconditioned by V~* (marked V?¢) for the solution shown in
Fig. 3.

exponentially. Note that the stream function was obtained from the vortic-
ity with only a single pass of the multigrid Poisson solver at each time step,
so only an approximate solution was obtained. Increasing the number of
multigrid iterations to two guaranteed that the Poisson solutions were
highly accurate; although this reduced the number of iterations from 966 to
922 (see Table 1) it increased the overall CPU time from 6.420 to 8.242 s.

For the optimization examples, the logarithm of the cost ratio is plotted
as a function of the number of evaluations of the cost function and its
gradient by the NAG conjugate-gradient routine. (Spikes due to intermedi-
ate function evaluations needed by the line search algorithm have been
suppressed. The curves simply connect successive values of the cost func-
tion at the completion of the descent step; horizontal spacing between
plotted points is adjusted to account for the number of function evaluations
per descent step.) When the search for the minimum is cast in terms of the
stream function, there is no need to solve a Poisson equation, so each
iteration is less expensive than a single step of the time-stepping method.

When vorticity is taken as the optimization variable, one Poisson equa-
tion must be solved in order to evaluate the residual and another to
evaluate the gradient, so an iteration here is roughly equivalent to two time
steps of the time-marching method; however, additional computations are
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TABLE 1

Results of the three cases described in the text

Case  Method €y €n Vari- m-g Steps CPU Figures

able cycles

1 c-g 0.05 0.0001 ¢ -~ 1236 12365 3,4,5
c-g 0.05 0.0001 ¢ 2 ¥340 94.997
c-g 0.05 0.0001 V% 4 > >
Time-stepping 0.05 0.0001 - 1 966 6.420
Time-stepping 0.05 0.0001 - 2 922 8.242

2 c-g 0.15 0.0001 ¢ - 1746 17.050 6,7,8
c-g 0.15 0.0001 ¢ 2 v384 1.230
c-g 0.15 0.0001 V% 4 2120 60.414
Time-stepping 0.15 0.0001 - 1 116 90.783
Time-stepping 0.15 0.0001 - 2 114 1.028

3 c-g 0.05 0.01 i - > > 9,10, 11
c-g 0.05 0.01 14 3 636 10.809
c-g 0.05 0.01 v 4 ¥236 6.673
Time-stepping 0.05 0.01 - 1 274  1.827
Time-stepping 0.05 0.01 - 4 270 3.649

c-g, conjugate-gradient; multigrid, eee

Efficiency of calculation is measured in terms of both number of time steps and computer
time (CPU seconds) required to reduce the cost function to below 10~¢. For the conjugate
gradient optimization, computing the gradient requires one forward step of the model and
one backward step of the adjoint model, which together count as two steps in this table. The
most efficient method of calculation for each case (tested separately in terms of CPU time
and number of steps) is indicated by ¥. When > appears instead of number of steps or
CPU seconds it indicates that the conjugate gradient optimization did not converge after a
very large number of iterations.

needed for the line search. With the Laplacian of the vorticity as the
optimization variable, four Poisson solutions (two biharmonic inversions)
were required to compute the cost and gradient, but to no avail (see Table
1); the computations failed to converge. Results were consistent with
expectations based on the eigenvalues analysis, which indicated that vortic-
ity would be the best of these three choices for optimization.

In order to compare with the eigenvalue spectra of Figs. 1 and 2, we
have computed the actual eigenvalues of the unpreconditioned Hessians
and both preconditioned Hessians for the standard case. The Hessians are
obtained by finite differences from the gradient vectors computed using the
adjoint model, and the eigenvalues are calculated using a NAG routine for
symmetric matrices. The resulting spectra, which are shown in Fig. 5, differ
from those based on the Fourier modes because of the effects of the
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Fig. 5. Eigenvalue spectra of the Hessian matrices for the solution shown in Fig. 3. Curves
marked ¢, £, V?¢ correspond to the same choices for the optimization variables as in Fig. 2.

non-linearities, but there is still qualitative agreement, indicating that the
heuristic analysis has some merit.

To understand better the way preconditioning works, we now consider
some other choices for the friction parameters. Increasing the value of the
non-dimensional bottom friction to 0.15 from 0.05 yields the steady flow
shown in Fig. 6. The convergence rate for both choices of preconditioning
(Fig. 7) is much faster than for the previous case, as might be expected

Stream Function Vorticity

25
20

15 y

10

5

5 10 5 20 5 10 15 20 25
X X

Fig. 6. Steady stream function and vorticity for k /BL = 0.15, € /BL> = 0.0001, and A /B2L>
= 0.1 (case 2 in Table 1).
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Fig. 7. Convergence rates as in Fig. 4, but for the solution shown in Fig. 6.

from the larger unpreconditioned eigenvalues with smaller scales. Their
eigenvalue spectra (Fig. 8) are characterized by more degeneracy and
smaller condition numbers. Convergence rates with vorticity as the opti-
mization variable are quite good, but not as good as for time-stepping.
Although fewer steps were required for the vorticity-optimization ap-
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Fig. 8. Eigenvalue spectra of the Hessian matrices for the solution shown in Fig. 6.
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Fig. 9. Steady stream function and vorticity for « /BL =0.05, e /BL*=0.01, and 4 /B2L>
= 0.1 (case 3 in Table 1).

proach, time-stepping required less CPU time because we could get away
with using only one multigrid Poisson pass. Unfortunately, a similar trick
does not seem to work for the optimization approach, probably because the
error in the Poisson solution does not give the required accuracy in the cost
function and its gradient. This does not mean that the optimization
approach could not be made more efficient. What is needed is a better
preconditioning transformation. The two that we have considered are quite
simple and are intended only to demonstrate how the method works.

Increasing the value of the non-dimensional horizontal viscosity to 0.01
from 0.00010, with the body friction taken at the standard value of 0.05
results in the solution shown in Fig. 9 with convergence rates that are
shown in Fig. 10. The eigenvalues for this case are shown in Fig. 11.
Biharmonic preconditioning requires the fewest iterations in this case, but
time-stepping again takes the least CPU time. Perhaps by examining
different possibilities, using the eigenvalue analysis described in Section 3,
a better preconditioning transformation can be found, which would result
in faster convergence.

The results for the different choices of the optimization variables are
consistent with the ideas discussed in Section 3. Slow convergence is a
result of the breadth of the eigenvalue spectrum, which in turn is deter-
mined by the spatial scales resolved by the model. In every case the B-term
dominates at large scales, but the friction terms can dominate at small
scales, depending on the values of the coefficients. For the standard values
this is the case, with both types of friction contributing about the same. A
factor of 3 increase in body friction increases the eigenvalues associated
with the small scales and thus makes the Poisson preconditioning more
necessary. A hundredfold increase in horizontal friction causes the small-
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Fig. 10. Convergence rates as in Fig. 4, but for the solution shown in Fig. 9.

scale part of the spectrum to be spread out much more, so double Poisson
preconditioning by using the Laplacian of the vorticity is now more effec-
tive. This sort of analysis may be very useful in more complicated situations
where preconditioning is crucial for optimization to be computationally
feasible.
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Fig. 11. Eigenvalue spectra of the Hessian matrices for the solution shown in Fig. 9.
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It is useful to speculate on the use of an optimization approach to
computing the steady state for a more realistic model. The important point
is that the condition number is associated with the extreme temporal scales
of the model. Whereas the spatial scales of the vorticity model completely
determine its temporal scales, the richer variety of wave and mixing
processes in more sophisticated models would play an important role, and
intelligent preconditioning would have to take these physical processes into
account. The tricks mentioned in the introduction for accelerating conver-
gence of time-stepping to steady state (the two-time-scale approach and
diagnostic spin-up), which exploit knowledge of the temporal scales, should
have counterparts that improve the conditioning of the more general
steady-state optimization problem. Still, preconditioning will have to ad-
dress contribution to temporal extremes due to the range of spatial scales.

It is interesting to note that the best preconditioning transformation in
two out of three of the cases we have tried was related to which term
dominates the small scales in the model equation. When bottom friction
dominates the small scales (case 2 in Table 1), the vorticity is the most
efficient control variable for the optimization. When the horizontal friction
is large and dominates the small scales (case 3), the Laplacian of the
vorticity is best. This is an important observation, as it gives us some
intuitive feeling on the way preconditioning may work in more complex
situations. Let us try and explain this, using case 3 as an example. We then
comment on the standard case (case 1), for which a more general form of
the same explanation is needed. Begin by considering expressions (8b), (9b)
and (10) for the eigenvalue spectrum for the different preconditioning
transformations, noting again that the largest eigenvalues are determined
by the small scales (i.e. by large wavenumbers k, k). Let (k,_ 0, ki)
= /L be the smallest wavenumbers in the (x, y) directions, correspond-
ing to scale of the basin, L. Let also (k,_ .., k,_.,,) = 7/A be the largest
wavenumbers, corresponding to the grid scale. When the horizontal friction
coefficient is as large as in case 3, the term e(kZ__, +k,_..)° in eqn.
(8b) dominates the largest eigenvalue, while the term Bk,__,, dominates
the smallest (in fact, for the very large value of the horizontal friction used
in case 3, the B-term and the horizontal friction term are both of the same
order of magnitude for the large scales, but this does not invalidate the
explanation below). The condition number is, therefore

€(k2_ o+ K2 )

X —max y —max
ka—min

When the Laplacian of the vorticity is used as the control variable, the
largest eigenvalue is simply dominated by €, and the smallest is dominated

(11a)
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by Bk, _ min(k2_ in + k2 _ in) 2. In this case the condition number is smaller:

X —min y—min

(k2 pin + 52 in)’

X —min y—min

ka—min

explaining the fact that the Laplacian of vorticity is a better control
variable for this parameter range.

The standard case (3 in Table 1) offers insight into more complex (and
realistic) situations, where no single term clearly dominates the model
equation. In this case the vorticity is predicted by the analytic expressions
for the eigenvalues to be the best preconditioning transformation, and
indeed it turns out to be the best choice in the numerical experiments
(Figs. 3-5). But an examination of the different terms in the model
equation shows that the horizontal friction is the dominant term for the
smallest length scales and not the vorticity. In general, the preconditioning
operator should approximate the Hessian (preconditioning by the Hessian
should give a condition number equal to 1). When vorticity is the best
choice, this means that the ‘shape’ of the spectrum for bottom friction
alone is more similar fo the shape of the full spectrum (in terms of stream
function) than is the shape of the spectrum for 8 alone or the shape for
horizontal friction alone. When Laplacian of vorticity is the best choice, the
shape of the spectrum for horizontal friction alone is closest to the shape of
the full spectrum. The spectrum in terms of the best choice will be the
flattest. When a single term dominates many scales in the model equations
(as in cases 2 and 3), its contribution to the eigenvalue spectrum will be
similar to the spectrum of the full model, and it will, therefore, be the best
preconditioning. In more complicated cases (such as our case 1) the global
shape of the eigenvalue spectrum must be considered, and our heuristic
derivation of the eigenvalues seems capable of taking into account this
factor, as evident in the successful prediction of vorticity as the best
preconditioning in case 1.

(11b)

5. CONCLUSIONS

The computational examples have demonstrated that the optimization
approach using a conjugate-gradient algorithm is a viable alternative to the
traditional time-marching method for computing steady circulation, at least
when an efficient preconditioning transformation is available. But would it
work for a more complicated oceanic general circulation model (OGCM)?
To properly answer that question is beyond the scope of this paper, but a
few comments here might be appropriate.
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First, defining a steady-state cost function for a GCM is fairly straight-
forward. Sums of squares of residuals for each type of equation (tempera-
ture, salinity, velocity components, etc.) would represent different types of
costs. The sum of these individual costs, with coefficients to insure dimen-
sional homogeneity, would provide a cost function whose minimum would
determine the steady flow. One question would be how to determine the
magnitudes of the coefficients, i.e. the cost associated with one type of
residual relative to the others; this is essentially the question of the
appropriate scales for non-dimensionalization, and such scaling issues are
intimately tied to the problem of preconditioning.

Once the cost function is defined, the next question is how to compute
its gradient without worrying about preconditioning. Again, it is possible to
advance the model one step in time in order to compute the residuals of
the steady equations. The residuals can then be multiplied by the dimen-
sional coefficients used in defining the cost. The results are then used in
the adjoint model to get the gradient vector. This would follow exactly the
same pattern as described above, except for the minor effort needed to
accommodate the coefficients.

The difficult aspect will be the choice of an appropriate preconditioning
transformation. A GCM will have a larger variety of wave types than the
vorticity-equation model considered here; there will be fast gravity waves as
well as slow Rossby waves. Consequently, the spectrum can be expected to
be more spread out. Although the preconditioning problem will still involve
the different spatial scales, it will be further complicated by the different
wave types. Rather than speculating further, it is best to leave the details to
a future paper supported by computations.

The results presented here have not made a strong case for the opti-
mization approach as an alternative to time-stepping. More mathematical
research is still needed. The most important point of the paper is the
analysis of numerical conditioning in terms of the model’s temporal scales.
This provides the physical guidance for finding the preconditioning trans-
formations that might make the optimization approach a practical alterna-
tive.

Results of this paper have implications for other adjoint-related oceano-
graphic modeling efforts. For example, one problem of current interest is
that of fitting a steady, general circulation model to data by varying initial
conditions (and boundary fluxes, etc.) until changes over a single time step
and deviations from the data are both small. If the model uses the rigid-lid
approximation, the barotropic flow is governed by a vorticity equation, so,
in the limit that steadiness is much more important than data, the analysis
presented here applies directly. Results presented here suggest that, for a
physically important range of mixing parameters, vorticity should be a
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much better control variable than stream function for those problems. It
also suggests that failure to converge might be due to ill conditioning of the
optimization problem. If a successful preconditioning transformation can-
not be found, it might be a good idea to reformulate these inverse
problems so that the steady problem must be solved exactly, adjusting the
boundary fluxes, etc., but ‘not’ initial conditions. At each iteration it would
be necessary to compute the steady model flow, given the fluxes, and to
solve a steady adjoint problem, hoping to exploit speed of time-stepping in
computing this sequence of steady solutions.
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APPENDIX: DERIVATION OF THE HESSIAN OPERATOR

To compute the Hessian at a point ¢,, it is simplest to start by
expressing the cost function in terms of perturbations p about #,:

(o +p) = [[Ro(Wo) + L(%o)p +7(p, V)] dx dy (A1)

The Hessian is the second functional derivative of J with respect to p at
p =0, so contributions to the Hessian come from the terms of the inte-
grand that are quadratic in p. Thus, the first functional derivative of

J{ILW)p]* + 2RI (p, V?p)} dx dy (A2)
yields the Hessian operator acting on p:
G(do)p =L* (o) L(¢o)p “J(Ro, VZP) - VZJ(RO, P) (A3)



