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ABSTRACT

A general circulation model and North Atlantic climatological data of temperature, salinity, wind stress,
evaporation minus precipitation, and air-sea heat fluxes are used to examine the possibility of solving inverse
problems using a full-scale numerical GCM and real oceanographic data, combined through an optimization
approach.

In this study several solutions for the model inputs and the structure of the cost function as a function of the
model inputs are examined to demonstrate two of the main difficulties confronting such large-scale nonlinear
inverse problems (about 30 000 unknowns and a similar number of constraints for the problem examined
here). The first is the possible existence of local minima of the cost function, which prevents convergence of
the optimization to the global minimum representing the desired optimal solution for the model inputs. The
second difficulty, which seems the dominant one for many of the problems examined in this part as well as in
Part |, is the ill conditioning of the inverse problem. Simple model equations are used to analyze the conditioning
of the optimization problem and to analyze the role of both dissipation and waves in the model dynamics in
conditioning the problem. The analysis suggests what might be an improved formulation of the cost function
resulting in better conditioning of the problem.

The relation between the optimization approach and the robust diagnostic method of Sarmiento and Bryan
is explicitly demonstrated, and the solution obtained by combining the two methods is used to examine the
performance of the GCM used here for the North Atlantic Ocean.
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1. Introduction

This is the second part of a work exploring the pos-
sibility of posing meaningful and solvable inverse
problems using sophisticated general circulation mod-
els (GCMs) of the oceanic circulation. For this purpose,
the inverse problems are posed as optimization prob-
lems, minimizing a cost function that measures the
distance between model solution and data and the dis-
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tance of the model solution from a steady state. In Part
I (Tziperman et al. 1992), we used simulated data with
and without added noise to carefully analyze this prob-
lem under controlled conditions where the true solution
to the optimization problem is precisely known. While
the solution method performed quite well with no
added noise, difficulties arose when simulated noise
was added to the model-generated data. When applying
the methodology of Part I to real data, the noise level
in the data is expected to be quite high, and further-
more, there is no guarantee that the model and data
are consistent even within the assumed error bars. We
explained in Part I that, when the noise level added to
the simulated data is further increased, simulated noisy
data do not offer any advantages over real oceano-
graphic data for exploring the performance of the op-
timization. On the other hand, there is much to be
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learned by using real oceanographic data with the same
methodology. In this part of the work, North Atlantic
data are therefore used to further analyze the difficulties
found with noisy simulated data, and in particular, the
problem of conditioning of the inverse problem is dis-
cussed and analyzed in detail.

The North Atlantic Ocean was chosen for this study

because it is perhaps the most observed and studied of
the world’s oceans, and therefore serves as an adequate

test-bed for new methodologies. Recent numerical
simulations of the North Atlantic Ocean have reached
a fairly high resolution and level of sophistication. Yet,
these models must specify the poorly known surface
forcing fields and interior mixing parameters, while
they cannot use the available data directly in order to
improve estimates of the unknown model inputs. In-
verse models have also been used to study the North
Atlantic general circulation, using mass, heat, and salt
balances in order to calculate an absolute velocity field
from hydrographic data. These models were often for-
mulated as coarse-resolution box models (Wunsch
1978, 1984; Schlitzer 1988; Rintoul 1988), or alter-
natively used local non-mass conserving dynamics
(Olbers et al. 1985). More recently, a nonlinear inverse
model was used by Mercier (1989) to calculate the
general circulation of the western North Atlantic, as
well as to obtain an optimal estimate for the density
field. While inverse models can, in principle, calculate
unknown model parameters from the available data,
their resolution is often significantly lower than that of
GCMs used to study the North Atlantic Ocean, and
their dynamics are simpler.

The optimization approach used in Part I has the
potential of combining the advantages offered by the
inverse models with the superior resolution and dy-
namics of the numerical GCMs. To further explore
this potential, the methodology and GCM presented
in Part I will be used to analyze North Atlantic cli-
matological temperature and salinity data and surface
forcing (i.e., heat and freshwater fluxes and wind stress)
data. Different inverse problems are posed and the
ability of the so-called adjoint method to solve them
is examined. As this is the first application of the adjoint
method to a complex GCM and real oceanographic
data, our purpose here is not to obtain a definite esti-
mate of the North Atlantic circulation, but to dem-
onstrate what can be done using the method and to
examine the difficulties that may arise. We did not,
therefore, try to use the “best” data for the North At-
lantic, but rather chose to use readily available and
conveniently gridded climatological datasets for both
the hydrography and the surface fluxes. Similarly,
whenever possible, we chose simplicity rather than so-
phistication in the model formulation, for example, in
choosing the mixing parameterization. Because this is
the first time we are able to attempt the calculation of
all model inputs including the hydrography and surface
forcing fields, interesting and previously unencountered
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difficulties arise, and various possible explanations are
suggested here for these difficulties. We believe that
both the specific results of the calculations presented
here and the discussion of the difficulties encountered,
as well as the possible extensions to this work, should
prove useful and serve as an important step toward a
more definite calculation of the North Atlantic general
circulation.

This part has three main objectives. The first is to
examine the difficulties encountered in Part I with noisy
simulated data by using real data that is both noisy
and possibly inconsistent with the model used to an-
alyze it. Our second objective is to analyze the model
performance by confronting it with real data, using
both the optimization approach and the robust diag-
nostic approach of Sarmiento and Bryan (1982). The
relation between the two approaches is, therefore, ex-
plicitly demonstrated and discussed. Finally, we ana-
lyze in detail the problem of conditioning of the op-
timization problem involving the fit of data to a steady
model. The role of both dissipation and waves in the
model dynamics in conditioning the steady optimi-
zation problem is demonstrated and discussed. The
problem of conditioning seems to be the source of
many of the difficulties found here and in Part I, and
the careful analysis here should help in future efforts
to apply the optimization approach to oceanic general
circulation models.

In the following sections, we briefly describe the
model and data used for this study (section 2), for-
mulate the optimization problem to be solved (section
3), and describe the results of some North Atlantic
inversions (section 4). Then, (section 5) we analyze
the conditioning of the optimization using some sim-
plified model equations (section 5), in order to better
understand the difficulties demonstrated here in terms
of the physics of the model, and to point at possible
remedies. Finally, we present our concluding remarks
in section 6.

2. Model and data

The GCM was described in detail in Part I. For
modeling the North Atlantic Ocean, the horizontal
resolution was chosen to be 2° latitude and 3° longi-
tude. The model extends from 9.5°N to 59.5°N, span-
ning the whole width of the North Atlantic Ocean.
There are 12 levels in the vertical so that temperature,
salinity, and the horizontal velocities are evaluated at
the depths 25, 81.5, 159, 275, 451.5, 714.5, 1088.5,
1589, 2216.5, 2956, 3783 and 4672.5 m.

The temperature and salinity data are taken from
the Levitus (1982) atlas, wind data are taken from
Hellerman and Rosenstein (1983), the data of Schmitt
et al. (1989) are used for evaporation minus precipi-
tation, and the air-sea heat flux data are those of Es-
bensen and Kushnir (1981). The hydrographic data
were calculated on the model grid by subsampling the
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original data in the horizontal direction and using sim-
ple linear interpolation in depth. The surface forcing
data were simply subsampled on the model’s grid. Fig-
ure 1 shows the wind, air-sea heat fluxes (W m™~2), and
evaporation minus precipitation (cm yr~!) data used
for this study.

3. Optimization problem

The two basic assumptions of this study are that the
yearly averaged North Atlantic circulation is at a steady
state represented by the annually averaged climatolog-
ical data, and that this steady state is consistent with
our model equations. The steady-state assumption is
commonly made in inverse calculations of the oceanic
circulation, but it still requires some attention here.
The oceanic circulation is characterized by many time
scales from seconds-hours for the small-scale turbu-
lence and the internal wave field, through the days—
weeks time scale of mesoscale features and the seasonal
time scale of the upper ocean, to interannual variability
of the large-scale ocean circulation. Our model is of
the large-scale oceanic circulation, where the small-
scale and mesoscale features are parameterized as

subgrid mixing processes, and their temporal variability .

may therefore be ignored. The very slow interannual
variability is taken into account in our model formu-
lation by allowing for errors in the steady-state model
equations, as described below. By using annually av-
eraged climatological data, we hope to filter out all sea-
sonally varying components of the circulation. The
large-scale oceanic circulation is probably dominated
by its steady components at midlatitude regions, which
is our justification for using a steady model to describe
the circulation. There are, clearly, remaining questions
concerning the missing seasonal variability of the upper
ocean and whether this variability may be ignored.
There are also some parts of the World Ocean where
time variability may be an essential part of the dynam-
ics. Such are the western boundary regions, for ex-
ample, where one wonders whether there is a consistent
steady solution for the narrow Gulf Stream or whether
the meandering of the current is essential to its existence
as a narrow swift current. Our approach in this work
is rather practical; we simply try using a steady model,
and if inconsistencies arise, an attempt is made to de-
termine whether they result from the ignored time-
varying components of the circulation. As will be seen
below, there are quite a few interesting and important
problems that can and need to be addressed—even in
the simplified framework of a steady model.

The purpose of this study is to calculate the model
inputs that are consistent with both the available data
and the model equations. These inputs include the
temperature (7°) and salinity (S) fields, the surface
forcing by wind stress (r = [t*, 77]) and by air-sea
fluxes of heat (#) and fresh water (£ — P), and the
horizontal and background vertical tracer mixing coef-
ficients (K, and K4, see Part I for details of the vertical-
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mixing parameterization ). The available climatological
data and model equations are therefore combined into
a single cost function that is a function of all model
inputs and that measures both the deviation of the
model inputs from the data and the deviation from
the steady-state solution of our model equations. Let
us now denote the data for the various inputs by a hat
(), and the temperature and salinity fields calculated
by the optimization and used as the initial conditions
for the model run by 77;° and S7z°. The cost function
to be minimized in the optimization can then be writ-
ten as

JT,S,#,E—P,r, Ky, K;)
Bl (5]

= a a

+ 2 W R(Ty — T +
i,k
+ 2 [W j((le - le)z + (Tu - Tu)z)]

ij
+ X (W% — 7))+ WER(E - P);
" - [E - P11 (1)

The temporal derivatives appearing in (1) are calcu-
lated by stepping the model a single time step from the
initial condmons T,j,\ to T,Jk , and letting 87T /dt
= (Tx' — T7:°)/ At. By minimizing the cost function
(1), we obtain an optimal estimate for the model inputs
that is as close to the observations as allowed by the
noise in the data, and is also as consistent as possible
with a steady-state solution of our model equations.
The procedure used to minimize the cost function uses
the adjoint model of our GCM and the conjugate-gra-
dient (C-G) minimization algorithm and was described
in Part I. Note that in addition to the optimal estimates
for all model inputs, a 3D velocity field is calculated
that is consistent with the model equations as well as
with the various types of available data.

=012
yk ( S ijk — g‘k

a. Weights

The weights (W 5,(, etc.) in the cost function (1) de-
termine the relative importance of the various con-

“straints used in the cost function. They play a major

role in determining the results of the calculation and
should therefore be chosen carefully. A more complete
statement of the cost function should involve weighting
by the inverse error covariance matrix for the obser-
vations (Thacker 1989), but the large number of terms
in the cost function makes this formulation impractical -
for our purposes. We therefore resort to using the above
form of weighting that is meant to be equivalent to
weighting the various terms of the cost function by the
diagonal terms of the inverse covariance matrix. In
principle, when using diagonal weighting, each term
in the cost function is weighted by the inverse of its
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FIG. 1. Surface-forcing data used for this study: wind stress (Hellerman and Rosenstein 1983 ), air—sea heat flux
(Esbensen and Kushnir 1981), and evaporation minus precipitation (Schmitt et al. 1989).

squared error, but there are some further considera-
tions. Beginning with the weights for the hydrographic
data, note that each temperature data point Ty, for
example, represents in the model a volume element of
the appropriate model grid box, dx; dy;dz,. Data rep-
resenting larger volumes should be given more weight
in the cost function, and vice versa. Otherwise, arbi-
trarily choosing the model grid to be denser at some
depth or location will result in an artificially high weight
given to the temperature data at that location. The
errors in the temperature and salinity data should also
be considered, of course, when calculating the weights.
Because there is no error information for the Levitus
hydrographic data used here, we use rough order-of-
magnitude error estimates, ¢,(7') and €,(S), specified
as a function of depth only, and decreasing exponen-
tially with depth as plotted in Fig. 2. These error profiles
are used to calculate the weights for the hydrographic
data that are proportional to the grid-box volume ele-
ment over the error squared, for example,

dx,- dyjdzk
T

Similarly, the weights for the surface forcing data are
chosen to be proportional to the area element at the
grid location where the surface data is given, divided
by the squared error in the surface flux data,

dx; dy;
[(2))*

The weighting by the volume and area elements takes
care of the relative importance of different temperature
data among themselves or different surface forcing data
among themselves. It is still necessary to determine the
relative importance of, say, a single surface heat-flux
data point versus a single temperature data point (or

W ijk OC

W7 o«

equivalently, the relative importance of the whole hy-
drographic data versus the whole surface heat-flux
data).

In order to calculate the relative weights of different

types of data in the cost function, we need to specify

a measure of the intrinsic amount of information in
each data point. For this purpose, consider the corre-
lation scales for the various data types. Let the hori-
zontal and vertical correlation distances of the hydro-
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F1G. 2. The specified-error profiles for the temperature and salinity
data [(T) and (.S)], used to calculate the weights (2, 3) for the
hydrographic data terms in the cost function (1). (The expressions
for the two profiles are ( T) = 1.97 X exp[~(zx — z;)/800.]1 + 0.03,

L

and (S) = 0.246 X exp[—(zx — 2,)/800.] + 0.004. Note that the
two profiles overlap in the figure.)
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graphic data be L#*" and L$*", respectively. A single
temperature measurement roughly represents an ocean
volume of Vo = [LF?"]? X L, Similarly, given
that the correlation distance for the atmospheric sur-
face-forcing data (wind, air-sea fluxes) is LA™, each
surface forcing data point represents an area of 4.
= [L®*™°s]2, This provides a way of prescribing the rel-
ative importance of different data types. Normalizing
the weights for the hydrographic data by the correlation
volume for this data, and the surface forcing weights
by the corresponding correlation area, we obtain a
weight that measures the intrinsic value of each data
point relative both to other data of its kind, and to data
of other types,

ngz_Mf.’i_i, WS, = dx; dy;dz y
Veorr X [&(T)] Veore X [2(S)] ek(. )]
Wit = Acorr Xcﬁl(cgj— P)]*’
Wy = dx; dy; @

Acore X [(1)]*”

Estimates for the error in climatological wind and air-
sea flux data such as used here vary, with a conservative
estimate being about 20% (Schmitt et al. 1989). After
some experimentation with the weights, we have spec-
ified a uniform error calculated as 15% of the average
absolute value of the data for each of the surface forcing
fields. These are the values used for ¢(#, E — P, 7) in
(2). The oceanic correlation distances used in (2) were
specified to be L§*®" = 400 km, L = 400 m, and
the correlation distance for the atmospheric data was
taken as L*™ = 1500 km.

The choice of weights for the terms in the cost func-
tion requiring the minimization of the temporal deriv-
atives (W [;) poses yet another difficulty. We want the
weights for these steady penalty terms to be propor-
tional, as before, to the inverse squared error in the
corresponding terms of the cost function. But it is not
obvious how the errors in these terms should be cal-
culated. The deviation of the inverse solution from a
steady state comes from two independent sources. The
first is the long-term temporal variability of the oceanic
general circulation, such as the large-scale changes in
the temperature and salinity of the North Atlantic
Ocean between the two 5-year periods, 1955-59 and
1970-74, described by Levitus (1989). The second
source of errors in the steady-penalty terms is the dis-
crepancy, however small, between the model equations
and the actual physics of the oceanic circulation. Both
the model errors and the actual deviation of the ocean
from a steady state would result in an inability of the
inverse calculation to fit a perfectly steady model to
the climatological data, and the temporal derivatives
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appearing in the cost function would therefore not
vanish.

A set of weights for the steady penalties to be used
in the optimizations presented here, believed to be a
reasonable estimate for these weights, is defined as fol-
lows. Assume that the errors ¢( T, S) specified for the
temperature and salinity data are also an estimate for
the variability of the ocean during a 15-year time pe-
riod. This is, very roughly, the order of magnitude of
the temporal variation of the North Atlantic temper-
ature and salinity fields found by Levitus (1989) over
a time period of 15 years. The error in the steady-pen-
alty terms (37/dt)? is therefore [ex(T)/(15 years)]?.
The weights for these penalty terms are the inverse
squared of these errors, weighted by the appropriate
grid-box volume element, and correlation volumes,

W dx; dy;dz;,
P Veom X [&(T)/(15 years)]?’
W}jk _ dx,~ dydek (3)

" Veore X [&(S)/(15 years)]?

b. Open boundaries

The portion of the North Atlantic Ocean modeled
here is bounded by several open boundaries (Fig. 1):
the southern boundary at 9.5°N, the northern bound-
ary at 59.5°N, and the Straits of Gibraltar. The regions
near these open boundaries require some special at-
tention. Ideally, the open boundary conditions (in par-
ticular, velocities at the open boundary), should be
treated as unknowns, and solved for as part of the op-
timization. But such a formulation is not trivial to im-
plement, and we have chosen a different, simpler ap-
proach that may still be expected to give good results.

At the open boundaries we specify a vertical wall at
which the regular set of closed boundary conditions is
applied (no-slip condition for the velocities, and no
flux for the temperature and salinity). In the region
near this artificial wall the model dynamics is not
valid, and the model is not expected to give realistic
results for the velocity field as well as for other model
outputs. This region is therefore treated as a limiting
case of the interior in which we impose the data con-
straints appearing in the cost function (1) but not the
dynamic constraints requiring the model to be at a
steady state based on the model equations. Conse-
quently, the weights of the dynamic constraints,

= 1.8 . .

W ik , are set to zero in the regions near the open
boundaries. These regions were chosen to be the three
grid points nearest the northern and southern bound-
aries, and a small region of four latitude grid points by
two longitude grid points near the Strait of Gibraltar.

This approach to handling open boundaries is similar
to the use of “buffer” or “sponge” regions in numerical
models: a closed boundary condition is specified, and
the model equations are modified in the region near
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the boundary to include a term restoring the temper-
ature and salinity to climatological data for temperature
and salinity. This amounts, as in our formulation, to
using the data near the open boundaries while not en-
forcing the model physics there.

4. Results of the North Atlantic data analysis

The specific inverse problems examined using the
model and data described above will now be described.
In Part I, we concluded the set of inverse calculations
using simulated data at a point where it was clear that,
while the optimization was fairly successful for noise-
free simulated data, there were difficulties with the
convergence to the optimal solution for various model
inputs when noise was added to the simulated obser-
vations. Two possible explanations were suggested for
these difficulties. The first was the problem of ill con-
ditioning of the optimization, resulting in possible
stalling of the optimization and in noise amplification
(i.e., low-level noise in the data may result in a very
noisy solution for the model inputs). The second dif-
ficulty was the possible existence of local minima of
the cost function to which the optimization may con-
verge rather than to the global minimum representing
the desired optimal solution. In Part I, we anticipated
the problems to be even more severe when using real
data that is noisier and less consistent with the model
than the simulated data.

In the experiments shown below, the difficulty due
to ill conditioning of the optimization (section 4a) is
explicitly demonstrated. A case of multiple minima of
the cost function (section 4b) is then presented. Finally,
the relation between the optimization approach and
the robust diagnostic approach of Sarmiento and Bryan
(1982) discussed in Part I is explicitly demonstrated
(section 4c¢). A robust diagnostic calculation is used to
obtain an initial guess for the model inputs, and this
guess is used as the starting point for the optimization.
The calculation involving the robust diagnostic ap-
proach also serves to test the GCM used here with the
real North Atlantic Ocean basin and data. In section
5, the conditioning problem will be analyzed using
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some simplified model equations, in order to better
understand the difficulties demonstrated here, and to
point out some possible remedies.

a. Difficulties due to ill conditioning

The conditioning of the optimization is closely re-
lated to the problem of uniqueness of the optimization
solution for the various model inputs. If the cost func-
tion does not change in a direction in parameter space
that corresponds to some model inputs, then the op-
timization cannot prefer any of the possible solutions
along this direction, and the corresponding parameters
are not resolved. This flatness of the cost surface in
some directions may be the result of the lack of suffi-
cient data for calculating the model parameters as was
found, for example, by Tziperman and Thacker
(1989). They found that the solution for their simple
QG model inputs may not be unique under certain
circumstances. For their simple model it was possible
to show that the nonuniqueness indeed resulted from
the ill posedness of the problem: there were more un-
knowns to be solved for than there were constraints.
Such a situation may be anticipated by examining the
resolution information calculated from the Hessian
matrix (Tziperman and Thacker 1989), but that is
much too large to be calculated explicitly for the present
problem. In order to examine the conditioning of the
optimization problem for our problem, we use the fact
that ill conditioning results in the cost surface being
much flatter in some directions in parameter space than
in others (Thacker 1989). To explicitly demonstrate
such a case, we therefore simply investigate the struc-
ture of the cost surface in the neighborhood of two
solutions obtained by the optimization.

To obtain the first solution (run I1 in Table 1), all
model inputs were calculated simultaneously. The cal-
culated inputs included the temperature and salinity
fields, the surface forcing by wind stress and by heat
and freshwater fluxes, and the two mixing coefficients.
The initial guess for all model inputs was taken to be
the data for the hydrography and surface forcings: 1
cm? s~! for the background vertical-mixing coefficient

TABLE 1. Indications for the ill conditioning of the optimization: two different solutions that cannot be distinguished by the optimization.
The two runs are described in section 4a. The Ji. is the initial value of the cost function, before the optimization and based on the data
values as first guess for all fields; J.nq is the cost function at the end of the optimization. The columns marked A( ) give the contribution
of various terms in the cost function (5). For example, for the temperature field, the term in the cost function measuring the deviation from
the data is

AT = 3 Wi Ty — Tl
i,k

Note that the contributions of the steady penalties (column marked AT, + AS,) are by far larger than any of the data misfit terms, indicating
that these solutions may not represent the desired balance between deviation from a steady-state solution and deviation from the data.

Run Jbeg Jena AT AS AT, + AS, AT* ATY A¥ AE-P K, Ko Figures
I 2079.1 40.96 4.78e— 2 7.28e— 2 318 33 35 0.73 1.5 .242E+6, .1379 3a,b
12 2079.1 33.17 0.12 0.14 322 8.66e— 2 9.92¢— 2 0.17 0.31 .369E+6, .332 3a,b
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and 107 cm? s ™! for the horizontal-mixing coefficient.
The optimization was continued for more than 4000
conjugate-gradient iterations until no more progress
toward a lower value of the cost function was observed.
The second solution (run I2 in Table 1) was obtained
by calculating all of the above model inputs, but in a
slightly different way: first the values of the surface-
forcing parameters were fixed to the data values, and
only the optimal hydrography minimizing the cost
function was calculated. After a significant reduction
of the cost function was achieved (but minimum still
not reached), we proceeded to caiculate all model in-
puts simultaneously, restarting the optimization from
the hydrography calculated during the first half of this
optimization, and from the data values for the surface
forcing fields. Again, a total of about 4000 iterations
was needed to reach the final solution.

The results of the two optimizations are summarized
in Table 1 and in Figs. 3a and 3b. Although both so-
lutions seemed to represent minimum points of the
cost function, and although the total reduction of the
cost function is roughly the same for both runs, they
correspond to very different locations in parameter
space. In the first run (I1), where all parameters were
calculated simultaneously from the beginning of the

JOURNAL OF PHYSICAL OCEANOGRAPHY

Heat Flux:

VOLUME 22

run, the final surface forcings deviate significantly from
the data, while the temperature and salinity are hardly
modified. In the second run (I2), where before cal-
culating all parameters simultaneously, only the tem-
perature and salinity were calculated, the final solution
is characterized by a smaller modification of the surface
forcings and a larger modification of the temperature
and salinity fields.

At this stage, it is not yet clear whether the non-
uniqueness of the optimization solution is due to the
stalling of the optimization due to ill conditioning, or
whether two separate local minima have been found.
In order to try to resolve this issue, we calculated the
cost function along a section across parameter space,
passing through the points I1 and 12 of Table 1. The
curve marked “section A” in Fig. 3b shows the cost
function calculated on 60 equally spaced locations
along the line passing through the two minima,
Xi = xminl + Stepi*(xminz - Xminl);

step; = —'3!' Y 3, (4)

where X is a vector of all model inputs calculated by
the optimization and Xmin1, Xmin2 correspond to the
two solutions (11, 12). Note that the two solutions are

z
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FIG. 3a. The upper and lower panels present the results of runs I1 and 12, respectively (see Table 1 and subsection 4a).
From left to right: the surface wind stress, the air-sea heat flux, and the horizontal circulation at a depth of 275 m.
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FI1G. 3b. Three sections of the cost function across parameter space. Right panel: value of the cost function along the three sections. Left
panel: schematic drawing of the directions of the three sections. The two solutions I1 and I2 (Table 1) are schematically denoted by two
circles in this figure, at locations (0, 0) and (1, 1). See section 4a for details.

recovered for step; equal to 0 and 1. Looking at the
cost function along section A, it becomes obvious that
the two solutions of Table 1 are not two local minima,
but both lie in a “valley” in parameter space along
which the cost function hardly changes. Such a valley
means that the model is unable to resolve linear com-
binations of parameters lying along this line, and all
solutions along it are acceptable by the optimization.
Note that section A in Fig. 3b also extends beyond the
two solutions of Table 1 in both directions and that
there the cost function eventually increases so that the
valley in parameter space is of a limited extent. Care-
fully examining the value of the cost function along
this section, we find that the minimum value of the
cost function along this section does not lie at any of

log(Cost function)

T T T T T )
-3 -2 -1 0 1 2 3

Step size

FIG. 3c. A section in parameter space indicating the possible ex-
istence of two local minimum points (solutions M1 and M2; see
Table 2; see section 4b).

the solutions found by the optimization, but some-
where in the middle. Clearly, the flatness of the cost
surface in this direction had caused the optimization
to stall and prevented convergence to the actual min-
imum.

In order to demonstrate that the cost function is not
necessarily flat in other directions in parameter space,
the cost function was calculated along two additional
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FiG. 3d. The meridional heat flux for the two solutions corre-
sponding to the two minimum points shown in (c) (runs M1 and
M2 in Table 2). Note that, although the two minimum points seem
quite close to each other in terms of the reduction of the cost function
relative to the initial guess (see Table 2 and section 4b), the meridional
heat flux is quite different for the two solutions. Also shown: the
meridional heat flux calculated diagnostically from the Levitus data,
with no optimization invoived.
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sections in parameter space (marked B and C in Fig.
3b). Both of these sections pass through one of the
solutions of Table 1, but in different directions than
that of section A. The left panel in Fig. 3b schematically
shows the directions of the three sections presented in
the right panel. Let us divide the tens of thousands of
parameters calculated by the optimization into two
groups: one includes the hydrography, and the other
the surface forcing by air-sea fluxes and wind. These
two groups are denoted by the two axes of the left panel
of Fig. 3b. The two solutions of Table 1 are schemat-
ically denoted by two circles in this figure, at locations
(0, 0) and (1, 1). As can be seen in this figure, the
section marked A passes through both of these solu-
tions. The curve marked section B was calculated along
the projection of section A on the “hydrography” axis.
This means that at step; = 0, 1 the hydrography part
of the parameter space is correspondingly equal to that
" of the two minimum points of Table 1, while the air—
sea fluxes part of the solution is equal to that of the
first minimum point of Table 1 along the entire section
B. The curve marked section C is calculated along the
projection of section A along the air-sea fluxes axis.
The curves of the cost function along the two additional
sections passing through the first minimum point, but
in different directions, clearly demonstrate that the cost
surface is not flat in all directions as it is in the direction
of section A, so that this section indeed represents a
special direction in parameter space along which the
optimization is unable to resolve the model parameters.

The flatness of the cost surface between the two
minima may be explained as follows. The optimization
can minimize the deviations from a steady state at each
surface grid point either by changing the temperature
and salinity fields near the surface, or by modifying
the surface fluxes so that they balance any deviation
from steady state in the temperature and salinity equa-
tions. The data constraints and the choice for the dif-
ferent weights should determine the precise compro-
mise between modifying the surface properties (tem-
perature and salinity ) and modifying the surface forcing
fields. Considering the relative magnitudes of the dif-
ferent terms of the cost function (Table 1), note that
for the solution with J = 33, all data penalties (tem-
perature, salinity, wind stress, and freshwater fluxes)
together amount to less than one. This implies, of
course, that the steady penalties are O(32), and the
imbalance between the data and steady penalties scems
to indicate that the solution does not represent a bal-
ance of dynamics (steady penalties) and data, as is in-
tended in the optimization approach taken here. The
optimization did not, consequently, use the data in
order to separately resolve the hydrography and fluxes,
resulting in the observed flatness of the cost function
between the two solutions. Furthermore, the ill con-
ditioning expressed in the cost function being flat be-
tween the two solutions had prevented further progress
of the optimization. Note also the large number of it-
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erations needed for the conjugate-gradient optimization
to converge to the minimum of the cost function (about
4000 iterations). Ill conditioning of the optimization
problem and the resulting flat structure of the cost
function in some directions is known to cause a very
slow convergence to the minimum point of the cost
function (Gill et al. 1981; Tziperman and Thacker
1989). It will be seen that there are, in fact, solutions
with lower value for the cost function; so the solutions
found here (in fact, the whole valley found in parameter
space) do not represent the optimal solution.

Because the solutions found here are not the optimal
ones corresponding to the global minimum of the cost
function, the results of these experiments cannot be
used to deduce whether the data is sufficient to deter-
mine all surface forcings. We still have chosen to pre-
sent these results because they demonstrate an inter-
esting and potentially important situation where a flat
structure of the cost function in some direction results
in ill conditioning of the optimization.

b. Local minima

In order to examine the possible existence of local
minima of the cost function, several optimizations were
made in which the only control variables calculated
are the temperature, salinity, and mixing coeflicients.
The initial guess for all model inputs was taken to be
the data for the hydrography and surface forcings: 1
cm? s™! for the background vertical-mixing coefficient,
and 107 cm? s™! for the horizontal-mixing coefficient.
The initial cost value before the optimization was J
= 2079. We begin by minimizing the cost function us-
ing the C-G algorithm, until converging to a minimum
point (run M1 in Table 2). The minimum value ob-
tained is J = 26. The reduction in the value of the
gradient from the initial guess for the parameters to
the minimum point is of about five orders of magni-
tude. At this stage, the optimization seemed unable to
further reduce the cost, so we assume the solution rep-
resents a minimum of the cost function. Starting from
the optimization solution, the model is then stepped
forward in time for 2 years, resulting in the location
in parameter space characterized in the entry MF in
Table 2. The forward run results in an increase of the
cost function to J = 43, as time stepping the model
does not necessarily minimize the cost function. Fi-
nally, restarting the C-G optimization from the temper-
ature and salinity at the end of the forward run, the
optimization converges to a second minimum, J = 16,
given by the entry M2 in Table 2.

As before, we want to determine whether the non-
uniqueness of the optimization solution is due to in-
sufficient data or due to the nonlinearity of the cost
function resulting in two separate local minima cal-
culated by the optimization. Figure 3¢ shows the cost
function along the line (section) in parameter space
connecting the two solutions M1 and M2 shown in
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TABLE 2. Calculating the optimal hydrography and mixing coefficients. The first three entries show indication for the existence of multiple
local minima in parameter space when calculating only hydrography (T, S) and mixing coefficients (see the text in section 4b for explanation).
The final two entries are the result of the robust diagnostic calculation described in section 4c (entry robust), and the optimization that
follows it (Z). The J,.q is the cost function at the end of the specific calculation, whether an optimization (entries M1, M2, and Z), a forward
model run (MF), or a robust diagnostic calculation (robust); Ji. is the value of the cost function at the beginning of the optimization. See
Table 1 for explanation of the entries in this table, where in particular the columns marked AT, and AS, are the contributions to the cost
function resulting from the steady penalties for temperature and salinity.

Run

Jocg Jend AT AS AT, AS, K, Ky Comments Figures
Ml 2079.1 259 0.40 0.32 18.0 6.9 0.38 X 107, 0.3 Ist minimum 3c,d
MF 259 42.8 0.79 0.59 22.1 20.6 0.38 X 107, 0.3 Forward run 3c,d
M2 42.8 15.8 0.77 0.65 7.0 7.4 0.38 X 107, 0.3 2d minimum 3c,d
Robust 2079.1 9.47 1.9 2.0 2.6 2.9 1.00 X 107, 1.0 Robust diagnostics 7
V4 9.47 7.84 1.9 2.0 1.7 2.2 1.00 X 107, 1.0 Optimization 4-8

Table 2. The structure of cost surface along this section
suggests that the two solutions are two local minima
separated by a small maximum where the cost is equal
to 43.

The section through the parameter space shown in
Fig. 3c clearly shows that the two minima are distinct
along the straight line connecting them. They are not
part of a valley of the cost surface, directly linking the
two solutions in parameter space, as is expected when
data is insufficient to resolve the parameters. It is still
possible, of course, that the two minima are connected
but not along this straight line; we have no way of
verifying this possibility due to the large number of
parameters and therefore the large dimension of the
parameter space. The fact that solution M2 represents
a lower value of the cost function seems a mere coin-
cidence. Because of the ill conditioning (or the exis-
tence of local minima), the final solution in these runs
depends on the initial guess for the unknowns. It seems
that the short forward run preceding calculation M2
resulted in an initial guess that enabled finding a so-
lution with a lower cost function. But none of these
solutions is optimal, as will be seen later.

Examining Table 2, however, it is striking how sim-
ilar the amount of cost reduction is for the two solu-
tions. In one case (M1) the reduction from the initial
guess using data values for the temperature and salinity
is 2079 — 26 = 2053, while in the second (M2) it is
2079 — 16 = 2063. One is immediately tempted to ask
whether the difference between the two solutions is sig-
nificant at all or is within the noise level. To answer
this question, Fig. 3d shows the total (advective and
diffusive) zonally integrated meridional heat flux car-
ried by the ocean as calculated for the two minimum
points, as well as for the initial guess based on the Lev-
itus data values (the results based on the Levitus data
are discussed in more detail below). It is quite obvious
(and somewhat unfortunate ) that the seemingly small
difference between the two minimum points translates
into a significant difference between the corresponding
optimization solutions. Clearly, one should invest ef-
forts in getting as close as possible to the absolute min-
imum of the cost function to obtain the truly optimal

solution. But does one of these solutions represent the
global minimum and therefore the desired optimal so-
lution for the model inputs? Entries M1 and M2 in
Table 2 indicate that there is still an imbalance of steady
and data penalties, suggesting that these solutions still
do not represent the desired balance of steadiness and
deviation from the data. To find if there is in fact a
better solution, a solution with a lower cost function
is obtained in section 4c¢ by starting the optimization
with a robust diagnostic calculation (Sarmiento and
Bryan 1982). This provides an opportunity to dem-
onstrate the link between the optimization and the ro-
bust diagnostic method, as well as to discuss the rele-
vance of our model to the North Atlantic Ocean.

¢. The relation between the robust diagnostic and
optimization approaches

Our first objective now is to try to find out if a so-
lution exists that corresponds to a lower value of the
cost function than the ones found in the previous sub-
sections and that represents a balance of steady pen-
alties and data penalties in the cost function. For this
purpose we restrict itself the calculation of optimal es-
timates to the temperature and salinity fields and to
the mixing coefhicients, and set all other model inputs
(wind stress, heat and freshwater fluxes) to the data
values—not treating them as unknowns.

In Part I, it was explained that in the limit where
only the hydrography (7', S) is calculated by the op-
timization, the calculation is roughly equivalent to a
robust diagnostic calculation. It seems natural, there-
fore, to begin the optimization with a robust diagnostic
run of the GCM used for the optimization. The robust
diagnostic method of Sarmiento and Bryan (1982) is
based on adding a term of the form y(7 — T') to the
temperature equation, restoring the temperature to the
data values (and similarly for the salinity). The re-
storing coefficient, v, has units of (time)~! and was
chosen by Sarmiento and Bryan to be a function of
depth, representing a time scale of between 50 days for
shallow levels and 250 days for the deep water.

A reasonabile first guess for the value of v that results
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in a significant reduction of the cost function can be
calculated from the weights of the different terms in
the cost function using the following heuristic argu-
ment. Consider the contribution to the cost function
due to the data and steady penalties for the tempera-
ture, written as follows,

J(T)= 2 [WELVT - K,VHT — K,T..)?
i, .k

+ WI(T-T)]. (5)

At the optimal solution we expect the total contribution
of the steady penalties to be of the same order as that
of the data penalties. Translating this global require-
ment into a local condition (admittedly with no rig-
orous justification, but hopefully resulting in a better
understanding of the relation between robust diagnostic
calculations and the optimization approach ), we have
2 2 [ w Zk] 7 2
(VT - KViT - K, T..)" = | (T — T)*. (6)
Wl
Now, at steady state, the robust diagnostic equation
for the temperature satisfies

(VT = K4 T = KT..) =T —=T), (7)

which clearly suggests a relation between the weights
used in the cost function, and the robust diagnostic
coefficient v that should result in a significant reduction
of the cost function,

W;k 1/2
=[]
ijk

(8)

Although in general, v may be a function of location,
for our choice of weights, this relation simply suggests
a constant value of v = 1/(15 years). We have exper-
imented with various choices of 7 around this suggested
value of v = 1/(15 years), and finally settled on a
constant value of (9.6 years) ', which seemed to result
in the most significant reduction to the cost function.
Note that this is a much smaller v than used by Sar-
miento and Bryan. The larger the time scale used to
define v, the less weight put on the data, and the closer
the final solution to the steady state of the model equa-
tions without the robust diagnostic term. The time
needed to achieve a steady solution is also related to
the choice of v. Normally a time that is 3 to 5 times
v ~! suffices, which implies about 50 years of integra-
tion. We have integrated the model for more than 500
years to ensure achieving a steady solution.

The results of the robust diagnostic run are sum-
marized under the entry “robust” in Table 2. The value
of the cost after the robust diagnostic run was 9.5, which
is a significantly lower value than we were able to obtain
with the optimizations in the previous section. It is
interesting to note that the optimization is given more
degrees of freedom because the fluxes, or at least the
mixing coeflicients, are allowed to vary in addition to
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the hydrography. As a result, the optimal value of the
cost function for all of these cases is expected to be
lower than that of the robust diagnostic run, where
only the temperature and salinity are allowed to vary
from the data values. The failure of the optimization
to find such solutions is another indication of the poor
conditioning of the problem,; this is analyzed in detail
in the next section.

The robust diagnostic solution was taken as the
starting point for an optimization that further reduced
the cost from 9.5 to 7.8. Additional details are given
under entry Z in Table 2. Unlike the minimum points
found in the optimizations described previously, in
which the steady-penalty terms dominated the cost,
the minimum found by first using the robust diagnostic
method represents a balance of steady and data pen-
alties that are of the same order of magnitude (e.g.,
compare AT and AT, in Table 2). This hopefully in-
dicates that the solution is indeed balancing data and
model dynamics, as intended in the formulation of the
cost function. Experience in the previous sections with
the complicated structure of the cost surface and the
poor conditioning of the problem, however, suggests
that there is still no guarantee that the minimum found
here is indeed the desired global minimum of the cost
function.

Trying to calculate surface fluxes in addition to hy-
drography by restarting the optimization from the so-
lution of run Z, it was found that the fluxes were hardly
modified by the optimization and the cost not reduced
much. This may indicate one of two possibilities: One
is that the solution found in run Z, which is a minimum
with respect to the hydrography that was varied in the
optimization, is also very close to a local minimum
point with respect to the other model parameters (sur-
face fluxes) although these were kept constant during
the optimization. The other possibility, of course, is
that the optimization is stalling due to bad conditioning
near the solution of the robust diagnostic run, and
therefore is unable to use the additional degrees of free-
dom (surface fluxes) to further reduce the cost.

The solution of the optimization that was started
from the robust diagnostic solution seems reasonable,
and it is worthwhile to examine it now in some detail.
The detailed examination of the solution and residual
fields is used to evaluate the performance of the model
in the realistic setting of the North Atlantic Ocean.
Therefore, various aspects of the solution are now dis-
cussed, beginning with the flow field and then the me-
ridional circulation, meridional heat flux, the mixing
coeflicients, and the residual fields.

1) THE GENERAL CIRCULATION

The velocity field calculated by the optimization is
given in Fig. 4 for every second model level. The cir-
culation is composed of the classical subtropical and
subpolar gyres in the upper levels, while the deeper
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FI1G. 4. The calculation of the optimal hydrography and general circulation of the North Atlantic Ocean (run Z; see Table 2
and section 4c). The horizontal velocity field at every second model level, as calculated by the optimization. The dotted regions

denote land areas as specified in the model topography.

levels (2216 and 1589 m, not shown in the figure) show
a southward-flowing western boundary current, and a
southward interior flow. The circulation in the deepest
levels, such as 3783 m (and 4672 m, not shown), is
quite noisy and not much can be said about it. The
circulation near the open boundaries in the northern
and southern buffer regions is, of course, strongly biased
by the presence of closed boundaries in the model at
these locations. The velocity vectors in these regions
(three grid points from both the northern and southern
boundaries) should therefore be ignored. The same
note of caution holds for the meridional circulation
pictures (Figs. 5a, b). The portions of the meridional
circulation in the buffer regions (e.g., the very strong
upwelling at the southern boundary, about 8°N) are
an artifact of the method used to treat the open bound-
ary conditions and should be ignored.

2) THE ZONALLY AVERAGED MERIDIONAL
CIRCULATION CELL

One of the important features of the adjoint method
(being a nonlinear optimization method) is its ability

to calculate optimal estimates for the temperature and
salinity fields. Because the momentum equations in
our model are diagnostic, the optimization modifies
the velocity field by making the necessary adjustments
to the temperature and salinity fields. These adjust-
ments are of major importance to the resuits of the
calculation and in particular to the meridional circu-
lation. Figure 5a shows the streamfunction of the zon-
ally averaged circulation, calculated from the original
Levitus data as follows. The diagnostic momentum
model equations were used to calculate a three-dimen-
sional velocity field from the hydrographic data, and
this velocity field was then zonally averaged and used
to calculate the shown meridional circulation stream-
function. Note that no optimization is involved in this
calculation. Figure 5b is again the streamfunction for
the zonally averaged meridional circulation, calculated
this time from the optimal solution for the temperature
and salinity calculated by the adjoint method in
run Z.

The meridional cell for the North Atlantic Ocean is
believed to be composed of a northward surface flow
and a returning southward deep flow, connected by a
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F1G. 5a. The meridional circulation calculated diagnostically from the Levitus data,
before the calculation of the optimal hydrography (see Table 2 and section 4c).

sinking in a limited area in the north, and a broad
upwelling over the whole North Atlantic Ocean. Such
a meridional cell results in a net northward meridional
heat flux carried by the ocean (see Wunsch 1984 for
previous estimates of the meridional heat flux carried
by the North Atlantic Ocean). Now, the meridional
streamfunction calculated from the velocity field before
the optimization (Fig. 5a) and based on the original
Levitus hydrography, is quite far from the above pic-
ture. There is, in fact, a strong opposite cell between
the latitudes 12°N and 35°N (dash contours in Fig.
5a), with a very strong upwelling signal at about 35°N.

This seemingly nonphysical meridional circulation
seems a result of the inability of our data to resolve
parts of the Gulf Stream recirculation region near the
western boundary. The interior wind-driven Sverdrup
transport of the North Atlantic subtropical gyre is nor-
mally assumed to be only about 30 Sv (Sv = 10°
m? s™!), while the transport of the Gulf Stream before
it separates from the North American continent is es-
timated to be more than 100 Sv. Much of this large
transport is due to water recirculating in a relatively
small area near the western boundary. This recircula-
tion is composed of the narrow Gulf Stream flowing
along the western boundary, the eastward flow of the
separated current, and the westward returning recir-
culation water. The Levitus climatological data was
heavily smoothed to remove small-scale noise, a process
that in combination with the subsampling on our fairly

coarse resolution grid, effectively removed the signal
of the narrow Gulf Stream along the North American
continent at about 30°N. The hydrographic data does
contain the signal of the large transport of the separated
Gulf Stream and some of the westward returning re-
circulation water; these can be seen in the velocity cal-
culated diagnostically from the original data by the
model (Fig. 6, right panel). Because our coarse-reso-
lution data cannot resolve portions of the Gulf Stream,
the large horizontal transport of the separated Gulf
Stream seems in the diagnostic calculation to come
out of the western boundary. The flow from the western
boundary implies a strong upwelling at that region,
supplying the water for the large transport of the sep-
arated Gulf Stream. This strong upwelling is the reason
for the nonphysical meridional circulation calculated
from the original data, and in particular for the opposite
circulation cell seen in Fig. 5a. The recirculation region
is characterized by very large deviations from steady
state in the temperature and salinity equations evalu-
ated from the original data, clearly indicating that the
strong upwelling found in the diagnostic calculation
based on the original data is neither correct nor con-
sistent with the model’s physics.

The optimization tries to reduce the deviations from
steady state by modifying the temperature and salinity .
fields in order to eliminate the upwelling, and to supply
the separated Gulf Stream water from south of the sep-
aration point rather than from the deeper levels. The



DECEMBER 1992

TZIPERMAN ET AL.

1471

Meridional Circulation (After optimization)

~2000.0 -500.0
] |
&_"\

Depth(m)

-3500.0
!

-5000.0

2 ,A’(:‘:/_—/—/——/“’Egj’—fi,\?\’
&%*”
6/\/N

e/J

0v—/\/\0/\

/

! [ {
7.5 17.5 27.5

| |
375 47.5 57.5

Latitude, (min/max= —-4.4 14.59 Sv)

FI1G. 5b. The meridional circulation calculated from the solution of optimization
run Z (see Table 2 and section 4c).

main differences between the horizontal circulation
before and after the optimization are indeed in the
western boundary recirculation region: The optimal
circulation contains the part of the Guif Stream south
of the Gulf Stream separation point that is not resolved
by the original data. Figure 6 shows the velocity at the
second model level before and after the optimization,
and one can clearly see the northward velocity vectors
along the western boundary north of the Straits of
Florida that can be seen in the optimization solution
(left frame of Fig. 6), but not in the velocity calculated
diagnostically from the original data (right frame). In
addition, the westward-returning part of the recircu-
lation region, in the small region south of the separated
Gulf Stream, was partially resolved by the original data
but was removed by the optimization perhaps because
it was not consistent with our simple linear momentum
equations. The meridional circulation after the opti-
mization is shown in Fig. 5b, and is much closer to
what we expect to see.

Sarmiento and Bryan (1982) describe similar diffi-
culties with purely diagnostic calculations, mentioning
also previous works using diagnostic models. They
show that the discrepancy between their rough bottom
topography and the smoothed hydrography results in
a highly cellular structure of the meridional circulation.
These difficulties were overcome in their robust diag-
nostic calculation, which modified the density field near
the bottom to be consistent with the model topography.

In our case, the bottom topography is fairly smooth,
and the diagnostic meridional cell not as noisy. But
our diagnostic calculation still suffers major difficulties,
which we attribute to the lack of horizontal resolution
and oversmoothing of the hydrographic data in the
Gulf Stream area.

3) THE MERIDIONAL HEAT FLUX

This force is shown in Fig. 7 both before and after
the optimization. The figure shows the total (advective
and diffusive) oceanic northward heat transport cal-
culated in various ways: diagnostically from the original
Levitus data; from the optimal hydrography obtained
by optimization Z; and from the solution of the robust
diagnostic calculation. As could be expected from ex-
amining the meridional cell, and from previous diag-
nostic models (Sarmiento and Bryan 1982), the me-
ridional heat flux calculated by the model from the
original Levitus hydrographic data (dash line) is quite
opposite to what is expected: there is a southward heat
flux in the latitude band corresponding to the opposite
(anticlockwise ) meridional circulation cell. The me-
ridional heat flux calculated from the optimal hydrog-
raphy is far closer to what we expect to find: a north-
ward heat flux carried by the North Atlantic Ocean.
Our meridional heat flux is similar to the free ther-
mocline case of Sarmiento and Bryan (1982), although
somewhat weaker. This similarity is probably due to
the use of a small restoring coefficient - in the robust
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FIG. 6. The horizontal velocity at the second model level (81 m), as calculated diagnostically from the original hydrographic data (right),
and as calculated by the optimization from the optimal temperature and salinity fields (left).

diagnostic run initializing the optimization, which al-
lows the temperature and salinity to significantly de-
viate from the data values in a manner similar to the
free thermocline case where the thermocline region was
modeled with v = 0.

An additional possibility that is, in fact, quite natural
in an inverse calculation (but is not possible in regular
numerical models or robust diagnostic calculations) is
to constrain the meridional heat flux to be equal to
what we think it ought to be by adding the appropriate
constraint to the cost function, weighted by the cor-
responding error estimate. This is only one example
of integral constraints that may be used as part of the
optimization approach. Integral constraints may be
useful also in improving the open boundary treatment
in our model. Using buffer regions to handle open
boundaries in numerical models seems to result in a
too-weak meridional cell. In an inverse calculation, the
buffer region (see section 3) may be supplemented with
an integral constraint requiring the meridional cell
closed in the buffer region near the boundary to be of
a certain magnitude. Such integral constraints have
proved useful in previous inverse calculations and
should be implemented in inversions using a full GCM
as in the present work, to take full advantage of the
power of the optimization approach.

4) MIXING COEFFICIENTS

In all of the optimizations presented here, the hor-
izontal and background vertical-mixing coefficients for
the temperature and salinity equations are calculated

as part of the unknown model inputs. Although the
constant coefficient parameterization used here for the
horizontal mixing is quite simplified, there are still
some interesting points about the results we obtain.
Ideally, in a steady model such as ours with no active
mesoscale eddies, one would like to use tensor diffu-
sivities (Redi 1982) that properly separate long- and
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F1G. 7. The meridional heat flux, as calculated diagnostically from
the Levitus data (dash), from the solution of optimization run Z
(full line), using the robust diagnostic calculation preceding opti-
mization Z (dots). See Table 2 and section 4c.
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cross-isopycnal mixing in the ocean. The constant hor-
izontal-mixing coefficient used here was, until recently,
the standard parameterization in many coarse-reso-
lution numerical studies of the large-scale ocean cir-
culation. It is interesting, therefore, to use these results
to examine how well such a parameterization fits the
available data. Note that in the present calculation the
mixing coefficients are not calculated locally at every
horizontal grid point, but rather, a single mixing pa-
rameter is fit to the entire data. This is possible because
our calculation is not local as in some beta spiral or
similar inverse models (Olbers et al. 1985; Tziperman
and Hecht 1988). A local calculation of the mixing
coeflicients may be useful for determining the present
state of mixing in various oceanic regions, but cannot
be used to find what mixing coefficient or mixing pa-
rameterization best fits the data globally. In addition,
because the mixing is, locally, a small second-order
effect, a local calculation of the mixing coefficients often
fails to resolve the mixing coefficients from the noise
in the data, and the coefficients are, more often than
not, found to be indistinguishable from zero (Olbers
etal. 1985; Tziperman and Hecht 1988), and also often
negative unless explicitly constrained to be positive.

Our approach enables a global fit of a single param-
eterization to the whole hydrographic data, therefore
avoiding the problems due to the small, local effect of
the mixing. As the mixing processes (in particular, the
vertical mixing ) are most important in setting the global
balances in the ocean and maintaining the vertical
stratification in the ocean, a global fit of a mixing pa-
rameterization to the data may enable one to resolve
the coeflicients above the noise level in the data. A very
encouraging indication that the present approach may
indeed be able to successfully resolve the mixing coef-
ficients is that the mixing coeflicients calculated in all
the optimizations using our model were positive, prob-
ably because the results are not dominated by the noise
level as they seem to be in local calculations.

The horizontal-mixing coefficient used in coarse-
resolution numerical models is intended as a crude
representation of the mixing by the mesoscale eddies,
and the value for this coefficient in such models is of
the order of 107 cm? s~!. The values calculated for this
coeflicient in the optimizations of sections 4a and 4b
are smaller (0.2 X 10%t0 0.4 X 107 cm? s™', see Tables
1 and 2), although the initial guess for this coefficient
was always taken to be 107 cm? s~!. The variation in
the value of the coefficients is too large to allow any
definite conclusions but may suggest that the simple
mixing parameterization using the constant horizontal-
mixing coefficient is simply not consistent with the hy-
drographic data, and the optimization therefore tries
to make the coefficient as small as possible. This in-
consistency is probably a result of the fact that hori-
zontal mixing produces a much too large cross-isopyc-
nal mixing in the presence of tilted isopycnals, and the
tensor diffusivities mentioned above are thought to be
a possible solution to this problem. It would be inter-
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esting to try to calculate a long-isopycnal mixing coef-
ficient using the present approach in combination with
a more sophisticated tensor diffusivity mixing param-
eterization, and to see whether such an improved pa-
rameterization results in a larger value for the long-
isopycnal mixing coefficient. When starting the opti-
mization with a robust diagnostic calculation (run Z),
the optimization did not change the value of the mixing
coeflicients from their initial guess. That is probably
because the robust diagnostic run strongly modified
the temperature and salinity fields to be consistent with
the coefficients used in that run (i.e., 1 and 107
cm? s71). The optimization was then unable to change
both the hydrography and coefficients to further
reduce the cost, although there may be a better solution
with different mixing coefficients and a different
hydrography.

As for the vertical-mixing coefficient, estimates based
on observations vary between 0.1 and 3.0 cm?s™!.
Presumably, the value of this coefficient should not
depend too strongly on the model resolution, as the
small-scale mixing processes responsible for the vertical
mixing cannot be resolved by even high-resolution
GCMs and must be parameterized in any case. This
leads to the hope that the value calculated here for the
vertical-mixing coefficient can be used in other studies
of the North Atlantic general circulation using nu-
merical GCMs. The values found in the calculations
presented here (Tables 1 and 2) tend to be in the lower
part of the range of previous estimates (0.1 to 0.3
cm? s7! for the background vertical mixing K,o; in all
optimization runs using the standard weights in the
cost function, except for run Z, see above discussion
of horizontal mixing).

5) ADIJOINT METHOD VERSUS ROBUST
DIAGNOSTIC

It has already been noted (Table 2 and Fig. 7) that
the optimization solution of run Z does not represent
a significant improvement (in terms of the cost reduc-
tion) over the robust diagnostic run used to obtain the
starting point for the optimization. (It should be noted,
though, that this is also the case because we have tuned
the restoring coeflicient, v, in the robust diagnostic
model, so that it would produce the smallest possible
cost function at steady state.) It is no surprise, therefore,
that the above results for the meridional circulation
cell, and the difference between the diagnostic and op-
timal solutions, resemble very much those of the robust
diagnostic model of Sarmiento and Bryan (1982). This
is also the case for the improvement of the meridional
heat flux: our results are not very different from those
of the robust diagnostic calculations. Robust diagnostic
calculations cannot be used to obtain an improved es-
timate of the surface fluxes, but neither could the ad-
joint method do this at this stage. The similarity of our
results and those of the robust diagnostic calculations
implies therefore that the potential benefits of the op-
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timization approach using the adjoint method to cal-
culate the gradient of the cost function have not been
fully exploited here, mostly because of the difficulties
due to ill conditioning.

6) RESIDUALS: IS THE MODEL CONSISTENT
WITH THE DATA?

Figures 8a—f show the temperature and salinity data,
the optimal solution for the temperature and salinity
fields, as well as the residuals of the data and steady-
penalty terms in the cost function, all given for three
of the model levels, representing the surface, middepth,
and deep waters. The residuals measuring the misfit to
the data are (7 — T3:°), and in order to help in
physically interpreting the residuals of the steady-state
penalties, they were multiplied by 15 years, ([T ;/0¢]
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X 15 years). This gives a rough order-of-magnitude
estimate for the change in temperature expected to de-
velop if the model for 15 model years, starting from
the optimization solution for the model inputs. Ideally,
this change should be of the same order of magnitude
as the temporal changes found by Levitus (1989) for
the North Atlantic Ocean. Similarly, the deviation from
the data should be of the same order of magnitude as
the assumed errors given in Fig. 2.

Before examining the spatial structure of the resid-
uals, we note that for the model and data to be con-
sistent within the assumed error levels, we expect the
total contribution of each of the terms in the cost func-
tion (1), as they are given in Table 2, to be less than
or equal to one. The actual values of these terms are
around two, indicating that on the average, the devia-
tion of the steady and data penalties from their allowed
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values is somewhat too large, so that model and data
cannot be expected to be fully consistent. More insight
into the question of model and data consistency is ob-
tained by examining the structure of the residuals.
Looking at Figs. 8a-f, one immediately notices the
similarity in the structure of the steady and data resid-
uals. That is simply because our final solution is not
very different from the solution of the robust diagnostic
run used to initialize the optimization. In the steady-
state robust diagnostic solution, the deviation from the
data (multiplied by +) is locally equal to the rest of
the terms in the temperature and salinity equa-
tions (7).

When examining the residuals at the three plotted
levels (81, 714, and 2216 m), it is useful to note that
the assumed noise level for both steady and data resid-
uals is (Fig. 2) 1.86°, 0.86°, and 0.16°C for the tem-
perature residuals at the corresponding depths, and
0.23, 0.11, and 0.02 ppt for the salinity.

Beginning with the results at 81 m (Figs. 8a,d), we

see unacceptably large temperature residuals of both
types in two main regions: off the African coast (steady
residuals of up to 8°C, compared to the allowed noise
level of 1.86°) and in the northern part of the western
boundary. In the later region, the salinity residuals are
also large, and both the optimal temperature and sa-
linity are characterized by sharper gradients than the
data fields, somewhat similar to the results of Sarmiento
and Bryan. At this level the model and data can prob-
ably be declared inconsistent. The reason may be
problems with the heat fluxes that strongly influence
the solution at this shallow depth, as well as a variety
of other reasons such as vertical-mixing parameteriza-
tion and mixed-layer dynamics that may be oversim-
plified in the model. Most probably, however, the rea-
son is that our model is driven by surface fluxes, rather
than by specified sea surface temperature and salinity.
Oceanic GCMs are known to produce unacceptable
results when driven by observed fluxes, and the model
used here is probably not an exception. At the next
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level shown, 714 m (Figs. 8b,e), the residuals are large
especially in the western boundary region. This may
be due to either the oversmoothing and insufficient
resolution of the data in this region or the simplified
linear dynamics of the model momentum balances,
which may be too simplified for this region. Finally,
in the deepest level shown, 2216 m (Figs. 8¢, ), the
assumed noise level for the temperature and salinity is
0.16°C and 0.02 ppt, correspondingly. The main dif-
ferences between the optimal fields and the data are in
two regions: the Mediterranean outflow, and more so
in the northwestern part of the basin. In both cases,
and in particular in the northern part of the basin, we
tend to suspect the poor parameterization used in the
present model for convective overturning, as well as
the use of flux boundary conditions mentioned above.
The convection parameterization is based on using a
relatively large, yet perhaps not large enough, vertical-
mixing coefficient in regions of unstable density strat-
ification. This is done to avoid the problems, discovered

using simulated data, in converging to the optimal so-
lution when a stronger and less smooth convective-
overturning parameterization was used. Deep convec-
tion (from the surface to 2 km deep) in the solution
shown here occurs in the western part of the northern
buffer region only, with shallower convection (to 200-
400 m) in restricted areas of the northern part of the
basin. Too weak vertical mixing due to convection may
result in the less sharp temperature and salinity gra-
dients of the optimal solution in the west northern cor-
ner of the basin, with the resulting large residuals there.
As we do not calculate surface fluxes in this optimi-
zation, convection is not a major concern, but in the
future, the problem of which deep convection param-
eterization to use can clearly be expected to be one of
the important ones for optimization studies using
GCMs.

Overall, the residuals have quite large values in large
areas, notably in the western boundary regions. The
spatial structure of the residuals is nonrandom. This
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may be expected with the smoothed data we use, but
on the other hand, the correlation of the regions of
large residuals with oceanographic features (western
boundary currents, deep convection areas, Mediter-
ranean tongue) indicates that what we see are incon-
sistencies between the model and the data, rather than
just smoothed random errors in the data. The model-
to-data fit can be improved by using both a better model
(with nonlinear-momentum equations) and a higher
resolution and perhaps more carefully analyzed hy-
drographic data (especially in the western boundary
region) that may be able to resolve the Gulf Stream
more fully. We conclude, as did Sarmiento and Bryan
in their robust diagnostic study, that the model used
to analyze the data must be accurate for the results to
be useful.

7) ERROR ESTIMATES

The absence of formal error estimates for the cal-
culated model parameters and inputs is somewhat of

a deficiency of the present calculation. Although this
information may be obtained from the Hessian matrix
[ matrix of second derivatives of the cost function with
respect to the model inputs; see Thacker (1989) or
Tziperman and Thacker (1989)], this matrix is quite
difficult to handle for large-scale optimization problems
such as the present one. In fact, the ability of the adjoint
method to calculate the solution separately from the
error information is what enabled us to approach the
difficult problem of analyzing the North Atlantic gen-
eral circulation using a fairly complex GCM.
Although the large size of the Hessian matrix will
probably prevent the calculation of formal error bars
for the solution obtained by the adjoint method in the
near future, our results serve to demonstrate how some
information concerning these errors can still be ob-
tained. For example, when the minimum of the cost
function is not a sharp minimum, but has the form of
a valley in parameter space, as we have found in one
of our optimizations, then the calculated parameters
may not be uniquely determined by the data used (al-
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though, as explained in section 4a, that was not the
case here). This implies that they are in the nuil space
of the resolution matrix that may be calculated from
the Hessian, and their error bars may be expected to
be quite large. The experiments of section 4a serve as
an example on how the structure of the cost function
can be explored without calculating the prohibitively
large Hessian matrix.

We now proceed to analyze in detail the conditioning
of optimization problems involving fitting a steady
model to oceanographic data.

5. Analysis of the conditioning of optimization
problems using a steady-state model

At this point, we can summarize what has been
learned from the above calculations as follows: The
optimization problem involving the fit of a steady
model to oceanographic data using the cost function
given by (1) seems poorly conditioned. In trying to

solve the problem using the optimization approach
alone, we have obtained solutions that were often not
acceptable and were unable to find the optimal solu-
tion. When analyzing the difficulties due to the poor
conditioning, it is quite clear that the data penalties in
the cost function are not to blame. These are simply
quadratic in the unknown temperature, salinity, and
surface fields, and an optimization problem involving
these terms only can be solved in a few iterations at
most. The main difficulty seems to lie in the steady-
penalty terms.

In order to gain some understanding of why the
problem of poor conditioning of the steady penalties
occurs and perhaps also how it may be overcome, sev-
eral simple problems are considered in which we will
examine the conditioning of various forms of the steady
penalties using highly simplified model equations. For
this purpose, we ignore the questions related to the
calculation of boundary conditions and the use of data
and concentrate on the calculation of the steady so-
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lution using the optimization approach. The analysis
here is, in a way, an extension of the work of Tziperman
et al. (1992), who calculated the steady-state solution
to a QG model using the optimization approach. Mar-
otzke (1992) has used the same model used here, pen-
alizing the deviation from steady state using terms of
the form ( Tana — Tinitiat)? @s we do here, but with the
important difference that the initial and final temper-
atures are separated by longer time integrations rather
than a single time step as we do here. He suggested
that some of the problems found here may be overcome
this way. In the analysis that follows we examine the
conditioning both for the one time step approach, for
Marotzke’s approach, and also for alternative forms of
the cost function based on longer integrations. In doing
that we try to derive both a more optimal form of the
cost function and the minimum integration time per
iteration necessary to obtain good conditioning.
These objectives are achieved by considering the ef-
fects of both dissipation and wave motions on the con-
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ditioning of the optimization. First, a word of expla-
nation on why it is useful to consider the waves present
in the model equations. We assume that the optimi-
zation is started with an initial guess for the temperature
and salinity that is near the steady-state solution (a
reasonable first guess would simply be equal to the
data). This initial state may be considered a pertur-
bation about the steady solution for the model equa-
tions, and we expand this perturbation in linear modes
corresponding to the model waves. The purpose of the
steady penalties in the cost function is to eliminate
these waves from the initial conditions, and to drive
the initial conditions toward the steady-state model so-
lution. In the following discussion, we argue that by
using in the cost-function steady penalties that are the
sum of the squared differences between the initial con-
ditions and all (or at least some) of the following time
steps, the conditioning of the problem may be expected
to improve. The analysis suggests that using only the
difference over one time step, or only the difference
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between the final and initial states for more than one
time step, may be expected to be less effective.
Consider first the 1D diffusion equation,

T, = kT, )

and assume initially that we pose the optimization
problem based on taking a single time step with a finite-
difference model based on this equation. The cost
function will be

T?7,

=32 IT! - (10)

where T7 = T(x;, nAt),0 < x; < L, and

T) =79+ «A«(T?, — 2T? + T2 ))/(AXx)2. (11)
Using (11), the cost function can be written in matrix
form as

=3 Il(I+ kA19x) TO — T°)% = 5 [[(xAt) T2,

1
2
where I is the unit matrix and d,, represents the op-
erator (matrix) of double differentiating with respect
to x. Taking the second derivative of the cost with
respect to the initial conditions T, we find that the
Hessian matrix is simply

H = (kAtdy)>.

The eigenfunctions (eigenvectors in the discrete matrix
formulations) are simply exp(ikx). For the continuous
problem, the eigenvalues of the Hessian matrix are
therefore simply Ax = (—«kAtk?)?. Using the finite-dif-
ference operator, the eigenvalues are

2
Ay = ( —2k ——— cos(kAx)]) .

At
s [1 -
(Ax)
The largest wavenumber represented in the model is
w/Ax, and the smallest is # / L. The condition number
for this problem is therefore simply

_ max(Ag) _ 2 2 (2L
" min(Ay) \1-=cos(zAx/L)]  \wAx/)’
For the optimization problem to be well conditioned,
this number should be as close to order one as possible,
which will not be the case for large L and small Ax.
Assume, next, that the model is integrated for more

than one time step, as suggested by Marotzke (1992),
and use for the steady penalties the form he suggested,

J=> 11V — TY)2. (12)
i
Writing now the temperature at the Nth time step in
terms of the initial conditions, we obtain
TN = (I + «Atd,)VT°,
which results in the following expression for the Hessian

= [(I + kA1d,)Y — 1N~
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The Hessian eigenvalues for this case are Ay = [(1
— kAtk?)Y — 1]? for the continuous operators, and

A N 2
Ag = [(1 — 2k —= (Ax )2 [1- cos(kAx)]) }
for the finite-difference operators. The condition num-
ber is therefore

_ max(Ay)
" min(Ag)

4xAt\N 2
1 - -1

(13)

Noticing now that the term 2xAr/(Ax)? must be
smaller than one due to the Courant stability condition,
we see that the condition number approaches one as
the number of time steps N increases. We conclude
that, for this problem, increasing the number of time
steps and formulating the steady penalties as in (12)
should indeed improve the convergence rate of the op-
timization. The physical reason for this improvement
is that by extending the integration time, the longer
waves had the opportunity to feel the dissipation by
the diffusion term and therefore they contributed to
the change between the initial and final states and thus
to the cost function. When stepping the model a single
step or a few time steps, only the small scales were able
to feel the dissipation, resulting in the mismatch be-
tween the way short and long waves are affected by the
dissipation. This mismatch between the way waves of
large and small wavenumbers are handled will result
in a similar mismatch between their corresponding ei-
genvalues, and therefore in poor conditioning. But
would this conclusion also hold when dissipation is
not the dominant physical process? In order to answer
this question, consider the following simple problem.

Suppose our model consists now of the wave equa-
tion obtained from the advective part of the temper-
ature equation,

T, + ul,=0. (14)

Consider the optimization problem of trying to cal-
culate the steady state using the cost function based on
integrating the model for a time 7,

J =2 [T(xi, 7)— T(x:, 0)]°. (15)

Assume that the initial conditions (first guess for the
steady state) include a single wave component, so that
we can write

T(x, 0) = cos(kx).

The solution to our model equation is then simply 7'(x,
7) = cos[k(x — u7)], so that the cost function is

J =3 [cos[k(x; — ur)] — cos(kx;)}*. (16)
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Clearly, if the wavenumber k satisfies the condition
kur = 2n= for some integer #n, it would not contribute
to the cost function and therefore cannot be eliminated
from the initial conditions in order to obtain the steady-
state solution using the optimization approach. In the
full problem, where many waves are present in the ini-
tial conditions, there will always be wave components
that will not contribute to the cost function formulated
as in (7) (even waves that only approximately satisfy
kut = 2n= will hardly affect the cost function). Such
insensitivity of the cost function to components of the
initial conditions clearly means poor conditioning. In
order for all waves to affect the cost function, the in-
tegration time 7 needs to be long enough for dissipation
to affect all waves, which may imply fairly long inte-
gration times for the longer waves. Let us examine a
different, and perhaps better, formulation of the cost
function, which may get around this problem and
shorten the integration time needed to obtain good
conditioning.

In order for a wave of a given period to have a sig-
nificant effect on the cost function, it is best to include
in the cost function a term that is squared in the dif-
ference between the initial conditions and the temper-
ature at a time when the deviation from the initial
conditions is significant. Sometime within a time equal
to a quarter of the period of the wave, the change from
the initial conditions will be at least half the amplitude
of the wave (may be up to the full amplitude, depending
on the phase of the wave at the initial time). A rea-
sonable way to make sure the wave motions affect the
cost function could therefore use a cost function of the
form:

L/Ax
J= 2 wa T(x;, nAt) — T(x;, 0)]%,  (17)
i=1

\ZES

n=1

where w, are weighting coefficients, and the integration
time NAt is at least equal to a quarter of the wave
period. [ Note that (17) is a special case of the general
steady penalties for this 1D problem that can be written
as

L/Ax N

J= 2 Z

i>j=1 n>mn'>m’

[T(x;, nAt) — T(x;, mAt)]}

X Wijnmn'm{ T(;, n' A1) — T(x;, m'A1)],

where Wjjnmn'm 18 a positive-definite weighting matrix.]
In order for all waves to be constrained by this cost
function, the number of time steps (/) should be cho-
sen such that the integration period is larger than a
quarter of the period for the slowest waves in the model.
This does not bring into consideration, however, the
effects of the dissipation in the model equations, which
we will do now by combining the two simple problems
discussed here into one with both waves and dissipa-
tion. '

TZIPERMAN ET AL.

1481

Consider the model equation,
T, + uTy = kT xx. (18)

As above, we are trying to find the way to precondition
the optimization problem involved in calculating the
steady solution of this model equation. Let the initial
guess for the steady state be composed of various wave
components,

T(x,0) = > Ty cos(kx). (19)
k

Then the solution after a time 7 is
T(x, 7) = > Ty cos[k(x — ur)] exp[—«k*t]. (20)
k

Now, in order for the cost function (17) to be sen-
sitive to a given Fourier component, that component
needs to vary significantly from the initial time to some
time 7,, = nAt, so that it would contribute to the cor-
responding term [T(x, 7,) — T(x, 0)]? in the cost
function. Such a change from initial conditions could
happen in two ways. For the long waves this would
most effectively happen through the difference in tem-
perature between the initial conditions and a time
within a quarter of the wave period 7,,4 = (27/0,)/4,
where ¢, is the real part of the frequency. These long
waves need very long integration times in order to feel
the effect of dissipation, which would imply very long
integration times per iteration of the optimization, and
therefore a significantly higher computational cost for
the entire minimization process if we rely only on the
dissipation effects. The quarter-period time may be
much shorter than the dissipation time for the long
waves, hopefully resulting in a more effective condi-
tioning.

The shorter waves, on the other hand, are more
strongly affected by the dissipation through the expo-
nential term in (20). The significant difference between
the initial and final conditions is most effectively
achieved for these waves by integrating the model for
a time that is equal to or larger than the dissipative
time scale for these waves, 7, = (kk?)™!, which should
not be large, because the wavenumber k for these waves
is quite large.

To summarize, the integration time should be cho-
sen so that the cost function is sensitive to all wave-
numbers. If the integration time 7 is larger than the
decay time for some short wave, then all terms in the
cost function for which nAt > 7, will be sensitive to
this wave component. Otherwise, for longer waves, at
least one of the terms in the cost function will be sen-
sitive to the phase change of the wave through the
quarter period constraint.

Having (hopefully) obtained some intuitive feeling
for how a good conditioning of a problem involving
both dissipation and waves can be effectively achieved,
we now consider the more realistic oceanic case, where
the main waves carrying information around are the
Rossby waves. In a GCM, where dissipation is present
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both in the momentum and in the temperature and
salinity equations, the Rossby waves are dissipated by
both horizontal and vertical mixing processes, so that
the dispersion relation for the first mode baroclinic
waves ( higher modes will be considered below) can be
written as

o =o,+ io;

__ "Bk
k?+ I? + Lg?

where x;, and «, are the horizontal and vertical mixing
in the momentum equations (mixing in the temper-
ature and salinity equations will have a similar effect).

Our purpose is to find the minimal integration time
of the model that will provide good conditioning using
the cost function of the form (17). Let us divide now
the wavenumber range into two main subranges (which
may overlap, as we will see below): the long-wave range
in which preconditioning is most effectively achieved
by constraining waves over a quarter-period time scale,
and the short-wave subrange in which conditioning is
best achieved through the dissipative effects acting over
the diffusion time scale.

As a first step toward estimating the optimal inte-
gration time for the model, let us assume that the model
is integrated for a time 7 and examine which wave-
numbers are properly conditioned by such an integra-
tion. Consider first the long waves. For these, the rel-
evant part of the dispersion relation is the real part,
which should yield a relation between the wavenumbers
of the well-determined waves and the integration time.
The well-determined waves are those whose quarter-
period time is equal to or smaller than the integration
time. This may be translated into a relation between
their wavenumbers and the integration time,
o =lgzzzk2+lz+L§2-
T T s, 2 Bk ‘
Let, for simplicity, / = k, and we now wish to extract
the wavenumbers of the well-determined waves in
terms of the quarter-period time. Because of the shape
of the dispersion relation for the Rossby waves, there
are two wavenumbers that correspond to a given fre-
quency (or, equivalently, to a given quarter period).
One would be in the very long-wave part of the spec-
trum, and the other toward the shorter waves. Denote
these wavenumbers by k., which is the wavenumber
smaller than the inverse Rossby radius L%', and k.
that is larger than L' (Fig. 9). Using the appropriate
approximate limits of (22) for short and long waves,
we obtain the two wavenumbers bounding the wave-
numbers of the well-determined waves:

— i[kp(K2 + 12) + kam?], (21)

(22)

k. = 8. -

> ox T 287L%:
Waves with wavenumbers that fall between k.. and k.
will have quarter periods that are smaller than our in-

(23a,b)
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tegration time 7 and should therefore be well deter-
mined.

Next, consider the short waves, to which the cost
function may be sensitive due to the effects of dissi-
pation. For the dissipation to have a significant effect
on a wavenumber &, the integration time must be equal
to or larger than the diffusion time,

T2 1= 0 = [ky(k?+ D] (24)

Assuming again / = k, we obtain an expression for the
longest wave that is affected by the dissipation during
an integration time 7. Denoting this wavenumber by
k4, we have

kd= [ZK;,T]_I/Z. (25)

Note that we use only the horizontal diffusion term for
estimating the diffusion time scale, because for the first
baroclinic mode horizontal mixing is expected to be
more effective than vertical mixing. Vertical mixing
will be included when discussing the higher modes
below.

Now, for the least-squares optimization problem of
calculating the steady state to be well conditioned, all
waves must be affected by either the quarter-period
constraint, or by the dissipation effects. Consider Fig.
9, where the different wavenumbers are plotted with
the dispersion relation for the Rossby waves. When the
integration time 7 is small, there are two ranges of well-
determined waves (stippled horizontal axis in Fig. 9),
but there may be two gaps of poorly determined waves.
The first gap is for wavenumbers 27L ! < k < k. at
the long-wave part (L is the basin size, and 2xL™! is

T ¢V T IT'I 'I L) lTl L ll ' L}
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FIG. 9. A schematic drawing of the Rossby wave dispersion re-
lation, indicating the ranges of well-determined waves for a given
integration time used to calculate the cost function (17).
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therefore the longest wave represented in the model).
The second gap is for waves that satisfy k. < k < kg,
that is, waves between those that are affected by the
quarter-period constraint and those affected by dissi-
pation.

For these gaps to be eliminated we need to first ex-
tend the integration time 7 so that k.. = k,. Using (23a)
and (25), we obtain that the condition for closing the
gap for the shorter waves is

o 11'2 1/3
T = 2Khﬁ2 .

Substituting «;, = 107 cm?s™ and 8§ = 2 X 1078
cm ' s7', we have 7 = 2 X 10% s, that is, about one
month. But substituting this integration time into (23b)
using Lz = 50 km, we find that the longest wavelength
to be affected by such an integration time is only about
400 km. To extend this to a 4000-km basin, we need
the integration time to be 5 to 10 times longer, which
implies

(26)

T = | year. (27)

Next, we need to consider the effects of the barotropic
and higher-mode baroclinic waves. Barotropic waves
pose no problem. They are characterized by short pe-
riods and therefore are well determined by the quarter-
period constraints in the cost function for short inte-
gration times, well within the times required for the
first-mode baroclinic waves. Although the barotropic
and first-mode baroclinic waves already account for
much of the oceanic structure and variability, it is still
necessary to consider the higher-mode baroclinic
waves. For the latter, vertical mixing is expected to
play an important role, because of the smaller vertical
scale in the upper ocean. Taking, for example, 300 m
as the vertical scale of the second baroclinic mode in
the upper ocean, we find that the diffusion time for it
due to the vertical dissipation in the momentum equa-
tions is

74(vertical mixing) = (k,m?) 7.

Using a minimal value for the vertical mixing «, = 1
cm? s7! (coarse-resolution GCMs use values between
20 and 50 cm®s™') and m = 27 /300 m, we find that
74 =2 X 107 sec, that is, less than a year. In the deeper
ocean the higher baroclinic modes have larger vertical
scales, but on the other hand, the stratification there is
well represented by the barotropic and first baroclinic
modes, so we expect the convergence of the optimi-
zation in the deep ocean to still be reasonably good.
The significance of the above estimate for the opti-
mal integration time (19) is that, by using the proper
form of the cost function, constraining the large scales
by the quarter-period constraint and the small scales
by the dissipation effects, the integration time per it-
eration of the optimization may be significantly shorter
than when using only the dissipation to constrain the
optimization toward a steady state. This may enable
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the analysis of higher-resolution models for which in-
tegration time and storage of the history of the time
integration (required for the adjoint model) are cru-
cially limiting factors. These suggestions for a refor-
mulation of the steady penalties clearly need to be im-
plemented and used within an inverse calculation using
a GCM to thoroughly examine their usefulness, and
work is under way to do that.

6. Conclusions

We have used a GCM and North Atlantic clima-
tological data of temperature, salinity, wind stress,
evaporation minus precipitation, and air-sea heat
fluxes to examine the possibility of solving inverse
problems using a full-scale numerical GCM and real
oceanographic data. These inverse problems are aimed
at calculating model inputs, such as surface forcing
fields, mixing parameters, and the temperature and sa-
linity fields in a manner consistent with both the avail-
able data and the model dynamics. The resolution and
complexity of the model used here are superior to what
has been possible to attempt in previous inverse studies,
thanks to the use of the optimization approach based
on the adjoint method for calculating the gradient of
the cost function. As this is the first application of the
method to a complex GCM and real oceanographic
data, this work was mostly intended to examine and
present the possibilities and difficulties that are en-
countered when using a GCM within an inverse cal-
culation, using the well-studied North Atlantic as a test
case. In Part I of this work, we have used simulated
data and found that while the minimization of the cost
function proceeded quite well with model-generated
data with no added noise, problems arose when sim-
ulated noise was added to the data. In this part, we
proceeded to examine the performance of the method
in more realistic circumstances using real data.

By examining several solutions for the model inputs,
and by examining the structure of the cost function as
a function of the model inputs, we have tried to dem-
onstrate two of the main difficulties confronting such
large-scale nonlinear inverse problems (about 30 000
unknowns and a similar number of constraints for the
problem examined here). The first is the possible ex-
istence of local minima of the cost function preventing
the convergence of the optimization to the global min-
imum representing the desired optimal solution for the
model inputs. The second difficulty, which seems the
dominant one for many of the problems examined in
this part as well as in Part I, is the ill conditioning of
the inverse problem. The ill conditioning is manifested
in the cost function being flat in some directions in
parameter space, possibly resulting in the stalling of
the optimization and an inability to converge to the
optimal solution. Such ill conditioning may be the re-
sult of insufficient data to calculate some of the model
parameters, as well as the result of an inappropriate
formulation of the inverse problem.
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In order to better understand the seemingly bad
conditioning of the optimization problems attempted
here, we have used simple model equations to analyze
the conditioning of the optimization and analyze the
role of both dissipation and waves in the model dy-
namics in conditioning the problem. This analysis helps
in understanding the difficulties encountered in this
study, as well as to suggest some possible remedies. In
a recent work using the same model and method used
here, Marotzke (1991) has suggested that the con-
straints enforcing steadiness of the model temperature

" equation, for example, should be formulated as the
sum of squares of the final temperature minus the ini-
tial temperature, as done here, but rather than one time
step separating them, he used much longer integration
times, up to 50 years. Motivated by this suggestion, we
have examined the conditioning of steady penalties
based on the one time-step approach, of penalties based
on longer integrations, and also of different forms of
the steady penalties in the cost function. The analysis
suggests that formulating the constraints that the model
be steady in a somewhat different way, by taking ad-
vantage of the model waves, may improve conditioning
while requiring shorter integration times, of the order
of one to a few years. The suggested form of the cost
function penalties requiring the steadiness of the so-
lution for the temperature equation, for example, in-
volves the sum of the squares of the difference between
the initial temperature and the temperature at several
different times between the initial and final states.

The optimization approach is closely related to the
robust diagnostic method of Sarmiento and Bryan
(1982) when only temperature and salinity are varied
in the optimization. The link between the two methods
was explicitly demonstrated, and the solution obtained
by combining them was used to examine the perfor-
mance of the GCM used here for the North Atlantic
Ocean. A relation was derived here between the weights
in the cost function used in the optimization approach
and the restoring coefficient of the robust diagnostic
method. Using this relation, the robust diagnostic ap-
proach would make a useful method for obtaining the
initial guess for starting an optimization based on the
adjoint method.

Clearly, the new possibilities offered by the optimi-
zation approach and the adjoint method also reveal
many new difficulties not arising in the context of sim-
pler inverse models. The intrinsic nonlinearity of the
calculation, and the new capabilities such as the pos-
sibility to calculate surface forcings and other model
inputs, all give rise to many new and previously un-
known obstacles that must be overcome. It is im-
portant to realize that practically all the difficulties re-
ported here are related to the way the optimization
problem is formulated and have nothing to do with
the adjoint method for calculating the gradient of the
cost function. The adjoint model used here, based on
that developed by Long et al. (1989), was able to ac-
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curately and efficiently calculate the gradient of the
cost function based on a complex GCM. The remaining
challenges all have to do with the way the inverse prob-
lem based on the GCM is formulated (i.e., the specific
form used for the cost function ). Hopefully, the results
reported here bring us closer to an understanding of
how such inverse problems should be formulated.
Considering, however, the short experience in ocean-
ography with such complex optimization problems (as
compared with the vast experience with numerical
models, for example), the progress made so far is en-
couraging. We have tried in this work to gain some
understanding of the reasons for the difficulties en-
countered and have tried to narrow the range of pos-
sible reasons for the difficulties. There seem to be good
reasons to expect that many of the difficulties still en-
countered here will be corrected in future studies,
helping to fulfill the method’s potential in bridging the
gap between numerical modeling and observational
oceanography, using both models and data to form a
unified picture of the oceanic general circulation.
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