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ABSTRACT

Using the GFDL coupled atmosphere–ocean general circulation model CM2.1, the transient amplifica-
tion of thermohaline circulation (THC) anomalies due to its nonnormal dynamics is studied. A reduced
space based on empirical orthogonal functions (EOFs) of temperature and salinity anomaly fields in the
North Atlantic is constructed. Under the assumption that the dynamics of this reduced space is linear, the
propagator of the system is then evaluated and the transient growth of THC anomalies analyzed. Although
the linear dynamics are stable, such that any initial perturbation eventually decays, nonnormal effects are
found to result in a significant transient growth of temperature, salinity, and THC anomalies. The growth
time scale for these anomalies is between 5 and 10 yr, providing an estimate of the predictability time of the
North Atlantic THC in this model. There are indications that these results are merely a lower bound on the
nonnormality of THC dynamics in the present coupled GCM. This seems to suggest that such nonnormal
effects should be seriously considered if the predictability of the THC is to be quantitatively evaluated from
models or observations. The methodology presented here may be used to produce initial perturbations to
the ocean state that may result in a stricter estimate of ocean and THC predictability than the common
procedure of initializing with an identical ocean state and a perturbed atmosphere.

1. Introduction

The present-day North Atlantic Ocean exhibits mul-
tidecadal variability in sea surface temperature (SST),
possibly partially caused by the large-scale thermoha-
line circulation (THC) variability (e.g., Bjerknes 1964;
Kushnir 1994). Numerous studies have considered the
stability and variability of the THC on these time scales
using all ranges of model complexity from simple box
models to general circulation models (GCMs; e.g., Del-
worth et al. 1993; Griffies and Tziperman 1995). Studies
of the North Atlantic predictability find possible decad-
al predictability skill of the THC and North Atlantic
SST (Collins et al. 2006; Griffies and Bryan 1997).

In previous studies of weather or ENSO predictabil-
ity, “nonnormal dynamics” and “transient amplifica-
tion” were found to be crucial (e.g., Farrell 1988, 1989;

Farrell and Ioannou 1996; Penland and Sardeshmukh
1995; Kleeman and Moore 1997). These terms refer to
the property of damped (stable) linear systems, which
display no variability unless forced externally, to pro-
duce strong amplification of appropriate initial pertur-
bations before eventually decaying back to the back-
ground state. Such behavior occurs in linear systems in
which the operator does not commute with its Hermi-
tian transposed. In other terms, the system dx/dt � Ax
is nonnormal if AAT � ATA, which is the case in prac-
tically all systems based on fluid dynamics equations.
The nonnormal dynamics of the THC was investigated
in only a few recent papers, all using fairly simple mod-
els (Lohmann and Schneider 1999; Tziperman and Io-
annou 2002; Zanna and Tziperman 2005).

In this work, we study the possible transient amplifi-
cation of the THC in the Geophysical Fluid Dynamics
Laboratory (GFDL) coupled atmosphere–ocean GCM
CM2.1 (Delworth 2006; Delworth et al. 2006; Gnan-
adesikan et al. 2006; Stouffer et al. 2006; Wittenberg et
al. 2006; Griffies et al. 2005). The study of nonnormal
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dynamics and transient amplification in a coupled
GCM introduces nontrivial difficulties. As a first ap-
proximation, we construct an EOF-based reduced
space based on temperature and salinity fields from a
2000-yr control model run. We then fit a linear model to
the reduced space dynamics following the “linear in-
verse modeling” approach used in the context of ENSO
(e.g., Penland and Sardeshmukh 1995; Penland 1996;
Penland et al. 2000; Penland and Matrosova 1998, 2001;
Blumenthal 1991; Moore and Kleeman 2001). In sec-
tion 2 we introduce the methodology for constructing
the reduced space and the linear fit of the model fol-
lowed by an analysis of the quality of the fit. We discuss
the results of the nonnormal effects in section 3 and
finally conclude in section 4.

2. Methodology

To analyze the nonnormal amplification of the THC
in the GFDL CM2.1, we first need to obtain a linear-
ized version of the model dynamics. Owing to the dif-
ficulty of deriving the explicit linearized equations of
the full coupled GCM, we follow the “linear inverse
modeling” approach developed in the context of cli-
mate research by Penland and coauthors (e.g., Penland
and Sardeshmukh 1995; Penland 1996). A reduced
space representation of the dynamics is first created by
expanding some of the model variables into empirical
orthogonal functions and by using the principal com-
ponent amplitudes as the state vector (Blumenthal
1991). Although principal oscillation pattern analysis
(Hasselmann 1988; Von Storch et al. 1988) is the first
step of linear inverse modeling, we are not as interested
in defining the dominant eigenvectors of the linear
feedback matrix as much as we are in finding that ma-
trix itself.

The use of three-dimensional (3D) multivariate
EOFs for describing the dynamics and for state space
reduction is supported by the recent work of Hawkins
and Sutton (2007). Using the Hadley Centre model,
they showed that multivariate EOFs provide an effec-
tive description for the THC variability and could as-
sociate the mechanism for the multidecadal variability
to an internal ocean mode, dominated by changes in
convection in the Nordic seas, and affected by salinity
transport from the Arctic and North Atlantic. An al-
ternative to the 3D EOFs could be the use of dynamic
topography, which provides an efficient way of repre-
senting the gyre dynamics, as used in the THC predict-
ability study of Griffies and Bryan (1997). From previ-
ous studies on nonnormal growth of the THC, we ex-
pect the compensation effects of the temperature and
salinity to play a significant role in the THC amplifica-

tion. Therefore, the use of dynamic topography, which
is based on density alone, is not expected to be optimal
for the purposes of this study. However, we still use
dynamic topography as a useful diagnostic of the non-
normal dynamics.

Given the reduced space representation, we fit a lin-
ear matrix to the evolution of the reduced state vector
and analyze its nonnormal properties.

a. Reduced space for the GFDL model

We analyze the nonnormal dynamics of the “1860-
control” integration of the coupled GFDL model ver-
sion CM2.1. Three-dimensional temperature, salinity,
and velocity fields are available for this 2000-yr-long
control run. The atmospheric model resolution is 2°
latitude by 2.5° longitude with 24 vertical levels. The
ocean model has a resolution of 1° by 1° poleward of
30° latitude and progressively increased resolution in
latitude approaching the equator with 1⁄3° resolution at
the equator. The total number of vertical levels is 50,
with 22 levels evenly spaced within the first 220 m from
the surface. The reader is invited to consult the follow-
ing papers and references within for a detailed descrip-
tion of the model: Delworth (2006), Delworth et al.
(2006), Gnanadesikan et al. (2006), Stouffer et al.
(2006), Wittenberg et al. (2006), Griffies et al. (2005).
Our main interest in this work is the variability of the
North Atlantic THC. Its strength is measured by an
index defined as the maximum overturning streamfunc-
tion occurring anywhere between 20° and 80°N. The
red line in Fig. 1 shows a time series of the THC index
deviation from its mean [the mean is 23.9 Sv (Sv � 106

m3 s�1) and the standard deviation is 1.5 Sv]. The
power spectrum of the THC index demonstrates its
variability with two spectral peaks at about 20 and 300
yr and a possibly a weaker peak at about 60 yr (Fig. 2,
Delworth and Zhang 2007). We are interested in find-
ing if nonnormal THC ocean dynamics plays a role in
this variability.

Our interest being the THC variability on an inter-
annual time scale and longer, we consider annually av-
eraged temperature and salinity fields in the North At-
lantic region (10°–80°N, 20°E–100°W). The reduced
space representation of the GCM dynamics includes
only the 3D temperature and salinity fields. To a first-
order approximation, we expect the velocity field rel-
evant to the large-scale THC dynamics to be mostly
geostrophic (and determined by the temperature and
salinity fields) and, therefore, we do not explicitly in-
clude the velocities in the state vector.

To reduce the dataset sizes and enable the EOF cal-
culation, we subsampled the temperature and salinity
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fields to a resolution of 3° horizontally (every third
model grid point) and 13 levels vertically from 5 to 4950
m (every third vertical level). The temperature and sa-
linity anomalies were obtained by removing their time
mean at each grid point. Let the dimensional tempera-
ture (similarly for salinity) at a location i and time t be
T*it , and a nondimensional temperature be T̂it � T*it /Wi.
The weighting factor Wi may be some relative grid vol-
ume �Vi /V0 � (dxi dyi dzi)/V0, the standard deviation
(SD) of the temperature and salinity at a given grid
point i, �i, or any combination of the two, for example,

Wi � �i ���Vi �V0�. �1�

Note that weighting by the SD tends to make all depth
levels more equal, eliminating the dominance of the
more energetic surface. Weighting by the grid element
volume as in the last equation tends to emphasize the
deeper ocean, where grid boxes are larger. Several
analyses using different such combinations are dis-
cussed below. Moore and Kleeman (2001) have shown
that, in order to capture most of the relevant dynamics
for the analysis of optimal perturbations, the EOFs
should be evaluated from the correlation matrix (or,
equivalently, the covariance matrix of the temperature
and salinity normalized by their SD) rather than from
the dimensional covariance matrix. In addition, before
calculating the EOFs, the temperature and salinity
fields were smoothed by three passes of a local running
horizontal average operator (no temporal smoothing
was used beyond the annual averaging). The smoothing
results in more easily interpretable 3D structures of the
EOFs although there is the danger of misrepresenting
small-scale critical dynamics (e.g., the Labrador Sea
convection in the current context). It appears that non-
smoothed fields result in equally nonnormal operators
and comparable transient amplification. Therefore, let
the subsampled normalized smoothed temperature and

salinity (T̂, Ŝ) at all grid points of the model at a given
time tn be represented by a single vector Y(tn). The
multivariate 3D EOFs of the normalized temperature
and salinity are then calculated as the eigenvectors of
the covariance matrix C � 	YYT
, where the angled
brackets denote time average.

The 3D EOFs generally represent large-scale spatial
structures (e.g., Figs. 3, 4), which depend, of course, on
the weighting used. Using normalization by the grid
volume and by the standard deviation at each grid point
tends to emphasize the deep variability, as seen in Fig.
3 for the first EOF. The THC depends on both the deep
temperature and salinity as well as on their near-surface
signal. The correlation coefficients between the differ-
ent principal components and the THC index time se-
ries (Fig. 5) show that the fifth EOF, for example, plays
an important role in setting the amplitude of the THC,
and its structure (shown in Fig. 4) is indeed more sur-

FIG. 2. Power spectrum of the THC index time series anomaly
obtained from the GFDL coupled GCM control run. The gray
shaded region indicates the 95% confidence interval.

FIG. 1. Time series of the GCM THC index anomaly in red [where the THC index is defined
as the value of the maximum overturning streamfunction (Sv) occurring anywhere between
20° and 80°N, and its anomaly is the deviation from its time mean], and the reconstructed THC
index, in green, calculated using the regression coefficients from the temperature and salinity
PCs.
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face trapped. EOF 9 (not shown) is also strongly cor-
related with the THC, yet is not as surface trapped as
EOF 5. Changing the weighting factor Wi used to nor-
malize the temperature and salinity results in different
EOFs representing this surface-trapped signal and,
therefore, in different principal components (PCs) be-
ing correlated with the THC index. However, as we will
see below, some interesting conclusions regarding the
nonnormal dynamics of the THC may be drawn that
are not sensitive to the weighting used.

The EOFs are found using the smoothed data fields;
however, the principal components are found by pro-
jecting the nonsmoothed fields on the EOFs. Effec-
tively, this is a partial smoothing of the data that dis-
cards the noisy part of the data that does not project
onto the first few EOFs kept for the analysis. By cal-
culating the PC time series for the first N EOFs, we
obtained a reduced space representation of the variabil-
ity, and a new N-dimensional state vector P(tn) � Pn.
An examination of the PC time series shows a nonneg-

ligible trend in some of the PCs during the first 500 yr.
Therefore, we removed the first 500 yr of the data and
only use the final 1500 yr in the following analysis. We
note that using EOFs as the basis for a reduced space
reconstruction is not necessarily the most efficient ap-
proach for the purpose of extracting the nonnormal
dynamics because EOFs, in general, are optimized for
representing the maximum variance rather than the op-
timal initial perturbations that may lead to large vari-
ability (Farrell and Ioannou 2001). We shall briefly re-
turn to this issue later.

b. Linear inverse model and propagator

Assuming that the dynamics of reduced space are
mostly linear and driven by white noise, we can esti-
mate the propagator B (�0) of the evolution of the state
vector from time n to time n � �0 ,

Pn��0
� B��0�Pn, �2�

FIG. 3. EOF 1: vertical cross section of the zonally averaged nondimensionalized (a) temperature and (b) salinity
as function of latitude and depth; horizontal section at a depth of 45 m of (c) temperature and (d) salinity as a
function of longitude and latitude; (e) and (f) as in (c) and (d) but at a depth of 1364 m.
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by minimizing the variance of the residuals given by
r� 0

� Pn�� 0
� B(�0)Pn. The propagator for an arbitrary

lead time � is then calculated as B(�) � B(�0)�/� 0. The
assumption that the evolution of the principal compo-
nent vector, Pn, may be described by linear dynamics is
anything but obvious. The GCM equations are nonlin-
ear, and it is more than possible that nonlinear effects
play a role as well. We nevertheless proceed, keeping in
mind this caveat.

The propagator B(�) depends, in principle, on the lag
used during the fitting process, �0. We therefore use
different values of �0 in order to evaluate the propaga-
tor in addition to trying different weighting factors Wi

and different choices for the number of EOFs N used to
construct the reduced phase space. All of the experi-
ments are summarized in Table 1. Unless noted other-
wise, the results plotted are from run 1 for which we
used 25 EOFs, a lag time of 1 yr, and a weighting by
both grid volume and SD.

Once the matrix B(�) is available, it is straightfor-
ward to study its nonnormal dynamics, including opti-
mal initial conditions and transient amplification. We

start by defining a norm by which the magnitude of the
state vector is evaluated. Let X be an N  N positive
definite symmetric matrix to serve as the “norm ker-
nel.” The norm of the state vector is then given by

�P� �X
2 � P�

TXP� � �B���P0�TXB���P0. �3�

Looking for the unit norm optimal initial conditions,
P0, which maximize the norm of the state at time �,

FIG. 5. The correlation coefficients between the THC index
anomaly and the PC amplitudes.

FIG. 4. As in Fig. 3, but for EOF 5.
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||P� ||2X, leads to the following generalized eigenvalue
problem for the optimal initial conditions (Farrell 1988;
Tziperman and Ioannou 2002):

B���TXB���P0 � �XP0. �4�

We will consider two different norms: First, the energy
norm, where X is the identity matrix, and then a norm
kernel that measures the amplitude of the THC. To
construct the THC norm kernel we first find the regres-
sion coefficients RTHC between the PCs and the THC
index by minimizing the sum (over time) of the square
of the residuals

r�tn� � THC�tn� � RTHC
T PC�tn�. �5�

The correlation between the THC index and the THC
reconstructed using the regression from the PCs is ap-
proximately 0.88, indicating that the PCs are an appro-
priate state vector for studying the THC dynamics, and
the two are shown in Fig. 1. The good correlation be-
tween the THC linearly reconstructed from the PCs
and the original THC index indicates that the THC is
linearly related to the principal components and hence
to the temperature and salinity fields. While this is en-
couraging as far as our linear framework is concerned,
it still does not assure us that the PC dynamics are
linear as well and may be described by a linear model
such as (2).

Given the regression coefficients RTHC, we define the
THC norm kernel matrix as

XTHC � RTHCRTHC
T . �6�

The correlation coefficient for each PC is shown in Fig.
5. When using this norm kernel in (4), we attempt to
find the initial conditions in the reduced EOF space
that maximize THC2(t � �) subject to the condition that
THC2(t � 0) � 1.

Before proceeding with the analysis of the fit, we
should mention that this norm kernel is singular, being
defined using a single vector, and it therefore requires
regularization and careful interpretation (Tziperman

and Ioannou 2002; Zanna and Tziperman 2005). The
regularization is done by adding a regular norm kernel
multiplied by a small number. That is, XTHC is replaced
by XTHC � � I, for example, if the identity matrix is
used. The largest eigenvalue of the nonregularized
problem is infinite, and the corresponding initial THC
is zero. As � approaches zero, the eigenvalues of the
regularized problem approach infinity, but the eigen-
vectors (optimal initial conditions) do not change as
long as � is not too small to cause numerical problems.
However, the eigenvectors are sensitive to the form of
the added norm kernel. If we add a matrix other than
the identity matrix, the eigenvectors will be different.
This is not surprising, given that optimal initial condi-
tions are, in general, sensitive to the norm kernel used.
The regularizing norm kernel constrains, in a sense, the
null space of the THC singular norm kernel, and thus
the resulting eigenvectors depend on its choice. Over-
all, it seems that the resulting eigenvectors have a large
scale, seemingly physical structure, and they result in
growth of the THC as expected. We feel that the ap-
proach used here of using the regular energy norm ker-
nel on the one hand, and the singular but regularized
THC norm kernel on the other, provides a useful in-
formation on the nonnormal THC dynamics. An alter-
native approach to dealing with this singularity, based
on using a different norm (L� rather than L2) is ex-
plored in Zanna and Tziperman (2008).

c. Quality of fit

Before studying the nonnormal dynamics of the lin-
ear propagator, we need to verify that our fit does not
violate any of our assumptions and that the results are
not overly sensitive to the different parameters used. In
general, we found the linear fit (2) to the GFDL CM2.1
to be relatively well behaved and to result in a physi-
cally consistent propagator for � � 2 yr (for N � 20, 25,
or 30 EOFs).

More specifically, a physical linear propagator of a
stable linear system needs to have eigenvalues with

TABLE 1. A summary of the different calculations used to linearly approximate the dynamics of the GFDL CM2.1 large-scale North
Atlantic temperature and salinity variability (y: yes, n: no). The last line shows the percentage of T, S variance explained by the number
of EOFs retained in each experiment.

Parameters

Case

1 2 3 4 5 6 7 8 9 10 11 12 13

No. of EOFs 25 25 25 20 30 25 25 25 20 30 25 25 30
Lead time �0 1 2 3 1 1 1 2 3 1 1 1 1 2
Weight by SD y y y y y n n n n n y n y
Weight by dv y y y y y y y y y y n n y
Var T, S explained 99 99 99 96 99 97 97 97 93 99 95 97 99
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magnitude smaller than one and with a positive real
part. Using N � 25, the smallest real part of the eigen-
values of B (�0) for �0 � 1 yr is 0.77. The lag time �0 �
2 yr still provides physical results, with smaller eigen-
values reflecting the further decay of the modes in the
additional year. With �0 � 3 yr, two of the eigenvalues
turn out to have very small negative real parts, which is
unacceptable and indicates that the fit has failed be-
cause the short decay time of some of the modes cannot
be resolved using a 3-yr lag time.

The quality of the fit can be further examined by
comparing the predictability using the fitted model for
different values of the lag time � to the expected pre-
dictability of a perfect linear model driven by white
noise, and to the predictability of an autoregressive
model O(1) (AR1). The latter is obtained by fitting a
diagonal B to (2). In addition, the dynamics should be
independent of the value of �0 used to obtain the propa-
gator (“tau test,” Penland 1996).

Consider now the prediction error covariance matrix
for a perfect model. Let P̂n be the actual state derived
from the GCM EOFs. The residuals of the prediction
are given by

r� � P̂n�� � B���P̂n, �7�

and the prediction error covariance can be shown (Pen-
land 1989) to be

C � 	rnrn
T
 � 	�P̂n�� � BP̂n��P̂n��

T � P̂n
TBT�


� CP � B	P̂nP̂n��
T 
 � 	P̂n�� P̂n

T
BT � BCPBT

� CP � B	P̂nP̂n
T
BT � B	P̂nP̂n

T
BT � BCPBT

� CP � BCPBT, �8�

where CP is the covariance matrix of the actual state
vector from the GCM and is given by

CP � 	P̂nP̂n
T
 � 	P̂n�� P̂n��

T 
. �9�

This “perfect model” prediction error covariance C
given in (8) is compared to the actual prediction error
covariance obtained by predicting the PC state vector
using the fitted linear propagator calculated from (2) as
well as to the prediction error covariance obtained from
the AR1 model. The measure to be compared may be
the trace of the error covariance matrix (Fig. 6b), or the
individual diagonal elements (Figs. 6c–i). The predic-
tion skill of our fitted linear model is generally better
than that of the AR1 model (which is a stricter test than
the commonly used comparison to persistence), al-
though not as good as a perfect linear model is expected
to be. We conclude that the fitted linear model is a
useful approximate representation of the large-scale T,

S dynamics in the GCM. This does not rule out a role
for nonlinear processes, but indicates that the linear
framework may, at least, be expected to be useful.

A similar derivation applies to the covariance of the
THC prediction residuals. Define the residuals as

r�
THC � THCn�� � RTHC

T BP̂n, �10�

their covariance, assuming a perfect linear model as
well as that the THC is perfectly predicted from the PC
amplitudes, THCn � RT

THCP̂n, is then

CTHC � 	�r�
THC�2
 � 	THCn

2
 � RTHC
T BCPBTRTHC.

�11�

Figure 6a shows the prediction error covariance for
the THC based on the fitted linear model, for an AR1
model, and for a perfect linear model (11). The fitted
linear model does better than the AR1 model for the
first 10 to perhaps even 20 yr, beyond which there is not
much of a skill. If we compare this result to Fig. 6b,
which shows the trace of the prediction error covari-
ance for the PCs, we see that the fitted linear model for
the PC components does better than the AR1 model
for a longer time. We note that the assumption of a
linear Markov model may not be a completely accurate
representation of the coupled model North Atlantic dy-
namics and can lead to some of the prediction errors
observed. Some PCs (e.g., PC1, Fig. 6c and upper panel
of Fig. 7) are better predicted than others (e.g., PC5,
Fig. 6g and third panel of Fig. 7). Note that the THC is
strongly correlated with PC5, which is not well pre-
dicted beyond 10 to 20 yr, like the THC itself. This may
be a good place to note that PC1 and PC2 seem signifi-
cantly correlated at a nonzero lag, which may be a re-
flection of the oscillation mechanism and could be fur-
ther explored, as done, for example, in Fig. 5 of Haw-
kins and Sutton (2007).

d. Sensitivity

It is convenient to examine the sensitivity of our re-
sults to the various assumptions made by examining, for
each of the experiments summarized in Table 1, the
maximum amplification, �, of ||P(�)||2X as function of �
calculated using (4). These maximum amplification
curves are shown in Figs. 8 and 9 for the energy norm
and the THC norm respectively.

Figure 9 shows that the maximum THC amplification
occurs between 5 and 7 yr. This result seems robust to
an increase in the number of EOFs N (e.g., cf. runs 4, 1,
and 5 or run 1 with run 13 in Fig. 9). Similar results are
obtained if we fix both the number of EOFs and the
weighting and vary the lag time �0 (e.g., cf. runs 3, 2, and
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1 in Fig. 9). Some dependence of the time of maximum
amplification on the weighting Wi is also seen on this
plot (see in particular run 12, which uses no weighting
by SD or grid volume).

The maximum amplification curves using the energy
norm, representing the predictability of the PC compo-
nents rather than of the THC, are shown in Fig. 8.
These curves show again a rapid increase in maximum
amplification during the first 10 yr or so. Beyond this
point, there is a wide spread of the curves, depending
mostly on the weighting strategy used.

The smallest amplification, which occurs about 7 yr
after the initial conditions, occurs when no weighting is
used or when the weighting is based only on the grid
volume or only on the SD of the temperature and sa-
linity variability, but not on both. Using a weighting
factor that depends on both grid element volume and
SD results in the largest transient amplification. The
importance of weighting by the standard deviation was
also pointed out in the context of ENSO Moore and
Kleeman (2001). In addition, the results are sensitive to

the number of EOFs used for the reduced state recon-
struction. Using 30 EOFs results in the largest amplifi-
cation, while 20 and 25 EOFs results in significantly less
amplification. Unfortunately, we cannot use a larger
number of EOFs due to the short time series available.
With 1500 yearly snapshots, we can produce that many
equations for the coefficients of the linear model. Using
30 EOFs results in a linear propagator matrix B whose
dimensions are 30  30, implying 900 elements that
need to be solved using these 1500 equations. The re-
sulting conditioning number for the coefficients of B is
reasonable (less than 100), but a further increase in the
number of EOFs will quickly result in more unknowns
than equations and therefore in an ill-posed problem
for the coefficients of the propagator. It may be pos-
sible to use the monthly model output (after removing
monthly climatology) rather than the yearly averaged
fields. But, while this will increase the number of equa-
tions, it may not add independent information for con-
straining the propagator on decadal time scales, in
which we are interested. In addition, using monthly

FIG. 6. Quality-of-fit test for run 1 showing the error covariance matrices as a function of forecast lead time for
a perfect linear model [Eq. (8), dotted], for an AR1 model (dashed) and for the fitted linear model (solid). (a) The
THC error covariance; (b) the trace of the error covariance matrix; (c)–(i) first few diagonal elements of the error
covariance matrix, corresponding to PCs 1 to 7.
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data may require making the propagator monthly as
well to represent the additional seasonally dependent
anomaly dynamics, and for these reasons we have cho-
sen not to explore this direction.

There is also some sensitivity to the lag time �0 used
in (2) to calculate the fitted propagator B (�) (e.g., cf.
curves corresponding to runs 1–3 in Fig. 8). For large
enough lead time � in Fig. 8 the maximum amplification
decays to zero, as expected. The eventual decay time
scale of the temperature and salinity anomalies and
then of the THC is influenced by the decay time scale of
the slow decaying modes found to be on the order of
1200 yr for the slowest mode). When using a lag time of
�0 � 1 or 2 yr to evaluate the propagator [Eq. (2)], it
seems likely that such a long time scale for the slow
decaying eigenmodes would not be well resolved, and
we therefore consider this part of the fit less reliable. As

a result of these sensitivities, in particular to the num-
ber of EOFs used, the amplification factors found using
the energy norm should be viewed as a lower bound on
the expected nonnormal amplification rather than a
precise estimate. Also, as mentioned above and dis-
cussed in Farrell and Ioannou (2001), using the EOFs
for the reduced space reconstruction is not optimal and
may again result in an underestimate of the amplifica-
tion, although some of this problem may have been
corrected by the use of the normalized temperature and
salinity as discussed above, following Moore and Klee-
man (2001).

Some of the variations between the different sensi-
tivity runs may be rationalized as follows: The largest
growth in the energy norm is obtained for the largest
number of retained EOFs and when the EOFs are nor-
malized by the standard deviation. This underscores the

FIG. 7. The 1500-yr time series of different nondimensional principal components from the GCM, together
with short segments trying to predict each of them using our linearized model: (top) PC 1, (second) PC 2,
and (third) PC 5; the segments are plotted every 10 yr and extend for 150 yr each. (bottom) A 500-yr portion
of the THC time series (Sv) with segments plotted every 10 yr and extend for 10 yr each.
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importance of the stochastic forcing by low-variance,
unresolved nonlinearities that are weighted up by the
normalization to the evolution of the THC. Also, the
most variation among the runs with �0 � 1, 2, and 3 yr
is found when the EOFs are normalized by the standard
deviation. This is evidence that these unresolved non-
linearities are the reason for failing the � test. In con-
trast, the maximum amplification curves for runs 6–10
(dashed curves in Fig. 8), for which no normalization by
the SD is done and which therefore does not include
the low-variance unresolved nonlinearities, pass the �
test (i.e., similarity of results for different values of �0)
reasonably well in the energy norm. Thus, it seems that
the larger resolved scales behave more linearly than do
the small unresolved scales. When the PCs are normal-
ized, the small scales dominate the growth, and this
growth decreases with �0 (cf. runs 5 and 13 in Figs. 8 and
9). The fewer EOFs are retained, the more signal is
treated as unpredictable stochasticity. The linear model
parameterizes nonlinearities as a linear part plus a sto-
chastic part. When the fast nonlinear signals are in-
cluded in the mix of EOFs and �0 is small enough to
resolve their dynamics, they show up as added growth,
essentially by putting a best-fit linear model to the non-
linear part.

One important sensitivity, which is not explored
here, has to do with the model domain, which was
somewhat arbitrarily chosen as small as possible here,
to minimize the problem size and enable the calculation
of the EOFs. The results may be affected by the choice
of the domain. For example, if the domain was to in-
clude the Arctic Ocean, the EOFs and the nonnormal
growth effects may have been different, given that sev-
eral GCMs have found significant variability in the Arc-

tic possibly affecting the THC (e.g., Jungclaus et al.
2005).

We conclude that the fitted linear dynamics and de-
duced transient amplification depend on some of the
choices we make during the fit. The interpretation be-
low would need to carefully consider these sensitivities
to some of the fit parameters before proceeding with a
physical interpretation and conclusions. We will see
that some of the sensitivities indicate possible limits to
our analysis due to the available model output and
other factors. However, other sensitivities, especially to
the weighting used, reflect actual physical effects that
should be expected, rather than a problem with our fit.

3. Results

a. Maximum amplification curves

As seen above, the maximum amplification using the
energy norm occurs after 7 to 50 yr, depending on the
assumptions used during the construction of the linear
fit (Fig. 8). The nonnormal amplification of initial tem-
perature and salinity anomalies under the energy norm
is quite impressive. Figure 8 shows an amplification of
initial anomalies in the PC space by a factor of 5–10
within 8–40 yr. All curves show a rapid amplification
during the first 10 yr followed by a wide spread of be-
havior of the amplification curves beyond this time
scale. The amplification curves from all experiments
using the THC norm kernel (Fig. 9) have a more uni-
form overall appearance. All such amplification curves
peak after about 5–8 yr and then decay fairly rapidly.

The rapid amplification during the first decade seen
in both the THC norm and the energy norm indicates
that temperature, salinity, and THC anomalies are rap-
idly amplified during this initial period. From a predict-

FIG. 8. Maximum amplification �, as calculated from Eq. (4), as
function of � for all runs listed in Table 1 using the energy norm.

FIG. 9. As in Fig. 8, but for all runs using the THC norm kernel.
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ability point of view, this means that errors in the initial
conditions, which partially project on the most rapidly
growing modes, are expected to rapidly grow as well
during these first 10 yr, implying that much of the pre-
dictability skill is expected to be lost over this time
interval. Even though the amplification factors for the
THC and energy norm kernel (Fig. 8) are more or less
sensitive to the different parameters used, it is impor-
tant to note that all curves show a rapid growth phase
during the first 10 yr. It seems, therefore, that the rapid
growth of anomalies and expected loss of predictability
of the THC, temperature, and salinity on a time scale of
about 8 yr is a robust result of this study.

The actual amplification values for the THC norm
kernel are large (amplification factor of a few hun-
dreds). In the simpler model studies of nonnormal THC
amplification (Tziperman and Ioannou 2002; Zanna
and Tziperman 2005), the amplification of THC was
found to be infinite as the initial THC anomaly induced
by the optimal initial conditions for the temperature
and salinity typically vanished. This is the result of a
cancellation of the initial temperature and salinity
anomalies and occurs mathematically due to the singu-
larity of the THC norm kernel (Tziperman and Ioan-
nou 2002). The large THC amplification seen in this
study is due to the same effect.

b. Predictability

The fitted linear model is able to successfully predict
the THC up to about 7 yr. Predictability of both tem-
perature and salinity and of the THC seems limited by
the initial 5–7-yr-long period of fast amplification seen
in Figs. 8 and 9. These figures show that an optimal
initial perturbation will be amplified by a significant
factor within a period of 5–7 yr. Thus, errors in the
initial state that project on the optimal initial perturba-
tions may result in a deviation of the predicted fields
from their true evolution within about 5–7 yr. While
there is some predictability on a short time scale of a
few years, the linear model is unable to predict the
longer-term oscillations corresponding to the spectral
peak of the THC index at 200–300 yr. Interestingly, the
linear model does well predicting the first and even the
second EOFs (Figs. 6c,d and 7a,b), which have longer
time scales. But this does not translate into a corre-
sponding skill in predicting the slow component of the
THC oscillations (as shown by the comparison to the
AR1 model in Fig. 6a). The reason for this short pre-
dictability time may very well be the nonnormal ampli-
fication of initial anomalies to the temperature, salinity,
and hence THC. We conclude that the predictability
of THC anomalies seems to be limited to the order of
5–7 yr.

c. Optimal initial conditions and evolution to
maximally amplified state in reduced space

The optimal initial conditions and their evolution in
PC space for the energy norm and the THC norm are
plotted in Figs. 10a and10c. The corresponding THC
anomaly is shown in Figs. 10b and 10d. Under the en-
ergy norm, PC 2 is significantly amplified, as are some
other PC amplitudes. The THC norm, however, leads
to the growth of PCs 2, 5, 8, and 9, some of which are
strongly correlated with the THC index as seen in Fig.
5. As expected, the initial THC anomaly vanished un-
der the THC norm kernel (Fig. 10d), but not under the
energy norm (Fig. 10b).

Under the THC norm kernel, the optimal initial con-
ditions lead to a decaying oscillation of the THC (Fig.

FIG. 10. Evolution in PC space of the fitted linear model from
optimal initial conditions and the corresponding THC anomaly
for (a), (b) the energy norm and (c), (d) the THC norm. Nondi-
mensional units.
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10d). The maximum growth seems to occur at the first
maximum of the oscillation. One wonders if the non-
normal analysis simply calculates initial conditions that
excite this oscillation and that nonnormal effects do not
actually play a role here. However, examining the pro-
jection of the optimal initial conditions on the eigen-
modes of the propagator B we find that many more
than just a single oscillatory mode are involved in the
optimal initial conditions, indicating that nonnormal ef-
fects do play a role.

The optimal initial conditions under the energy and
THC norms project differently on the PC state vector
and therefore involve different spatial structures of the
temperature and salinity initial conditions as dictated
by the corresponding EOFs. The evolution from the
optimal initial conditions seen in the Fig. 10 are very
different again, reflecting a possibly different amplifi-
cation dynamics. That is, different physical processes
are responsible for the growth in these different cases.
This is consistent with the studies using simpler models,
where the physical processes may be more clearly elu-
cidated (e.g., Zanna and Tziperman 2005). In these sim-
pler studies one can attribute the growth to the advec-
tion of temperature or salinity anomalies by the mean
circulation or the advection of the mean temperature or
salinity by the anomalous circulation, etc. Our current
approach, constrained by the GCM complexity to using
a reduced state vector, does not allow us to point to
such specific physical processes.

d. Optimal initial conditions and maximally
amplified states in physical space

The amplification of the optimal initial conditions
when using the energy norm involves some significant
redistribution of temperature and salinity anomalies in
space, as can be seen by examining the evolution from
the optimal initial conditions to the state at time of
maximum amplification (Fig. 11). The plotted density
anomalies �� are calculated from the temperature and
salinity anomalies T�, S� corresponding to the optimal
initial conditions or amplified state using the long-term
average temperature and salinity in the GCM solution,
T0, S0, using the nonlinear equation of state such that
�� � �(T0 � T�, S0 � S�) � �(T0, S0). The initial state
is very much surface trapped, while the evolved state,
already at year 6 or 8, involves temperature and salinity
anomalies that are spread over a wider depth range.
This provides some physical insight regarding the
mechanism of amplification and decay of the optimal
perturbations. Note that when weighting by neither
grid volume nor SD (runs 6–12, Fig. 8), the perturba-
tions decay fast, after about 20 yr. With weighting by
both grid volume and SD [Eq. (1), runs 1–5 and 13, Fig.

8], the amplification takes a longer time and the decay
is much slower. The reason for this is rather simple.
When the weighting includes these two factors, it tends
to emphasize the deep ocean. This means that the op-
timization is required to produce initial conditions that
lead to a growth of temperature and salinity anomalies
in the deep ocean. Such anomalies take a bit longer to
develop, hence the slower growth time to maximum
amplification. The deep anomalies take, of course,
much longer time to dissipate than surface anomalies,
hence the much longer decay time seen for the runs
with weighting by both SD and grid volume. The math-
ematical machinery of the transient amplification
clearly results in physically sensible solutions that are
consistent with our intuition of the ocean dynamics,
providing another indication that the results are likely
to be robust in spite of our many simplifying assump-
tions.

It is interesting in this context that the overall struc-
ture of the amplification of the THC anomalies as a
function of time is not as sensitive to the weighting and
tends to decay after 10–20 yr for all weighting options
used. This suggests, perhaps, that the THC mostly de-
pends on the near-surface (upper 1 km) temperature
and salinity anomalies and is therefore not affected by
the long-lived deep temperature and salinity anomalies
discussed above.

In the horizontal plane, the optimal initial conditions
show a warm and salty anomaly in the Labrador Sea
that results in a dense anomaly there. This anomaly
possibly results from some role played by the Labrador
Sea deep convection and its known effect on North
Atlantic Deep Water and the amplitude of the THC. In
the amplified state, after 27 yr (Fig. 11) the anomaly in
the Labrador sea vanishes and appears at 45°N in the
west Atlantic. It is also interesting to see the strong
density anomaly that develops north of 60°N at all
depth levels, driven mostly by the salinity anomaly.
Overall the structure of the optimal initial conditions is
very different from that of the maximum amplification
state, indicating some complex dynamics that does not
involve growth of anomalies in place but rather some
advection and nonlocalized growth.

Although the maximum amplification of the energy
norm occurs after 27 yr, the temperature and salinity
evolutions show a clear development of strong pertur-
bations already by year 6, consistent again with the
predictability time scale for the THC. It seems that the
time scale for nonnormal growth in this model is quite
robustly 6–8 yr regardless of the norm kernel used.

The temperature anomaly for the optimal initial con-
ditions and the maximally amplified state after 6 yr
under the THC norm (Fig. 12) are both states charac-
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FIG. 11. Evolution from optimal initial conditions using the energy norm kernel leading to a maximum amplification after 27 yr. Each
row corresponds to a different time in years as noted in the panel titles. From left to right in each row: temperature at 45-m depth;
salinity at 45 m; vertical cross sections of the zonally averaged temperature, salinity, and density; and surface dynamic topography
relative to 1364 m. Nondimensional units; domain boundaries as in Fig. 3.

600 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 38

Fig 11 live 4/C



FIG. 12. Evolution from optimal initial conditions, as in Fig. 11, except using the THC norm kernel leading to a maximum THC
amplification at 6 yr.
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terized by a dipole structure between 40° and 60°N,
although the sign of the anomalies in the dipole re-
verses during the time evolution. The salinity shows a
near-surface signal in the optimal initial conditions that
develops into a significant anomaly in the amplified
state, although it seems that the density anomaly in the
amplified state, ultimately responsible for determining
the velocity field and therefore the THC amplitude, is
dominated by the temperature anomaly rather than the
salinity.

The physics of THC oscillations in some GCMs has
been shown to involve gyre changes as well (e.g., Del-
worth et al. 1993), although these gyre changes may not
be essential to the very existence of these oscillations
(Griffies and Tziperman 1995). Understanding the
THC in the currently analyzed model to the degree
analyzed in the above papers or by Hawkins and Sutton
(2007) is not within the scope of this paper, but we do
want to gain some insight into the growth mechanism.
Following Griffies and Bryan (1997) we use dynamic
topography in order to identify some aspects of the
dynamics (rightmost panels in Figs. 11 and 12). The
optimal initial conditions under both norms show a
weak dynamic topography signal off Newfoundland.
This later develops into a rather different yet strong
signal for the two different norms (cf. year 10 in Figs. 11
and 12). The gyre signal decays before the maximum
amplification time of 27 yr in the energy norm, but
seems to be getting stronger after the maximum ampli-
fication time of 6 yr in the THC norm. These observa-
tions raise the possibility that the gyre is involved in the
growth as well as decay of the perturbations. The dif-
ferent evolution in the horizontal plane under the two
norms again suggests different physical processes in-
volved. Further understanding of the role of the hori-
zontal gyres would need to await a GCM-based analysis
rather than the reduced space description used here.

e. Discussion

One of the more interesting insights here has to do
with the difference from previous studies using simpler
models. As explained above, a singular THC norm ker-
nel led to optimal initial conditions that correspond to
a vanishing THC index, as is the case here to a good
approximation. In those simpler, zonally averaged
models (Tziperman and Ioannou 2002; Zanna and
Tziperman 2005), the THC was related to the meridi-
onal density gradients in some very simple way, follow-
ing the usual Stommel (1961) formulation. This means
that the density gradients also vanish or satisfy some
simple condition that leads to a vanishing initial THC.
However, in the coupled GCM analyzed here, the THC
is clearly not that simply related to the density field, as

the optimal initial state for the density, shown in Figs.
11 and 12, is characterized by nontrivial density gradi-
ents. That the initial THC anomaly corresponding to
the optimal initial conditions for the temperature and
salinity is still very small, as implied from the large
amplification factors, is seen in Fig. 9.

As in simpler models, our analysis is able to find
initial conditions for the temperature and salinity
anomaly for which the THC nearly vanishes, but which
lead to a growth at later times due to the different
evolutions of the temperature and salinity anomalies. It
is encouraging to see the nonnormal amplification op-
erating both in the GCM and in the simpler models.
However, the above description of the optimal initial
conditions and maximum amplified state is unsatisfac-
tory, as we cannot explain which physical process act to
create the amplification as was possible using the sim-
pler models. One may hope to be able to repeat the
analysis here using the actual linearized GCM equa-
tions, which will enable a more explicit and satisfactory
physical interpretation.

One thing that we can conclude from our analysis
does shed some new light on the dynamics of THC
variability. The small amplitude of present-day THC
variability in GCMs seems to suggest that the dynamics
of this variability are mostly linear. Griffies and Tziper-
man (1995) and others suggested that the THC vari-
ability may be described as the excitation of a damped
oscillatory mode of the THC by stochastic atmospheric
forcing. Our reduced space model does, indeed, have
several damped and several damped oscillatory modes.
The typical decay and oscillation time scales vary from
decades to hundreds of years. However, we find here
that the dynamics of transient amplification of the THC
involve the interaction of more than a single mode
(such interaction is necessary for transient amplifica-
tion to occur). Thus the picture of how THC variability
is excited by the atmosphere may be more complex
than previously thought.

4. Conclusions

We investigated the amplification of temperature, sa-
linity, and THC anomalies, in the GFDL coupled at-
mosphere–ocean general circulation model CM2.1, due
to nonnormal dynamics. The analysis was done by first
constructing a reduced space based on EOF decompo-
sition of temperature and salinity anomalies in the
North Atlantic. Instead of describing the evolution of
the three-dimensional temperature and salinity fields,
the problem was reduced to the evolution of the am-
plitudes of some 25 principal components (EOF ampli-
tudes) and then to the fitting of a linear model (propa-
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gator matrix) to the evolution of these principal com-
ponents.

By analyzing the resulting linear model, we found
that the nonnormal dynamics can lead to a significant
growth of temperature, salinity, and THC anomalies
with a typical growth time of 5–10 yr. This result leads
to a possible order of magnitude estimate of predict-
ability time for the THC in the model. Our analysis was
limited by the length of the control integration used to
calculate the fitted linearized model (2000 yr). It seems
that a longer integration should allow the use of more
EOF amplitudes in the reduced state reconstruction,
and our results indicate that this will likely result in
even stronger transient amplification. We therefore
view our results as a lower bound on the nonnormality
of THC dynamics in this GCM. This seems to suggest
that such nonnormal effects should be seriously consid-
ered if the predictability of the THC is to be quantita-
tively evaluated from models or observations. We
should mention that the results found in this work
might be different if we were to consider the entire
Atlantic basin instead of only the North Atlantic, as
suggested by some numerical GCM experiments.

The suggested importance of nonnormal THC dy-
namics to THC predictability means that one may need
to use ensemble runs for THC prediction, following the
usual practice in numerical weather prediction. These
predictions would need to be initialized by the singular
vectors of the linearized dynamics in order to obtain a
reliable estimate of the prediction uncertainty. Owing
to the nonnormality of the linearized dynamics, the
structure of the initial conditions will influence the am-
plification of the THC after a given amount of time and
one cannot arbitrarily start from some state of the
ocean–atmosphere and expect to estimate reliable pre-
dictability limits.

Griffies and Tziperman (1995) and others suggested
that the present-day variability of the THC may be
viewed as the excitation of a damped oscillatory mode
of the ocean by atmospheric stochastic forcing. The re-
sults of this work seem to put this proposal in a differ-
ent perspective. While stochastic atmospheric excita-
tion is still likely to be important, it seems that, due to
the nonnormality of the linearized dynamics, the inter-
action of several nonorthogonal ocean modes—rather
than a single damped oscillatory mode—may be playing
a very important role in amplifying the response to the
atmospheric stochastic forcing. While it is unfortunate
that this picture is not as simple as that of a single mode
excited by the atmosphere, this does open up the pos-
sibility to explore a richer dynamics using both models
and observations.

The need for a long control integration for evaluating

the linear fit and nonnormal effects makes our results
tentative. It will be useful to repeat this analysis by
using a direct representation of the linearized dynamics
of the GCM, which implies using both the model and its
adjoint. This will also enable the elucidation of the pre-
cise physical mechanisms of the transient growth, some-
thing that was not possible in the approach taken here.
Such a fuller GCM-based analysis is a technically com-
plex task, but one that is not completely out of reach in
the next few years. It is also important to keep in mind
that nonlinear processes that we have parameterized as
a stochastic process may be playing an important role in
the THC oscillations in the GCM, and further analysis
is needed to quantify these effects.

We showed that the optimal initial conditions made
physical sense (e.g., in terms of their dependence on the
weighting by grid element volume and standard devia-
tion of the variability used for nondimensionalizing the
temperature and salinity). This suggests that, even be-
fore using a full GCM and its adjoint to repeat the
analysis done here, an intermediate future step could
perhaps be to use the results of the present analysis to
initialize a GCM. The GCM could then be used to in-
vestigate the physical growth mechanisms and the pre-
dictability implications of the nonnormal dynamics
found here. It is common practice to evaluate THC
predictability by running ensemble prediction experi-
ments started by perturbing only the atmospheric state,
using identical ocean states (e.g., Griffies and Bryan
1997; Collins et al. 2006). This has the advantage of
evaluating, in a sense, the “best case scenario” predict-
ability. Instead, perturbing the initial ocean state using
the methodology presented here may provide a stricter,
hence perhaps more realistic, estimate of the predict-
ability.
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