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2.3 A heuristic derivation of a delayed oscillator equation
Let us consider first a heuristic derivation of an equation for the sea surface temperature in the East Pacific,
which will be followed by a more rigorous derivation in the following sections. Assume that the East Pacific SST
affects the atmospheric heating and thus the central Pacific wind speed. The resulting wind stress, in turn, excites
equatorial Kelvin and Rossby ocean waves. These waves affect the East Pacific thermocline depth and hence the
East Pacific equatorial SST, and the whole feedback loop may be quantified as follows. Let ⌧K and ⌧R be the basin
crossing times of equatorial Kelvin and Rossby waves, correspondingly. Now, a positive central Pacific equatorial
thermocline depth anomaly heq(xc) at time t � 1

2⌧K excites an eastward propagating downwelling Kelvin wave
at the central Pacific that arrives after about 1

2⌧K ⇡ 1 month to the eastern Pacific and deepens the thermocline
there. Similarly, a negative off-equatorial depth anomaly (that is, a shallowing signal of the thermocline) in the
central Pacific hoff�eq(xc) at a time t � [

1
2⌧R + ⌧K ] ( 12⌧R + ⌧K ⇡ 6 months) excites a westward propagating

Rossby wave at the central Pacific that is reflected off the western boundary as an equatorial Kelvin waves and
eventually arrives to the eastern Pacific at time t, shallows the thermocline there and causes cooling of the SST.
We add a nonlinear damping term that can stabilize the system, and write an equation for the eastern Pacific
temperature that includes the Kelvin wave, Rossby wave and local damping terms as follows

dT (t)

dt
= âheq(xc, t�

1

2

⌧K) +

ˆbhoff�eq(xc, t� [

1

2

⌧R + ⌧K ])� cT (t)3

where â,ˆb, c are positive constants. Note that we assume that once the thermocline deepening or shallowing signal
reaches the East Pacific it immediately affects the SST there. This actually neglects the SST adjustment time and
we will include this time scale in the more rigorous derivation below. Note that because the mean thermocline
depth is shallower in the East Pacific than in the West Pacific, a deepening or rise of the thermocline in the
East Pacific is able to affect the mixing between cool sub-thermocline waters and surface waters, and thus affect
the SST; in the West Pacific, the thermocline is deeper, so that even if it rises somewhat, it is still too deep to
affect the SST. Now, the thermocline depth in the equatorial central Pacific is a response to the equatorial central
Pacific wind. The off-equatorial thermocline depth in the central Pacific will be shown below to be a response to
the wind curl off the equator, which will be shown to be negatively correlated with the wind stress at the equator.
We can therefore write the above equation as

dT (t)

dt
= ā⌧eq(xc, t�
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2

⌧K)� ¯b⌧eq(xc, t� [

1

2

⌧R + ⌧K ])� cT (t)3

where ā,¯b are some new proportionality constants. Next, the wind stress in the Central Pacific is a pretty much
simultaneous response to the East Pacific SST, so that we can actually write

dT (t)

dt
= aT (t� 1

2

⌧K)� bT (t� [

1

2

⌧R + ⌧K ])� cT (t)3 (9)

where again the constants of proportionality a, b, c are all positive. The first term in this equation provides a
positive feedback due to the Kelvin wave, with a short delay of about one month; the second term represents the
Rossby wave with a longer-delayed negative feedback, and the last term is a nonlinear damping term. This last
equation (9) is the desired delayed oscillator equation for El Nino.
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Figure 21: A schematic picture of the delayed oscillator mechanism

Based on the delayed oscillator model, the El Nino cycle may be described as follows (Fig. 21). A wind
weakening (1 in Fig. 21)) creates an equatorial warm (downwelling) Kelvin wave (2) that travels to the East
Pacific within 1-2 months, where the thermocline deepening induces an SST heating and starts an El Niño
event. The SST heating further weakens the central Pacific winds and the event is therefore amplified by ocean-
atmosphere instability. The original wind weakening also creates off-equatorial cold (upwelling) Rossby waves
(due to the induced changes to the wind curl, as will be shown below) (3) that are reflected from the western
boundary as cold Kelvin waves (4), arrive at the eastern boundary about 6 months later and terminate the event.

Note that we ignored reflection at the eastern boundary. Much of the energy of an eastward traveling equatorial
Kelvin wave incident on the eastern boundary will be reflected as poleward traveling coastal Kelvin waves and
will escape from the equatorial domain. In contrast, westward traveling Rossby waves incidenting on the western
boundary are reflected as equatorward traveling coastal Kelvin waves. These, in turn, are reflected eastward at
the equator as equatorial Kelvin waves, hence creating an efficient reflection process in which the wave energy
ermains in the equatorial strip.

2.3.1 Analysis of the delayed oscillator equation

Battisti [2] and Suarez and Schopf [56] (see also Dijkstra [9] section 7.5.4.2) have used a slightly different delayed
oscillator equation, basically ignoring the shorter Kelvin wave delay, which in a nondimensional form is

dT (t)

dt
= T (t)� ↵T (t� �T )� T 3

(t). (10)

Note first that a delayed equation formally has an infinite number of degrees of freedom (it requires an infinite
number of initial conditions corresponding to the times from t = ��T to t = 0, and is thus equivalent to an
infinite number of ODEs). So formally this is not a “simple” equation. Only a few of these degrees of freedom
are actually activated in reasonable parameter regimes (as measured by the dimension of the attractor in phase
space). The various delayed oscillator equations result in El-Nino like oscillations whose periods may be tuned,
by changing the coefficients, to about 4 years (Fig. 22).

Let us analyze the linearized stability behavior of 10. The equilibria of the above delayed oscillator equation
are the zero solution, and then one warm solution and one cold solution

¯T = 0,±
p
1� ↵.

Considering a perturbation about these steady states by setting T =

¯T +

˜T and linearizing, we have

d ˜T (t)

dt
=

˜T (t)(1� 3

¯T 2
)� ↵ ˜T (t� �T ).
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Figure 22: Results of the delayed oscillator of equation 10, from [56].
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Letting ˜T = e�t where � = �r + i�i, results in the linearized eigenvalue problem

� = 1� 3

¯T 2 � ↵e���
T

(note that this is a complex transcendental equation, with the real and imaginary parts of � satisfying equations
that involve sine and cosine functions) which can be solved for the frequency � as function of the two nondimen-
sional parameters ↵ and �T . It turns out that the zero solution is unstable, with a non oscillatory exponential
growth. The two other (warm and cold) equilibria may become oscillatory unstable, as shown in Fig. 23.

Figure 23: Stability and period of the delayed oscillator of equation 10; Suarez & Schopf [56].

The behavior of the unstable modes is not completely simple nor intuitive: the unstable modes appear for
larger values of the negative feedback (Rossby term) ↵, and for larger values of the delay time �... The period of
the oscillatory solutions in the delay model is shown by the light solid lines in Fig. 23, while the dashed contours
give the period in multiples of the delay time. The period of the unstable modes is in the range of up to 2-3 times
the Rossby delay time. Taking that delay time to be some 8 months, we get a 16-24 months period, which is
significantly smaller than the observed period of 48 months. Clearly the period is not a well determined part of
the picture, as it is not a robust outcome of this model, and has reasonable values for a fairly small range of model
parameters. Other studies [36] also found that the period of ENSO may not be well determined by linearized
theories, and may be due to some not understood nonlinear effects.

24



While the delayed oscillator model above is useful in providing us with a feeling of what the mechanism of
ENSO is, it actually represents only a specific limit of the fuller dynamics. It assumes that once the waves
arrive to the East Pacific, they immediately influence the SST. In reality, there is another time scale (delay) that
accounts for the time it takes the sub-surface thermocline depth anomalies in the eastern Pacific to affect the
eastern Pacific SST. To introduce this and other processes, it is useful to go through a more rigorous derivation,
starting from the � plane equations.

2.4 Fast SST, fast wave and mixed mode ENSO regimes
2.4.1 Ocean dynamics

Let us represent the equatorial dynamics using the two-strip approximation of Jin [27, 28] with an equatorial
strip and an off-equatorial strip. The equations for the ocean wave dynamics for each strip are then solved
by integrating them along wave characteristics following Galanti and Tziperman [12]. Further simplification is
achieved by neglecting the meridional damping (�"mv) and the meridional wind stress (⌧y/⇢H) terms. Yet
another simplification is obtained by taking the long wave approximation, which results in dropping the time
derivative from the y momentum equation. This occurs because the meridional velocity v scales like Co

�
L while

the zonal velocity scales like Co, where Co,�, L are the gravity wave speed, meridional scale (equatorial Rossby
radius) and the long zonal scale of the wave, respectively, and because �

L ⌧ 1. The resulting set of equations is

@u

@t
� �yv + g0

@h

@x
= �"mu+

⌧x
⇢H

,

�yu+ g0
@h

@y
= 0,

@h

@t
+H


@u
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@y

�
= �"mh, (11)

where "m is the oceanic damping coefficient. Eliminating u and v from (11), a single equation for h may be
obtained,

�y2(@t + "m)h+

g0H

�


2

y
@y � @yy

�
(@t + "m)h� g0H@xh+

1

⇢
(⌧x � y@y⌧x) = 0. (12)

Next, evaluate this equation at the equator (y = 0), and at a zonal band off the equator (y = yn). This “two-strip”
approximation assumes that the ocean dynamics in the equatorial region is well represented by a combination of
equatorial Kelvin waves and off-equatorial long Rossby waves, both well represented by the two strips at latitudes
y = 0 and y = yn.

A Kelvin wave solution of the form

h(x, y, t) = he(x, t) exp(�
�

2Co
y2), (13)

satisfies equation (12), and therefore, taking advantage of the known meridional structure, we can get an equation
for a forced and dissipated Kelvin wave at y = 0 of the form

(@t + Co@x + "m)he =
1

Co⇢
⌧ex, (14)

where ⌧ex is the wind stress at the equator and C0 =

p
g0H. The rhs forcing for the Kelvin waves is proportional

to the wind stress, and we shall see below that this implies that a weakening of the easterlies results in the
excitation of warm Kelvin waves. Next, integrate (14) over the trajectory of an eastward propagating Kelvin
wave that starts from the western boundary at a time t� ⌧2 and reaches the eastern boundary at a time t, where
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⌧2 = L/Co is the Kelvin crossing time of a basin of length L. The wave is assumed to be excited by the wind
stress in the central part of the basin, from x = xW + .25L to x = xW + .75L. The wind stress is evaluated at
the middle of the basin, x = xw + L/2, at a time t � ⌧2/2, which is the time when the Kelvin wave crosses the
middle of the basin. We denote the equatorial thermocline depth anomaly at the western (eastern) edge of the
basin by heW (heE), and the solution to (14) obtained by integrating along characteristics is then

heE(t) = heW (t� ⌧2)e
�"

m

⌧2
+

1

⇢Co
dt⌧2⌧ex(

L

2

, t� ⌧2
2

)e�"
m

⌧2
2 , (15)

where dt = 0.5 is the fraction of crossing time during which the wind stress affects the oceanic waves.
Next, we wish to solve (12) at the off-equatorial band (y = yn), in order to include the Rossby wave dynamics

in the model. It can be shown that at yn � 2Lo (where Lo is the oceanic Rossby radius of deformation) the second
term in (12) is negligible [27, 28], resulting in the off-equatorial equation for a forced and dissipated Rossby wave

(@t �
C2

0

�y2n
@x + "m)hn =

1

�⇢


@

@y
(

⌧x
y
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n

�
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Note that the rhs forcing for the Rossby waves is the curl of the wind this time, and we shall use this below to
show that a weakening of the easterlies results in the excitation of cold Rossby waves. Solving (16) again along
characteristics, for a Rossby wave that starts from the eastern boundary at time t � ⌧1, where ⌧1 = Ly2n�/c

2 is
the Rossby crossing time of a basin length L, at a latitude yn, we find
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The eastern and western boundary conditions represent the reflection of Kelvin waves into Rossby waves at the
east, and the reflection of Rossby waves into Kelvin waves at the west. In terms of the thermocline depth at the
boundaries, these boundary conditions are

heW = rWhnW , hnE = rEheE , (18)

where rW and rE are reflection coefficients at the western and eastern boundaries, respectively. Using the above
boundary conditions, (15) and (17) may be joined to give an expression for the equatorial thermocline depth
anomaly at the eastern Pacific,

heE(t) = rW rEheE(t� ⌧1 � ⌧2)e
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This form of equation manifests clearly the delayed dependence of heE(t) on the wave dynamics. The first term
represents the effects of a thermocline depth anomaly at the eastern boundary at a time t�⌧1�⌧2. This anomaly
is reflected poleward and then propagates as a free Rossby wave. This wave in turn, is reflected at the western
boundary as a Kelvin wave at time t� ⌧2 and arrived at the eastern Pacific at time t. The second term represents
the Rossby waves excited at a time t � ⌧2 � ⌧1/2 in the central Pacific, and the third represents the Kelvin
waves excited at a time t � ⌧2/2. To calculate the forced RW terms explicitly, we need to discuss the SST and
atmospheric dynamics now.
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2.4.2 SST response to thermocline movements

The equation describing SST changes at the equator is based on that of Zebiak and Cane [66]. Following Jin
[27, 28], we only keep the time rate of change, the advection by the mean upwelling w @T

@z , and the damping terms,

@tT = �"TT � �
w

H1
(T � Tsub(h)), (20)

where "T is a thermal damping coefficient, Tsub(h) is the temperature anomaly at some specified constant depth
H1 (not to be confused with other H1s appearing above...), and is a function of the thermocline depth anomaly
h, typically taken as some hyperbolic tangent [66]. The parameter 0 < � < 1 relates the temperature anomalies
entrained into the surface layer to the non local deeper temperature variations due to Tsub(h).

2.4.3 Wind response to SST forcing

Based on the solution to Gill’s model above (8), we take the wind stress to be a function of the SST at the equator
(Te) which decays in latitude according to the atmospheric Rossby radius of deformation La

⌧x(x, y, t) = µA(Te, x) exp(�
y2↵

2L2
o

). (21)

In this last formula, ↵ = (

L
o

L
a

)

2, A(Te, x) is a non local function that relates the equatorial SST to the wind stress,
and µ serves as a relative coupling coefficient. The wind stress terms in (19) may thus be expressed as

⌧xe = µA(Te, x),
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A(Te, x) is obtained by solving a Gill-type atmospheric model [19] using a long wave approximation (see section
1.2.5above, or Hao et al. [21]), resulting in a linear relation between the wind stress and the equatorial SST.
As derived in (8), the wind stress in the central Pacific may be assumed to be proportional to the temperature
anomaly in the East Pacific (this implies that the information about the East Pacific heating is propagated in
the atmosphere by atmospheric Rossby waves to affect the wind stress in the central Pacific)

A(Te, x = xw + L/2) = b0TeE(t), (22)

where b0 is the annual mean coupling strength. The assumption embedded in (22) is that most of the SST
variability and thus atmospheric heating is in the eastern part of the equatorial Pacific. The resulting wind stress
anomaly, according to the Gill model, will reach the central Pacific where it affects the ocean wave dynamics
[27, 28].

2.4.4 Mixed mode ENSO model

The expression (19) for the East Pacific thermocline depth may now be written more explicitly, using the above
equations as
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expressing heE at time t as function of heE and TeE at previous times. As before, the first term represents the
free Rossby and Kevin waves, the second represents the excited Rossby wave, and the third represents the excited
Kelvin wave. The thermodynamic equation (20) evaluated at the eastern side of the basin gives the dynamical
equation in which the above heE(t) is used

@tTeE = �"TTeE � �
w

H1
(TeE � Tsub(heE)). (24)

Equations (23) and (24), together with an explicit expression for Tsub, form the mixed mode model originally
derived in a slightly different format (no explicit delays) by Jin [27, 28], and then re-derived in the present form
by [12]. The mixed mode dynamics and its fast wave and fast SST limits were originally investigated by Neelin
and Jin [29, 30, 38]. Hereafter we denote TeE by T and heE by h. Note that the nonlinearity in the model is due
to the nonlinear function Tsub(h).

The mechanism of the oscillation in this mixed mode model is similar to that of the above heuristic delayed
oscillator, except that there is an additional explicit delay time due to the time it takes the SST in the East
Pacific to adjust to changes in the thermocline depth there. An alternative description of the mechanism has
been used by Jin [27, 28], emphasizing water transport rather than wave propagation, and is shown in Fig. 24.

Figure 24: The recharge oscillator mechanism (Jin, 1997).

2.4.5 The fast SST Limit

In the fast SST limit, the SST adjustment time is assumed to be much shorter than the ocean dynamics adjustment
time, or in other words SST is assumed to respond instantaneously to thermocline depth changes [37, 29, 30, 38].
We obtain our model equations for this limit by taking the term @tTeE in (24) to be zero, so that the SST
equation becomes a diagnostic equation balancing the Newtonian cooling and the upwelling terms, and giving an
instantaneous relation between the thermocline depth anomaly h(t) and the SST T (t)

T (t) = �
w

H1

✓
"T + �

w

H1

◆�1

Tsub(h). (25)

The oscillation mechanism in this case is pretty much the same as of the heuristic delayed oscillator described
above.
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2.4.6 The fast wave limit

In the fast wave limit, the Rossby and Kelvin wave propagation times are assumed to be much shorter than
the SST adjustment time of the SST to thermocline perturbations. The wave speeds are actually assumed to
be infinite, resulting in an instantaneous adjustment of ocean thermocline depth and current velocities to wind
stress anomalies [21]. Hence, the SST adjustment time to thermocline depth changes is the only delay and plays
the central role in the physical mechanism of the oscillations obtained in this parameter regime. The fast wave
limit results in somewhat unrealistic oscillations, in comparison to both ENSO’s time scale and amplitude, as this
is not a realistic ENSO regime. Nevertheless, it is still useful to analyze this regime, since it reveals some new
aspects that are not considered in the previous two regimes.

The fast wave limit can be derived by taking the time derivatives in the ocean momentum equation to be zero.
In the fast wave limit, the dynamics crucially depend on the east-west tilt of the thermocline. One variant of the
fast wave limit is obtained by dividing the basin into two boxes, one for the East Pacific and one for the central
Pacific. The full derivation of the model equations may be found in [12], and it is a simplification into a system
of ODEs based on the PDE model of Hao et al. [21]. The two SST tendency equations for the two regions are

@tTc = �"TTc � �
w

H1
Tc + �

w

H1
Tsub (hc(Tc, Te)) , (26)

@tTe = �"TTe � �
w

H1
Te + �

w

H1
Tsub (he(Tc, Te)) , (27)

where Tc and Te are the SST in the central Pacific and the East Pacific respectively, and the dependence of
Tsub on Tc and Te is via the thermocline depth anomalies hc and he. The oscillatory mechanism of the eastward
propagating fast wave oscillations is explained in Hao et al. [21]. Given the lack of wave delay time, the coupled
system memory required for an oscillation resides in the different response rates of the SST to thermocline
displacements at different longitudes. This may result in either westward propagation or eastward propagation
(not in the above two box model, but in a continuous representation of the fast wave regime [21]). It is possible
to obtain different time scales from 2 yr to much longer, as well as relaxation oscillations, and an example from
Jin and Neelin [29, 30, 38] is shown in Fig. 25.

References for this lecture are at the end of Lecture 9.
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Figure 25: An oscillation of the equatorial Pacific in a model of the fast wave regime (Jin and Neelin, 1993)
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