
Harvard School of Engineering and Applied Sciences — Computer Science 152

Large-step semantics; IMP: an imperative language

Lecture 3 Tuesday, February 2, 2010

1 Large-step semantics

So far we have defined the small step evaluation relation −→⊆ Config × Config, and used its transitive
and reflexive closure −→∗ to describe the execution of multiple steps of evaluation. In particular, if 〈e, σ〉 is
some start configuration, and 〈n, σ′〉 is a final configuration, the evaluation 〈e, σ〉 −→∗ 〈n, σ′〉 shows that by
executing expression e starting with the store σ, we get the result n, and the final store σ′.

Large-step semantics is an alternative way to specify the operational semantics of a language. Large-step
semantics directly give the final result.

We’ll use the same configurations as before, but define a large step evaluation relation:

⇓⊆ Exp× Store× Int× Store.

We write 〈e, σ〉 ⇓ 〈n, σ′〉 to mean that (e, σ, n, σ′) ∈⇓. In other words, expression e with store σ evaluates
in one big step directly to integer n, and final store σ′.

The large step semantics boils down to defining the relation ⇓. We use inference rules to inductively
define the relation ⇓, similar to how we specified the small-step operational semantics −→.

INTLARGE 〈n, σ〉 ⇓ 〈n, σ〉
VARLARGE 〈x, σ〉 ⇓ 〈n, σ〉

where σ(x) = n

ADDLARGE

〈e1, σ〉 ⇓ 〈n1, σ′′〉 〈e2, σ′′〉 ⇓ 〈n2, σ′〉
〈e1 + e2, σ〉 ⇓ 〈n, σ′〉

where n is the sum of n1 and n2

MULLARGE

〈e1, σ〉 ⇓ 〈n1, σ′′〉 〈e2, σ′′〉 ⇓ 〈n2, σ′〉
〈e1 × e2, σ〉 ⇓ 〈n, σ′〉

where n is the product of n1 and n2

ASGLARGE

〈e1, σ〉 ⇓ 〈n1, σ′′〉 〈e2, σ′′[x 7→ n1]〉 ⇓ 〈n2, σ′〉
〈x := e1; e2, σ〉 ⇓ 〈n2, σ′〉

To see how we use these rules, here is a proof tree that shows that 〈foo := 3; foo× bar, σ〉 ⇓ 〈21, σ′〉 for a
store σ such that σ(bar) = 7, and σ′ = σ[foo 7→ 3].

ASGLARGE

INTLARGE 〈3, σ〉 ⇓ 〈3, σ〉
MULLARGE

VARLARGE 〈foo, σ′〉 ⇓ 〈3, σ′〉
VARLARGE 〈bar, σ′〉 ⇓ 〈7, σ′〉

〈foo× bar, σ′〉 ⇓ 〈21, σ′〉
〈foo := 3; foo× bar, σ〉 ⇓ 〈21, σ′〉

A closer look to this structure reveals the relation between small step and large-step evaluation: a depth-
first traversal of the large-step proof tree yields the sequence of one-step transitions in small-step evaluation.

Lecture 3 Large-step semantics; IMP: an imperative language

2 Equivalence of semantics

So far, we have specified the semantics of our language of arithmetic expressions using two different sets
of rules: small-step and large-step. Are they expressing the same meaning of arithmetic expressions? Can
we show that they express the same thing?

Theorem (Equivalence of semantics). For all expressions e, stores σ, and integers n, we have:

〈e, σ〉 ⇓ 〈n, σ′〉 ⇐⇒ 〈e, σ〉 −→∗ 〈n, σ′〉.

Proof sketch.

• =⇒. We want to prove that the following property P holds for all expressions e ∈ Exp.

P (e) = ∀σ, σ′ ∈ Store. ,∀n ∈ Int. 〈e, σ〉 ⇓ 〈n, σ′〉 =⇒ 〈e, σ〉 −→∗ 〈n, σ′〉

We proceed by structural induction on expressions e. We have to consider each of the possible axioms
and inference rules for constructing an expression.

– Case e = x.
Here, we are considering the case where the expression e is equal to some variable x. Assume
that〈x, σ〉 ⇓ 〈n, σ〉. That means that there is some derivation using the axioms and inference rules
of the large-step operational semantics, whose conclusion is 〈x, σ〉 ⇓ 〈n, σ〉. There is only one rule
whose conclusion could look like this, the rule VarLarge. That rule requires that n = σ(x).
Since n = σ(x) we know that 〈x, σ〉 −→ 〈n, σ〉 also holds, by using the small-step axiom VAR. So
we can conclude that 〈x, σ〉 −→∗ 〈n, σ〉 holds, which is what we needed to show.

– Case e = n.
Here, we are consider the case where expression e is equal to some integer n. But then 〈n, σ〉 −→∗
〈n, σ〉 holds trivially because of reflexivity of −→∗.

– Case e = e1 + e2.
This is an inductive case. We want to prove that if P (e1) and P (e2) hold, then P (e) holds too.
Let’s write out P (e1), P (e2), and P (e) explicitly.

P (e1) = ∀n, σ, σ′ : 〈e1, σ〉 ⇓ 〈n, σ′〉 =⇒ 〈e1, σ〉 −→∗ 〈n, σ′〉
P (e2) = ∀n, σ, σ′ : 〈e2, σ〉 ⇓ 〈n, σ′〉 =⇒ 〈e2, σ〉 −→∗ 〈n, σ′〉
P (e) = ∀n, σ, σ′ : 〈e1 + e2, σ〉 ⇓ 〈n, σ′〉 =⇒ 〈e1 + e2, σ〉 −→∗ 〈n, σ′〉

Let’s assume that P (e1) and P (e2) hold. Assume that we have values for σ, σ′ and n such that
〈e1 + e2, σ〉 ⇓ 〈n, σ′〉. We need to show that 〈e1 + e2, σ〉 −→∗ 〈n, σ′〉.
We assumed that 〈e1+e2, σ〉 ⇓ 〈n, σ′〉. This means that there is some derivation whose conclusion
is 〈e1+e2, σ〉 ⇓ 〈n, σ′〉. By looking at the large-step semantic rules, we see that only one rule could
possible have a conclusion of this form: the rule AddLarge. So that means that the last rule use
in the derivation was AddLarge. But in order to use the rule AddLarge, it must be the case that
〈e1, σ〉 ⇓ 〈n1, σ′′〉 and 〈e2, σ′′〉 ⇓ 〈n2, σ′〉 hold for some n1 and n2 such that n = n1 + n2 (i.e.,
there is a derivation whose conclusion is 〈e1, σ〉 ⇓ 〈n1, σ′′〉 and a derication whose conclusion is
〈e2, σ′′〉 ⇓ 〈n2, σ′〉).
Using the inductive hypothesis P (e1), since 〈e1, σ〉 ⇓ 〈n1, σ′′〉, we must have 〈e1, σ〉 −→∗ 〈n1, σ′′〉.
Similarly, by P (e2), we have 〈e2, σ′′〉 −→∗ 〈n2, σ〉. By Lemma 1 below, we have

〈e1 + e2, σ〉 −→∗ 〈n1 + e2, σ
′′〉

and by another application of Lemma 1 we have

〈n1 + e2, σ
′′〉 −→∗ 〈n1 + n2, σ

′〉

Page 2 of 5

Lecture 3 Large-step semantics; IMP: an imperative language

and by the rule ADD we have
〈n1 + n2, σ

′〉 −→ 〈n, σ′〉.

Thus, we have 〈e1 + e2, σ〉 −→∗ 〈n, σ′〉, which proves this case.

– Case e = e1 × e2. Similar to the case e = e1 + e2 above.

– Case e = x := e1; e2. Omitted. Try it as an exercise.

• ⇐=. We proceed by mathematical induction on the number of steps 〈e, σ〉 −→∗ 〈n, σ′〉.

– Base case. If 〈e, σ〉 −→∗ 〈n, σ′〉 in zero steps, then we must have e = n and σ′ = σ. Then,
〈n, σ〉 ⇓ 〈n, σ〉 by the large-step operational semantics rule INTLARGE.

– Inductive case. Assume that 〈e, σ〉 −→ 〈e′′, σ′′〉 −→∗ 〈n, σ′〉, and that (the inductive hypothesis)
〈e′′, σ′′〉 ⇓ 〈n, σ′〉. That is, 〈e′′, σ′′〉 −→∗ 〈n, σ′〉 takes m steps, and we assume that the property
holds for it (〈e′′, σ′′〉 ⇓ 〈n, σ′〉), and we are considering 〈e, σ〉 −→∗ 〈n, σ′〉, which takesm+1 steps.
We need to show that 〈e, σ〉 ⇓ 〈n, σ′〉. This follows immediately from Lemma 2 below.

Lemma 1. If 〈e, σ〉 −→∗ 〈n, σ′〉 then for all n1, e2 the following hold.

• 〈e+ e2, σ〉 −→∗ 〈n+ e2, σ
′〉

• 〈e× e2, σ〉 −→∗ 〈n× e2, σ′〉

• 〈n1 + e, σ〉 −→∗ 〈n1 + n, σ′〉

• 〈n1 × e, σ〉 −→∗ 〈n1 × n, σ′〉

Proof. By (mathematical) induction on the number of evaluation steps in −→∗.

Lemma 2. For all e, e′, σ, and n, if 〈e, σ〉 −→ 〈e′, σ′′〉 and 〈e′, σ′′〉 ⇓ 〈n, σ′〉, then 〈e, σ〉 ⇓ 〈n, σ′〉.

3 IMP: a simple imperative language

We shall now consider a more realistic programming language, one where we can assign values to variables
and execute control constructs such as if and while. The syntax for this simple imperative language, called
IMP, is as follows:

arithmetic expressions a ∈ Aexp a ::= x | n | a1 + a2 | a1 × a2
boolean expressions b ∈ Bexp b ::= true | false | a1 < a2

commands c ∈ Com c ::= skip | x := a | c1; c2
| if b then c1 else c2
| while b do c

3.1 Small-step operational semantics

We’ll first give a small-step operational semantics for IMP. The configurations in this language are of the
form 〈c, σ〉, 〈b, σ〉, and 〈a, σ〉, where σ is a store. The final configurations are of the form 〈skip, σ〉, 〈true, σ〉,
〈false, σ〉, and 〈n, σ〉. There are three different small-step operational semantics relations, one each for
commands, boolean expressions, and arithmetic expressions.

−→Com ⊆ Com× Store× Com× Store
−→Bexp ⊆ Bexp× Store× Bexp× Store
−→Aexp ⊆ Aexp× Store×Aexp× Store

Page 3 of 5

Lecture 3 Large-step semantics; IMP: an imperative language

For brevity, we will overload the symbol −→ and use it to refer to all of these relations. Which relation
is being used will be clear from context.

The evaluation rules for arithmetic and boolean expressions are similar to the ones we’ve seen before.
However, note that since the arithmetic expressions no longer contain assignment, arithmetic and boolean
expressions can not update the store.

Arithmetic expressions

〈x, σ〉 −→ 〈n, σ〉
where n = σ(x)

〈e1, σ〉 −→ 〈e′1, σ〉
〈e1 + e2, σ〉 −→ 〈e′1 + e2, σ〉

〈e2, σ〉 −→ 〈e′2, σ〉
〈n+ e2, σ〉 −→ 〈n+ e′2, σ〉 〈n+m,σ〉 −→ 〈p, σ〉

where p = n+m

〈e1, σ〉 −→ 〈e′1, σ〉
〈e1 × e2, σ〉 −→ 〈e′1 × e2, σ〉

〈e2, σ〉 −→ 〈e′2, σ〉
〈n× e2, σ〉 −→ 〈n× e′2, σ〉 〈n×m,σ〉 −→ 〈p, σ〉

where p = n×m

Boolean expressions

〈a1, σ〉 −→ 〈a′1, σ〉
〈a1 < a2, σ〉 −→ 〈a′1 < a2, σ〉

〈a2, σ〉 −→ 〈a′2, σ〉
〈n < a2, σ〉 −→ 〈n < a′2, σ〉

〈n < m, σ〉 −→ 〈true, σ〉
where n < m

〈n < m, σ〉 −→ 〈false, σ〉
where n ≥ m

Commands

〈e, σ〉 −→ 〈e′, σ〉
〈x := e, σ〉 −→ 〈x := e′, σ〉 〈x := n, σ〉 −→ 〈skip, σ[x 7→ n]〉

〈c1, σ〉 −→ 〈c′1, σ′〉
〈c1; c2, σ〉 −→ 〈c′1; c2, σ′〉 〈skip; c2, σ〉 −→ 〈c2, σ〉

For if commands, we gradually reduce the test until we get either true or false; then, we execute the
appropriate branch:

〈b, σ〉 −→ 〈b′, σ〉
〈if b then c1 else c2, σ〉 −→ 〈if b′ then c1 else c2, σ〉

〈if true then c1 else c2, σ〉 −→ 〈c1, σ〉 〈if false then c1 else c2, σ〉 −→ 〈c2, σ〉

For while loops, the above strategy doesn’t work (why?). Instead, we use the following rule, which can
be thought of as “unrolling” the loop, one iteration at a time.

〈while b do c, σ〉 −→ 〈if b then (c;while b do c) else skip, σ〉

Page 4 of 5

Lecture 3 Large-step semantics; IMP: an imperative language

We can now take a concrete program and see how it executes under the above rules. Consider we start
with state σ where σ(foo) = 0 and we execute the program

foo := 3;while foo < 4 do foo := foo+ 5

The execution works as follows:

〈foo := 3;while foo < 4 do foo := foo+ 5, σ〉
−→ 〈skip;while foo < 4 do foo := foo+ 5, σ′〉 where σ′ = σ[foo 7→ 3]

−→ 〈while foo < 4 do foo := foo+ 5, σ′〉
−→ 〈if foo < 4 then (foo := foo+ 5;W) else skip, σ′〉
−→ 〈if 3 < 4 then (foo := foo+ 5;W) else skip, σ′〉
−→ 〈if true then (foo := foo+ 5;W) else skip, σ′〉
−→ 〈foo := foo+ 5;while foo < 4 do foo := foo+ 5, σ′〉
−→ 〈foo := 3 + 5;while foo < 4 do foo := foo+ 5, σ′〉
−→ 〈foo := 8;while foo < 4 do foo := foo+ 5, σ′〉
−→ 〈while foo < 4 do foo := foo+ 5, σ′′〉 where σ′′ = σ′[foo 7→ 8]

−→ 〈if foo < 4 then (foo := foo+ 5;W) else skip, σ′′〉
−→ 〈if 8 < 4 then (foo := foo+ 5;W) else skip, σ′′〉
−→ 〈if false then (foo := foo+ 5;W) else skip, σ′′〉
−→ 〈skip, σ′′〉

(where W is an abbreviation for the while loop while foo < 4 do foo := foo+ 5).

Page 5 of 5

