Harvard School of Engineering and Applied Sciences — Computer Science 152
Denotational semantics

Lecture 5 Tuesday, February 9, 2010

1 Denotational semantics

We have seen two operational models for programming languages: small-step and large-step. We now
consider a different semantic model, called denotational semantics.

The idea in denotational semantics is to express the meaning of a program as the mathematical function
that expresses what the program computes. We can think of a program c as a function from stores to stores:
given an an initial store, the program produces a final store. For example, the program foo := bar + 1 can
be thought of as a function that when given an input store o, produces a final store ¢’ that is identical to ¢
except that it maps foo to the integer o(bar) + 1; that is, o’ = o[foo — o(bar) + 1].

We are going to model programs as functions from input stores to output stores. As opposed to op-
erational models, which tell us how programs execute, the denotational model shows us what programs
compute.

For a program c (a piece of syntax), we write C[c] for the denotation of ¢, that is, the mathematical function
that c represents:

C[c] : Store — Store.

Note that C[c] is actually a partial function (as opposed to a total function), because the program may
not terminate for certain input stores; C[c| is not defined for those inputs, since they have no corresponding
output stores.

We write C[c]o for the result of applying the function C[¢] to the store 0. That is, if f is the function C[c],
then we write C[c]o to mean the same thing as f(o).

We must also model expressions as functions, this time from stores to the values they represent. We will
write A[a] for the denotation of arithmetic expression a, and B[b] for the denotation of boolean expression
b. Note that A[a] and B[b] are total functions.

Ala] : Store — Int
B[b] : Store — {true, false}

Now we want to define these functions. To make it easier to write down these definitions, we will
express (partial) functions as sets of pairs. More precisely, we will represent a partial map f : A —~ Basa
set of pairs F' = {(a,b) | a € Aand b = f(a) € B} such that, for each a € A, there is at most one pair of the
form (a, _) in the set. Hence (a,b) € F' is the same as b = f(a).

We can now define denotations for IMP. We start with the denotations of expressions:

Aln] = {(o,n)}
Alz] = {(o,0(2))}
Alar + a2] = {(o,n) | (0,n1) € AJa1] A (o,n2) € Alaz] An =nq + na}

B[true] = {(o,true)}

B[false] = {(o, false)}
Bla1 < az] = {(o,true) | (o,n1) € Ala1] A (o,n2) € AJas] Any < no} U
{(o,false) | (o,n1) € Ala1] A (0,n2) € AJaz] Any > no}

Lecture 5 Denotational semantics

The denotations for commands are as follows:

C[skip] = {(0,0)}
Clz := a) = {(o,0[x — n]) | (6,n) € Ala]}
Cletsea] = {(0,0") | 30" ((0,0") € Clea] A (07, 0") € Clea]) }

Note that C[ci; o] = Clez] o Clei], where o is the composition of relations. (Composition of relations is
defined as follows: if Ry C Ax Band Ry C BxCthen RpoR; C AxCis RyoRy = {(a,c) | 3b € B.(a,b) €
Ry A (b,¢) € Ra}.) If C[e1] and C[ez] are total functions, then o is function composition.

C[if b then c; else 3] = {(0,0") | (o,true) € B[b] A (0,0") € Cler]} U
{(0,0") | (0,false) € B[b] A (0,0") € C[ca] }
C[while bdo c] = {(0,0) | (0,false) € B[b]} U
{(0,0") | (o,true) € B[b] AJo”. ((c,0") € C[c] A (¢”,0") € C[while bdo])}

But now we’ve got a problem: the last “definition” is not really a definition, it expresses C[while b do]
in terms of itself! It is not a definition, but a recursive equation. What we want is the solution of this
equation.

1.1 Fixed points

We gave a recursive equation that the function C[while b do ¢] must satisfy.
To understand some of the issues involved, let’s consider a simpler example. Consider the following
equation for a function f : N — N.

0 ifzr=20
f(z) = {f(x —1)+22 -1 otherwise w

This is not a definition for f, but rather an equation that we want f to satisfy. What function, or func-
tions, satisfy this equation for f? The only solution to this equation is the function f(z) = .

In general, there may be no solutions for a recursive equation (e.g., there are no functions g : N — N that
satisfy the recursive equation g(z) = g(x) + 1), or multiple solutions (e.g., find two functions g : R — R that
satisfy g(z) = 49(5)).

We can compute solutions to such equations by building successive approximations. Each approxima-
tion is closer and closer to the solution. To solve the recursive equation for f, we start with the partial
function fy = 0 (i.e., fo is the empty relation; it is a partial function with the empty set for it’s domain). We
compute successive approximations using the recursive equation.

0
0 ifr=0
fo x—1)+2x—1 otherwise
{

frnd (7

_Jo ifz=0

N filz)+ 2z —1 otherwise

= {(0,0),

40 ifz=0

N f (x—1)+2x—1 otherwise
= {(0, :1),(2,4)}

Page 2 of 3

Lecture 5 Denotational semantics

This sequence of successive approximations f; gradually builds the function f(z) = 2.

We can model this process of successive approximations using a higher-order function F that take one
approximation fj, and returns the next approximation fj:

F:(N=N)— (N—=N)

where

f,(x):{o ifz =0

flx—=1)+2x—1 otherwise

A solution to the recursive equation 1 is a function f such that f = F(f). In general, given a function
F: A — A ,wehave that a € Ais a fixed point of F if F(a) = a. We also write ¢ = fix(F') to indicate that a is
a fixed point of F.

So the solution to the recursive equation 1 is a fixed-point of the higher-order function F. We can
compute this fixed point iteratively, starting with f, = () and at each iteration computing fr+1 = F(fx). The
fixed point is the limit of this process:

f=fix(F)
=foUfiufoUfsu...
=QUF0)UF(F0)UFFF@D)U...

=JF'®

i>0

Page 3 of 3

