
Harvard School of Engineering and Applied Sciences — Computer Science 152

Axiomatic semantics ctd.

Lecture 7 Tuesday, February 16, 2010

1 Introduction to axiomatic semantics, ctd.

1.1 The Language of Assertions

What can we say in the pre- and post-conditions? In the examples we saw above, we used program vari-
ables, equality, logical variables (e.g., i), and conjunction (∧). What we allow in pre- and post-conditions
will influence what properties of a program we can describe using partial correctness statements.

The language that we will use for writing assertion is the set of logical formulas that include com-
parisons of arithmetic expressions, standard logical operators (and, or, implication, negation), as well as
quantifiers (universal and existential). Assertions may use additional logical variables, different than the
variables that occur in the program.

assertions P,Q ∈ Assn P ::= true | false | a1 < a2

| P1 ∧ P2 | P1 ∨ P2 | P1 ⇒ P2 | ¬P
| ∀i. P | ∃i. P

arithmetic expressions a ∈ Aexp a ::= . . .

logical variables i, j ∈ LVar

One can notice that the domain of boolean expressions Bexp is a subset of the domain of assertions.
Notable additions over the syntax of boolean expression are quantifiers (∀ and ∃). For instance, one can
express the fact that variable x divides variable y using existential quantification: ∃i. x× i = y.

1.2 Validity of assertions

Now we would like to describe what we mean by “assertion P holds in store σ′’. But to determine whether
P holds or not, we need more than just the store σ (which maps program variables to their values); we also
need to know the values of the logical variables. We describe those values using an interpretation I :

I : LVar→ Int

Now we can express the validity (or satisfiability) of assertion as a relation

σ �I P

read as “P is valid in store σ under interpretation I ,” or “store σ satisfies assertion P under interpretation
I .” We will write σ 6�I P whenever σ �I P doesn’t hold.

We proceed to define the validity relation inductively:

Lecture 7 Axiomatic semantics ctd.

σ �I true (always)
σ �I a1 < a2 if AInterp[[a1]](σ, I) < AInterp[[a2]](σ, I)

σ �I P1 ∧ P2 if σ �I P1 and σ �I P2

σ �I P1 ∨ P2 if σ �I P1 or σ �I P2

σ �I P1 ⇒ P2 if σ 6�I P1 or σ �I P2

σ �I ¬P if σ 6�I P

σ �I ∀i. P if ∀k ∈ Int. σ �I[i7→k] P

σ �I ∃i. P if ∃k ∈ Int. σ �I[i7→k] P

The evaluation functionAInterp[[a]] is similar to the denotation of expressions, but also deals with logical
variables:

AInterp[[n]](σ, I) = n

AInterp[[x]](σ, I) = σ(x)

AInterp[[i]](σ, I) = I(i)

AInterp[[a1 + a2]](σ, I) = AInterp[[a1]](σ, I) +AInterp[[a2]](σ, I)

We can now say that an assertion P is valid (written � P) if it is valid in any store, under any interpre-
tation: ∀σ, I. σ �I P .

Having defined validity for assertions, we can now define the validity of partial correctness statements.
We say that {P} c {Q} is valid in store σ and interpretation I , written σ �I {P} c {Q}, if:

∀σ′. if σ �I P and C[[c]]σ = σ′ then σ′ �I Q

Note that this definition talks about the execution of program c in the initial store σ, described using the
denotation C[[c]].

Finally, we can say that a partial correctness triple is valid (written � {P} c {Q}), if it is valid in any store
and interpretation:

∀σ, I. σ �I {P} c {Q}.

Now we know what we mean when we say “assertion P holds” or “partial correctness statement
{P} c {Q} is valid.”

1.3 Hoare logic and program correctness

How do we show that a partial correctness statement {P} c {Q} holds? We know that {P} c {Q} is valid if
it holds for all stores and interpretations: ∀σ, I. σ �I {P} c {Q}. Furthermore, showing that σ �I {P} c {Q}
requires reasoning about the execution of command c (that is, C[[c]]), as indicated by the definition of validity.

It turns out that there is an elegant way of deriving valid partial correctness statements, without having
to reason about stores, interpretations, and the execution of c. We can use a set of inference rules and
axioms, called Hoare rules, to directly derive valid partial correctness statements. The set of rules forms a
proof system known as Hoare logic.

SKIP
{P} skip {P}

ASSIGN
{P [a/x]} x := a {P}

SEQ
{P} c1 {R} {R} c2 {Q}

{P} c1; c2 {Q}
IF
{P ∧ b} c1 {Q} {P ∧ ¬b} c2 {Q}
{P} if b then c1 else c2 {Q}

Page 2 of 3

Lecture 7 Axiomatic semantics ctd.

WHILE
{P ∧ b} c {P}

{P} while b do c {P ∧ ¬b}

The assertion P in the rule for while loops is essentially a loop invariant; it is an assertion that holds
before and after each iteration, as shown in the premise of the rule. Therefore, it is both a pre-condition for
the loop (because it holds before the first iteration); and also a post-condition for the loop (because it holds
after the last iteration). The fact that P is both a pre- and post-condition for the while loop is reflected in
the conclusion of the rule.

There is one more rule, the rule of consequence, which allows to strengthen pre-conditions and weaken
post-conditions:

CONSEQUENCE
� (P ⇒ P ′) {P ′} c {Q′} � (Q′ ⇒ Q)

{P} c {Q}

These set of Hoare rules represent an inductive definition for a set of partial correctness statements
{P} c {Q}. We will say that {P} c {Q} is a theorem in Hoare logic, written ` {P} c {Q}, if we can build a
finite proof tree for it.

1.4 Soundness and Completeness

At this point we have two kinds of partial correctness assertions:

a) valid partial correctness statements � {P} c {Q}, which hold for all stores and interpretations, accord-
ing to the semantics of c; and

b) Hoare logic theorems ` {P} c {Q}, that is, a partial correctness statement that can be derived using
Hoare rules.

The question is how do these sets relate to each other? More precisely, we have to answer two questions.
First, is each Hoare logic theorem guaranteed to be valid partial correctness triple? In other words,

does ` {P} c {Q} imply � {P} c {Q}?

The answer is yes, and it shows that Hoare logic is sound. Soundness is important because it says that
Hoare logic doesn’t allow us to derive partial correctness assertions that actually don’t hold. The proof of
soundness requires induction on the derivations in ` {P} c {Q} (but we will omit this proof).

The second question refers to the expressiveness and power of Hoare rules: can we always build a Hoare
logic proof for each valid assertion? In other words,

does � {P} c {Q} imply ` {P} c {Q}?

The answer is a qualified yes: if � {P} c {Q} then there is a proof of {P} c {Q} using the rules of Hoare logic,
provided there are proofs for the validity of assertions that occur in the rule of consequence � (P ⇒ P ′)
and � (Q′ ⇒ Q). This result is known as the relative completeness of Hoare logic and is due to Cook (1974); the
proof is fairly complex and we will omit it (but you can find details in Winskel).

Page 3 of 3

