
Harvard School of Engineering and Applied Sciences — Computer Science 152

Lambda calculus encodings; Recursion

Lecture 9 Tuesday, February 23, 2010

1 Lambda calculus encodings

The pure lambda calculus contains only functions as values. It is not exactly easy to write large or in-
teresting programs in the pure lambda calculus. We can however encode objects, such as booleans, and
integers.

1.1 Booleans

We want to encode constants and operators for booleans. That is, we want to define functions TRUE,
FALSE, AND, IF, and other operators such that the expected behavior holds, for example:

AND TRUE FALSE = FALSE
IF TRUE e1 e2 = e1

IF FALSE e1 e2 = e2

Let’s start by defining TRUE and FALSE as follows.

TRUE , λx. λy. x

FALSE , λx. λy. y

Thus, both TRUE and FALSE take take two arguments, TRUE returns the first, and FALSE returns the
second.

The function IF should behave like λb. λt. λf. if b = TRUE then t else f . The definitions for TRUE and
FALSE make this very easy.

IF , λb. λt. λf. b t f

Definitions of other operators are also straightforward.

NOT , λb. b FALSE TRUE

AND , λb1. λb2. b1 b2 FALSE

OR , λb1. λb2. b1 TRUE b2

1.2 Church numerals

Church numerals encode the natural number n as a function that takes f and x, and applies f to x n times.

0 , λf. λx. x

1 = λf. λx. f x

2 = λf. λx. f (f x)

SUCC , λn. λf. λx. f (n f x)



Lecture 9 Lambda calculus encodings; Recursion

In the definition for SUCC, the expression n f x applies f to x n times (assuming that variable n is the
Church encoding of the natural number n). We then apply f to the result, meaning that we apply f to x
n+ 1 times.

Given the definition of SUCC, we can easily define addition. Intuitively, the natural number n1 + n2 is
the result of apply the successor function n1 times to n2.

PLUS , λn1. λn2. n1 SUCC n2

2 Nontermination

Consider the expression (λx. x x) (λx. x x), which we will refer to as Ω for brevity. Let’s try evaluating Ω.

Ω = (λx. x x) (λx. x x) −→ (λx. x x) (λx. x x) = Ω

Evaluating Ω never reaches a value! It is an infinite loop!
What happens if we use Ω as an actual argument to a function? Consider the following program.

(λx.(λy.y)) Ω

If we use CBV semantics to evaluate the program, we must reduce Ω to a value before we can apply the
function. But Ω never evaluates to a value, so we can never apply the function. Under CBV semantics, this
program does not terminate.

If we use CBN semantics, then we can apply the function immediately, without needing to reduce the
actual argument to a value. We have

(λx.(λy.y)) Ω −→CBN λy.y

CBV and CBN are common evaluation orders; many programming languages use CBV semantics. Later
we will see Call-by-need semantics, a more efficient semantics similar to CBN in that it does not evaluate
actual arguments unless necessary. Other evaluation orders are also possible. For example, we could define
semantics that allow β-reduction inside an abstraction.

(λx. x+ 7 + 8) 8 −→ (λx. x+ 15) 8 −→ 8 + 15 −→ 23

3 Recursion and the fixed-point combinators

We can write nonterminating functions, as we saw with the expression Ω. We can also write recursive
functions that terminate. However, one complication is how we express this recursion.

Let’s consider how we would like to define a function that computes factorials.

FACT , λn. IF (ISZERO n) 1 (TIMES n (FACT (PRED n)))

In slightly more readable notation (and we will see next lecture how we can translate more readable
notation into appropriate expressions):

FACT , λn. if n = 0 then 1 else n× FACT (n− 1)

Here, like in the definitions we gave above, the name FACT is simply meant to be shorthand for the
expression on the right-hand side of the equation. But FACT appears on the right-hand side of the equation
as well! This is not a definition, it’s a recursive equation.

Page 2 of 4



Lecture 9 Lambda calculus encodings; Recursion

3.1 Recursion Removal Trick

We can perform a “trick” to define a function FACT that satisfies the recursive equation above. First, let’s
define a new function FACT′ that looks like FACT, but takes an additional argument f . We assume that the
function f will be instantiated with an actual parameter of... FACT′.

FACT′ , λf. λn. if n = 0 then 1 else n× (f f (n− 1))

Note that when we call f , we pass it a copy of itself, preserving the assumption that the actual argument
for f will be FACT′.

Now we can define the factorial function FACT in terms of FACT′.

FACT , FACT′ FACT′

Let’s try evaluating FACT applied to an integer.

FACT 3 = (FACT′ FACT′) 3 Definition of FACT

= ((λf. λn. if n = 0 then 1 else n× (f f (n− 1))) FACT′) 3 Definition of FACT′

−→ (λn. if n = 0 then 1 else n× (FACT′ FACT′ (n− 1))) 3 Application to FACT′

−→ if 3 = 0 then 1 else 3× (FACT′ FACT′ (3− 1)) Application to n

−→ 3× (FACT′ FACT′ (3− 1)) Evaluating if
−→ . . .

−→ 3× 2× 1× 1
−→∗ 6

So we now have a technique for writing a recursive function f : write a function f ′ that explicitly takes
a copy of itself as an argument, and then define f , f ′ f ′.

3.2 Fixed point combinators

There is another way of writing recursive functions: expressing the recursive function as the fixed point of
some other, higher-order function, and then finding that fixed point.

Let’s consider the factorial function again. The factorial function FACT is a fixed point of the following
function.

G , λf. λn. if n = 0 then 1 else n× (f (n− 1))

(Recall that if g if a fixed point of G, then we have G g = g.)
So if we had some way of finding a fixed point of G, we would have a way of defining the factorial

function FACT.
There are such “fixed point operators,” and the (infamous) Y combinator is one of them. Thus, we can

define the factorial function FACT to be simply Y G, the fixed point of G.
(A combinator is simply a closed lambda term; it is a higher-order function that uses only function ap-

plication and other combinators to define a result from its arguments; our functions SUCC and ADD are
examples of combinators. It is possible to define programs using only combinators, thus avoiding the use
of variables completely.)

The Y combinator is defined as

Y , λf. (λx. f (x x)) (λx. f (x x)).

It was discovered by Haskell Curry, and is one of the simplest fixed-point combinators.
The fixed point of the higher order function G is equal to G (G (G (G (G . . . )))). Intuitively, the Y com-

binator unrolls this equality, as needed. Let’s see it in action, on our function G, where G = λf. λn. if n =

Page 3 of 4



Lecture 9 Lambda calculus encodings; Recursion

0 then 1 else n× (f (n− 1)) and the factorial function is the fixed point of G. We will use CBN semantics.

FACT = Y G
= (λf. (λx. f (x x)) (λx. f (x x))) G Definition of Y
−→ (λx.G (x x)) (λx.G (x x))
−→ G ((λx.G (x x)) (λx.G (x x)))
= (λf. λn. if n = 0 then 1 else n× (f (n− 1))) ((λx.G (x x)) (λx.G (x x))) Definition of G
−→ λn. if n = 0 then 1 else n× (((λx.G (x x)) (λx.G (x x))) (n− 1))
=β λn. if n = 0 then 1 else n× ((Y G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1)) By defn. of factorial

(What would have happened if we had used CBV semantics when evaluating Y G?)
There are many (indeed infinite) fixed-point combinators. To gain some more intuition for fixed-point

combinators, let’s derive the Turing fixed-point combinator, discovered by Alan Turing, and denoted by Θ.
Suppose we have a higher order function f , and want the fixed point of f . We know that Θ f is a fixed

point of f , so we have
Θ f = f (Θ f).

This means, that we can write the following recursive equation for Θ.

Θ = λf. f (Θ f)

.
Now we can use the recursion removal trick we described earlier! Let’s define Θ′ = λt. λf. f (t t f), and

define

Θ , Θ′ Θ′

= (λt. λf. f (t t f)) (λt. λf. f (t t f))

Let’s try out the Turing combinator on our higher order function G that we used to define FACT. Again,
we will use CBN semantics.

FACT = Θ G

= ((λt. λf. f (t t f)) (λt. λf. f (t t f))) G
−→ (λf. f ((λt. λf. f (t t f)) (λt. λf. f (t t f)) f)) G
−→ G ((λt. λf. f (t t f)) (λt. λf. f (t t f)) G)
= G (Θ G) for brevity
= (λf. λn. if n = 0 then 1 else n× (f (n− 1))) (Θ G) Definition of G
−→ λn. if n = 0 then 1 else n× ((Θ G) (n− 1))
= λn. if n = 0 then 1 else n× (FACT (n− 1))

Page 4 of 4


