CS152: Programming Languages

Lecture 20 — Synchronous Message-Passing and
Concurrent ML

Dan Grossman
Spring 2011



Message Passing

» Threads communicate via send and receive along channels
instead of read and write of references

» Not so different? (can implement one on top of the other)
» Synchronous message-passing

» Block until communication takes place
» Encode asynchronous by “spawn someone who blocks”

Dan Grossman CS152 Spring 2011, Lecture 20



Concurrent ML

» CML is synchronous message-passing with first-class
synchronization events

» Can wrap synchronization abstractions to make new ones
> At run-time

» Originally done for ML and fits well with lambdas,
type-system, and implementation techniques, but more widely
applicable

» Available in DrScheme, Caml, Haskell, ...

> In my opinion, very elegant and under-appreciated

» Think of threads as very lightweight
» Creation/space cost about like a function call

Dan Grossman CS152 Spring 2011, Lecture 20



The Basics

type ’a channel (* messages passed on channels *)
val new_channel : unit -> ’a channel

type ’a event (* when sync’ed on, get an ’a *)
val send : ’a channel -> ’a -> unit event
val receive : ’a channel -> ’a event

val sync : ’a event -> ’a

» Send and receive return “events’ immediately
» Sync blocks until “the event happens”

> Separating these is key in a few slides

Dan Grossman CS152 Spring 2011, Lecture 20



Simple version
Can define helper functions by trival composition:

let sendNow ch a = sync (send ch a) (* block *)
let recvNow ch = sync (receive ch) (* block *)

“Who communicates” is up to the CML implementation

» Can be nondeterministic when there are multiple
senders/receivers on the same channel

» Implementation needs collection of waiting senders xor
receivers

Terminology note:
» | am using the function names in Caml’'s Event library.
» In SML, the CML book, etc.:

send ~» sendEvt sendNow ~~ send
receive ~» recvEvt recvNow ~+ recv

Dan Grossman CS152 Spring 2011, Lecture 20



Bank Account Example

» First version: In/out channels are only access to private
reference

» In channel of type action channel
» Qut channel of type float channel

» Second version: Makes functional programmers smile

» State can be argument to a recursive function
> “Loop-carried”
» Hints at deep connection between references and channels

» Can implement the reference abstraction in CML

Dan Grossman CS152 Spring 2011, Lecture 20



The Interface

The real point of the example is that you can abstract all the
threading and communication away from clients:

type acct

val mkAcct : unit -> acct

val get : acct -> float -> float
val put : acct -> float -> float

Hidden thread communcation:
» mkAcct makes a thread (the “this account server”)

> get and put make the server go around the loop once

Races naturally avoided: the server handles one request at a time

» CML implementation has queues for waiting communications

Dan Grossman CS152 Spring 2011, Lecture 20 7



Streams

Another pattern/concept easy to code up in CML is a stream
» An infinite sequence of values, produced lazily (“on demand")

Example in 1ec20.m1: square numbers

Standard more complicated example: A network of streams for
producing prime numbers. One approach:

» First stream generates 2, 3, 4, ...
» When the last stream generates a number p, return it and
dynamically add a stream as the new last stream
» Draws input from old last stream but outputs only those that
are not divisible by p

Streams also:
» Have deep connections to circuits
> Are easy to code up in Haskell
> Are a key abstraction in real-time data processing

Dan Grossman CS152 Spring 2011, Lecture 20 8



Wanting choice

» So far just used sendNow and recvNow, hidden behind simple
interfaces

» But these block until the rendezvous, which is insufficient for
many important communication patterns

» Example: add : int channel -> int channel -> int

» Must choose which to receive first; hurting performance if
other provider ready earlier

» Example: or : bool channel -> bool channel -> bool
» Cannot short-circuit

This is why we split out sync and have other primitives

Dan Grossman CS152 Spring 2011, Lecture 20



Choose and Wrap

type ’a event (* when sync’ed on, get an ’a *)

val
val
val

val
val

send : ’a channel -> ’a -> unit event
receive : ’a channel -> ’a event
sync : ’a event -> ’a

choose : ’a event list -> ’a event
wrap : ’a event -> (’a -> ’b) -> ’b event

choose: when synchronized on, block until one of the events
happen (cf. UNIX select, but more useful to have sync
separate)
wrap: an event with the function as post-processing

» Can wrap as many times as you want

Note: Skipping a couple other key primitives (e.g., withNack for
timeouts)

Dan Grossman

CS152 Spring 2011, Lecture 20

10



Circuits

To an electrical engineer:

>

>

>

>

send and receive are ends of a gate
wrap is combinational logic connected to a gate
choose is a multiplexer

sync is getting a result out

To a programming-language person:

>

>

>

Dan Grossman

Build up a data structure describing a communication protocol
Make it a first-class value that can be by passed to sync

Provide events in interfaces so other libraries can compose
larger abstractions

CS152 Spring 2011, Lecture 20

11



What can't you do

CML is by-design for point-to-point communication

» Provably impossible to do things like 3-way swap (without
busy-waiting or higher-level protocols)

» Related to issues of common-knowledge, especially in a
distributed setting

» Metamoral: Being a broad computer scientist is really useful

Dan Grossman CS152 Spring 2011, Lecture 20

12



A note on implementation and paradigms

CML encourages using lots (100,000s) of threads
» Example: X Window library with one thread per widget

Threads should be cheap to support this paradigm
» SML N/J: about as expensive as making a closure! (See hw3)

» Think “current stack” plus a few words
» Cost no time when blocked on a channel (dormant)

» Caml: Not cheap, unfortunately

A thread responding to channels is a lot like an asynchronous
object (cf. actors)

And OOP is next

Dan Grossman CS152 Spring 2011, Lecture 20

13



