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Message Passing

» Threads communicate via send and receive along channels
instead of read and write of references

» Not so different? (can implement one on top of the other)
» Synchronous message-passing

» Block until communication takes place
» Encode asynchronous by “spawn someone who blocks”
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Concurrent ML

» CML is synchronous message-passing with first-class
synchronization events

» Can wrap synchronization abstractions to make new ones
> At run-time

» Originally done for ML and fits well with lambdas,
type-system, and implementation techniques, but more widely
applicable

» Available in DrScheme, Caml, Haskell, ...

> In my opinion, very elegant and under-appreciated

» Think of threads as very lightweight
» Creation/space cost about like a function call
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The Basics

type ’a channel (* messages passed on channels *)
val new_channel : unit -> ’a channel

type ’a event (* when sync’ed on, get an ’a *)
val send : ’a channel -> ’a -> unit event
val receive : ’a channel -> ’a event

val sync : ’a event -> ’a

» Send and receive return “events’ immediately
» Sync blocks until “the event happens”

> Separating these is key in a few slides
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Simple version
Can define helper functions by trival composition:

let sendNow ch a = sync (send ch a) (* block *)
let recvNow ch = sync (receive ch) (* block *)

“Who communicates” is up to the CML implementation

» Can be nondeterministic when there are multiple
senders/receivers on the same channel

» Implementation needs collection of waiting senders xor
receivers

Terminology note:
» | am using the function names in Caml’'s Event library.
» In SML, the CML book, etc.:

send ~» sendEvt sendNow ~~ send
receive ~» recvEvt recvNow ~+ recv
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Bank Account Example

» First version: In/out channels are only access to private
reference

» In channel of type action channel
» Qut channel of type float channel

» Second version: Makes functional programmers smile

» State can be argument to a recursive function
> “Loop-carried”
» Hints at deep connection between references and channels

» Can implement the reference abstraction in CML
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The Interface

The real point of the example is that you can abstract all the
threading and communication away from clients:

type acct

val mkAcct : unit -> acct

val get : acct -> float -> float
val put : acct -> float -> float

Hidden thread communcation:
» mkAcct makes a thread (the “this account server”)

> get and put make the server go around the loop once

Races naturally avoided: the server handles one request at a time

» CML implementation has queues for waiting communications
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Streams

Another pattern/concept easy to code up in CML is a stream
» An infinite sequence of values, produced lazily (“on demand")

Example in 1ec20.m1: square numbers

Standard more complicated example: A network of streams for
producing prime numbers. One approach:

» First stream generates 2, 3, 4, ...
» When the last stream generates a number p, return it and
dynamically add a stream as the new last stream
» Draws input from old last stream but outputs only those that
are not divisible by p

Streams also:
» Have deep connections to circuits
> Are easy to code up in Haskell
> Are a key abstraction in real-time data processing
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Wanting choice

» So far just used sendNow and recvNow, hidden behind simple
interfaces

» But these block until the rendezvous, which is insufficient for
many important communication patterns

» Example: add : int channel -> int channel -> int

» Must choose which to receive first; hurting performance if
other provider ready earlier

» Example: or : bool channel -> bool channel -> bool
» Cannot short-circuit

This is why we split out sync and have other primitives
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Choose and Wrap

type ’a event (* when sync’ed on, get an ’a *)

val
val
val

val
val

send : ’a channel -> ’a -> unit event
receive : ’a channel -> ’a event
sync : ’a event -> ’a

choose : ’a event list -> ’a event
wrap : ’a event -> (’a -> ’b) -> ’b event

choose: when synchronized on, block until one of the events
happen (cf. UNIX select, but more useful to have sync
separate)
wrap: an event with the function as post-processing

» Can wrap as many times as you want

Note: Skipping a couple other key primitives (e.g., withNack for
timeouts)
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Circuits

To an electrical engineer:

>

>

>

>

send and receive are ends of a gate
wrap is combinational logic connected to a gate
choose is a multiplexer

sync is getting a result out

To a programming-language person:

>

>

>

Dan Grossman

Build up a data structure describing a communication protocol
Make it a first-class value that can be by passed to sync

Provide events in interfaces so other libraries can compose
larger abstractions
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What can't you do

CML is by-design for point-to-point communication

» Provably impossible to do things like 3-way swap (without
busy-waiting or higher-level protocols)

» Related to issues of common-knowledge, especially in a
distributed setting

» Metamoral: Being a broad computer scientist is really useful
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A note on implementation and paradigms

CML encourages using lots (100,000s) of threads
» Example: X Window library with one thread per widget

Threads should be cheap to support this paradigm
» SML N/J: about as expensive as making a closure! (See hw3)

» Think “current stack” plus a few words
» Cost no time when blocked on a channel (dormant)

» Caml: Not cheap, unfortunately

A thread responding to channels is a lot like an asynchronous
object (cf. actors)

And OOP is next
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