
CS152: Programming Languages

Lecture 5 — Pseudo-Denotational Semantics

Dan Grossman
Spring 2011

A different approach

Operational semantics defines an interpreter, from abstract syntax
to abstract syntax. Metalanguage is inference rules (slides) or
Caml (interp.ml)

Denotational semantics defines a compiler (translater), from
abstract syntax to a different language with known semantics

Target language is math, but we’ll make it a tiny core of Caml
(hence “pseudo”)

Metalanguage is math or Caml (we’ll show both)

Dan Grossman CS152 Spring 2011, Lecture 5 2

The basic idea

A heap is a math/ML function from strings to integers:

string → int

An expression denotes a math/ML function from heaps to integers

den(e) : (string → int) → int

A statement denotes a math/ML function from heaps to heaps

den(s) : (string → int) → (string → int)

Now just define den in our metalanguage (math or ML),
inductively over the source language abstract syntax

Dan Grossman CS152 Spring 2011, Lecture 5 3

Expressions

den(e) : (string → int) → int

den(c) = fun h -> c

den(x) = fun h -> h x
den(e1 + e2) = fun h -> (den(e1) h) + (den(e2) h)

den(e1 ∗ e2) = fun h -> (den(e1) h) * (den(e2) h)

In plus (and times) case, two “ambiguities”:

� “+” from meta language or target language?
� Translate abstract + to Caml +, (ignoring overflow)

� When do we denote e1 and e2?
� Not a focus of the metalanguage. At “compile time”.

Dan Grossman CS152 Spring 2011, Lecture 5 4

Switching metalanguage

With Caml as our metalanguage, ambiguities go away

But it’s harder to distinguish mentally between “target” and
“meta”

If denote in function body, then source is “around at run time”

� After translation, should be able to “remove” the definition of
the abstract syntax

� ML doesn’t have such a feature, but the point is we no longer
need the abstract syntax

See denote.ml

Dan Grossman CS152 Spring 2011, Lecture 5 5

Statements, w/o while

den(s) : (string → int) → (string → int)

den(skip) = fun h -> h

den(x := e) =
fun h -> (fun v -> if x=v then den(e) h else h v)

den(s1; s2) = fun h -> den(s2) (den(s1) h)

den(if e s1 s2) =
fun h -> if den(e) h > 0 then den(s1) h else den(s2) h

Same ambiguities; same answers

See denote.ml

Dan Grossman CS152 Spring 2011, Lecture 5 6



While

den(while e s) = | While(e,s) ->

let rec f h = let d1=denote_exp e in

if (den(e) h)>0 let d2=denote_stmt s in

then f (den(s) h) let rec f h =

else h in if (d1 h)>0

f then f (d2 h)

else h in

f

The function denoting a while statement is inherently recursive!

Good thing our target language has recursive functions!

Why doesn’t den(while e s) = den(if e (s;while e s) skip)
make any sense?

Dan Grossman CS152 Spring 2011, Lecture 5 7

Two common mistakes

A denotational semantics should “eagerly” translate the entire
program

� E.g., both branches of an if

But a denotational semantics should “terminate”

� I.e., avoid any circular definitions in the translating

� The result of the translation can use (well-founded) recursion

� E.g., compiling a while-loop should not produce an infinite
amount of code

Dan Grossman CS152 Spring 2011, Lecture 5 8

Finishing the story

let denote_prog s =

let d = denote_stmt s in

fun () -> (d (fun x -> 0)) "ans"

Compile-time: let x = denote_prog (parse file).

Run-time: print_int (x ()).

In-between: We have a Caml program using only functions,
variables, ifs, constants, +, *, >, etc.

� Doesn’t use any constructors of exp or stmt (e.g., Seq)

Dan Grossman CS152 Spring 2011, Lecture 5 9

The real story

For “real” denotational semantics, target language is math

(And we write [[s]] instead of den(s))

Example: [[x := e]][[H]] = [[H]][x �→ [[e]][[H]]]

There are two major problems, both due to while:

1. Math functions do not diverge, so no function denotes
while 1 skip

2. The denotation of loops cannot be circular

Dan Grossman CS152 Spring 2011, Lecture 5 10

The elevator version, which we will not pursue

For (1), we “lift” the semantic domains to include a special ⊥
den(s) : (string → int) → ((string → int) ∪ ⊥)

� Have to change meaning of den(s2)◦den(s1) appropriately.
For (2), we use while e s to define a (meta)function f that given a
lifted heap-transformer X produces a lifted heap-transformer X′:

� If den(e)(den(H)) = 0, then den(H)

� Else den(s) ◦ X

Now let den(while e s) be the least fixed-point of f

� An hour of math to prove the least fixed-point exists

� Another hour to prove it’s the limit of starting with ⊥ and
applying f over and over (i.e., any number of loop iterations)

� Keywords: monotonic functions, complete partial orders,
Knaster-Tarski theorem

Dan Grossman CS152 Spring 2011, Lecture 5 11

Where we are

� Have seen operational and denotational semantics

� Connection to interpreters and compilers

� Useful for rigorous definitions and proving properties

� Next: Equivalence of semantics
� Crucial for compiler writers
� Crucial for code maintainers

� Then: Leave IMP behind and consider functions

But first: Will any of this help write an O/S service?

Dan Grossman CS152 Spring 2011, Lecture 5 12


