
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

More types

Lecture 12 Thursday, March 7, 2013

1 More types

We have previously explored the dynamic semantics of a number of language features. Here, we consider

how to extend the type system of lambda calculus for some of the language features we saw previously,

and some new ones.

1.1 Product and sums

We have previously seen products, which are pairs of expressions. Products were constructed using the

expression (e1, e2), and destructed using projection #1 e and #2 e.

In addition to the structural rules, there are two operational semantics rules that show how the destruc-

tors and constructor interact.

#1 (v1, v2) −→ v1 #2 (v1, v2) −→ v2

The type of a product expression (or a product type) is a pair of types, written τ1 × τ2. The typing rules

for the product constructors and destructors are the following.

Γ ` e1 :τ1 Γ ` e2 :τ2

Γ ` (e1, e2) :τ1 × τ2

Γ ` e :τ1 × τ2

Γ ` #1 e :τ1

Γ ` e :τ1 × τ2

Γ ` #2 e :τ2

We introduce sums, which are dual to products. Intuitively, a product holds two values, one of type τ1,

and one of type τ2. By contrast, a sum holds a single value that is either of type τ1 or of type τ2. The type of a

sum is written τ1 + τ2. There are two constructors for a sum, corresponding to whether we are constructing

a sum with a value of τ1 or a value of τ2.

e ::= · · · | inlτ1+τ2 e | inrτ1+τ2 e | case e1 of e2 | e3

v ::= · · · | inlτ1+τ2 v | inrτ1+τ2 v

Lecture 12 More types

Again, there are structural rules to determine the order of evaluation. In a CBV lambda calculus, the

evaluation contexts are extended as follows.

E ::= · · · | inlτ1+τ2 E | inrτ1+τ2 E | case E of e2 | e3

In addition to the structural rules, there are two operational semantics rules that show how the destruc-

tors and constructors interact.

case inlτ1+τ2 v of e2 | e3 −→ e2 v case inrτ1+τ2 v of e2 | e3 −→ e3 v

The type of a sum expression (or a sum type) is written τ1 + τ2. The typing rules for the sum constructors

and destructor are the following.

Γ ` e :τ1

Γ ` inlτ1+τ2 e :τ1 + τ2

Γ ` e :τ2

Γ ` inrτ1+τ2 e :τ1 + τ2

Γ ` e :τ1 + τ2 Γ ` e1 :τ1 → τ Γ ` e2 :τ2 → τ

Γ ` case e of e1 | e2 :τ

Let’s see an example of a program that uses sum types.

let f : (int + (int→ int))→ int =

λa : int + (int→ int). case a of λy. y + 1 | λg. g 35 in

let h : int→ int = λx : int. x+ 7 in

f (inrint+(int→int) h)

Here, the function f takes argument a, which is a sum. That is, the actual argument for a will either be a

value of type int or a value of type int→ int. We destroy the sum value with a case statement, which must

be prepared to take either of the two kinds of values that the sum may contain. We end up applying f to

a value of type int → int (i.e., a value injected into the right type of the sum). The entire program ends up

evaluating to 42.

1.2 Recursion

We saw in last lecture that we could not type recursive functions or fixed-point combinators in the simply-

typed lambda calculus. So instead of trying (and failing) to define a fixed-point combinator in the simply-

typed lambda calculus, we add a new primitive fix to the language. The evaluation rules for the new

primitive will mimic the behavior of fixed-point combinators.

Page 2 of 6

Lecture 12 More types

We extend the syntax with the new primitive operator. Intuitively, fix e is the fixed-point of the function

e. Note that fix v is not a value.

e ::= · · · | fix e

We extend the operational semantics for the new operator. There is a new evaluation context, and a new

axiom.

E ::= · · · | fix E fix λx :τ. e −→ e{(fix λx :τ. e)/x}

Note that we can define the letrec x :τ = e1 in e2 construct in terms of the fix operator.

letrec x :τ = e1 in e2 , let x :τ = fix λx :τ. e1 in e2

We add a new typing rule for the new language construct.

Γ ` e :τ → τ

Γ ` fix e :τ

Returning to our trusty factorial example, the following program implements the factorial function us-

ing the fix operator.

FACT , fix λf : int→ int. λn : int. if n = 0 then 0 else n× (f (n− 1))

Or using our convenient letrec notation, we could define a variable fact as follows.

letrec fact : int→ int = λn : int. if n = 0 then 0 else n× (fact (n− 1))

in . . .

We can write non-terminating computations for any type: the expression fix λx : τ. x has type τ , and

does not terminate.

Although the fix operator is normally used to define recursive functions, it can be used to find fixed

Page 3 of 6

Lecture 12 More types

points of any type. For example, consider the following expression.

fix λx : (int→ int)× (int→ int). (λn : int. if n = 0 then true else not ((#2 x) (n− 1)),

λn : int. if n = 0 then false else not ((#1 x) (n− 1)))

This expression has type (int→ int)× (int→ int)—it is a pair of mutually recursive functions; the first

function returns true if and only if its argument is even; the second function returns true if and only if its

argument is odd.

1.3 References

Recall the syntax and semantics for references.

e ::= · · · | ref e |!e | e1 := e2 | `

v ::= · · · | `

E ::= · · · | ref E |!E | E := e | v := E

ALLOC
〈ref v, σ〉 −→ 〈`, σ[` 7→ v]〉

` 6∈ dom(σ) DEREF
〈!`, σ〉 −→ 〈v, σ〉

σ(`) = v

ASSIGN
〈` := v, σ〉 −→ 〈v, σ[` 7→ v]〉

We add a new type for references: type τ ref is the type of a location that contains a value of type τ . For

example the expression ref 7 has type int ref, since it evaluates to a location that contains a value of type

int. Dereferencing a location of type τ ref results in a value of type τ , so !e has type τ if e has type τ ref.

And for assignment e1 := e2, if e1 has type τ ref, then e2 must have type τ .

τ ::= · · · | τ ref

Γ ` e :τ

Γ ` ref e :τ ref

Γ ` e :τ ref

Γ `!e :τ

Γ ` e1 :τ ref Γ ` e2 :τ

Γ ` e1 := e2 :τ

Noticeable by its absence is a typing rule for location values. What is the type of a location value `?

Clearly, it should be of type τ ref, where τ is the type of the value contained in location `. But how do

Page 4 of 6

Lecture 12 More types

we know what value is contained in location `? We could directly examine the store, but that would be

inefficient. In addition, examine the store directly may not give us a conclusive answer! Consider, for

example, a store σ and location ` where σ(`) = `; what is the type of `?

Instead, we introduce store typings to track the types of values stored in locations. Store typings are

partial functions from locations to types. We use metavariable Σ to range over store typings. Our typing

relation now becomes a relation over 4 entities: typing contexts, store typings, expressions, and types. We

write Γ,Σ ` e :τ when expression e has type τ under typing context Γ and store typing Σ.

Our new typing rules for references are as follows. (Typing rules for other constructs are modified to

take a store typing in the obvious way.)

Γ,Σ ` e :τ

Γ,Σ ` ref e :τ ref

Γ,Σ ` e :τ ref

Γ,Σ `!e :τ

Γ,Σ ` e1 :τ ref Γ,Σ ` e2 :τ

Γ,Σ ` e1 := e2 :τ Γ,Σ ` ` :τ
Σ(`) = τ ref

So, how do we state type soundness? Our type soundness theorem for simply-typed lambda calculus

said that if Γ ` e : τ and e −→∗ e′ then e′ is not stuck. But our operational semantics for references now

has a store, and our typing judgment now has a store typing in addition to a typing context. We need to

adapt the definition of type soundness appropriately. to do so, we define what it means for a store to be

well-typed with respect to a typing context.

Definition. Store σ is well-typed with respect to typing context Γ and store typing Σ, written Γ,Σ ` σ , if

dom(σ) = dom(Σ) and for all ` ∈ dom(σ) we have Γ,Σ ` σ(`) :Σ(`).

We can now state type soundness for our language with references.

Theorem (Type soundness). If Γ,Σ ` e :τ and Γ,Σ ` σ and 〈e, σ〉 −→∗ 〈e′, σ′〉 then either e′ is a value, or there

exists e′′ and σ′′ such that 〈e′, σ′〉 −→ 〈e′′, σ′′〉.

We can prove type soundness for our language using the same strategy as for the simply-typed lambda

calculus: we use preservation and progress. The progress lemma can be easily adapted for the semantics

and type system for references. Adapting preservation is a little more involved, since we need to describe

how the store typing changes as the store evolves. The rule ALLOC extends the store σ with a fresh location

`, producing store σ′. Since dom(Σ) = dom(σ) 6= dom(σ′), it means that we will not have σ′ well-typed

with respect to typing store Σ.

Since the store can increase in size during the evaluation of the program, we also need to allow the store

typing to grow as well.

Lemma (Preservation). If Γ,Σ ` e :τ and Γ,Σ ` σ and 〈e, σ〉 −→ 〈e′, σ′〉 then there exists some Σ′ ⊇ Σ such that

Γ,Σ′ ` e′ :τ and Γ,Σ′ ` σ′.

Page 5 of 6

Lecture 12 More types

We write Σ′ ⊇ Σ to mean that for all ` ∈ dom(Σ) we have Σ(`) = Σ′(`). This makes sense if we think of

partial functions as sets of pairs: Σ ≡ {(`, v) | ` ∈ dom(Σ) ∧ Σ(`) = v}.

Note that the preservation lemma states simply that there is some store type Σ′ ⊇ Σ, but does not specify

what exactly that store typing is. Intuitively, Σ′ will either be Σ, or Σ extended on a single, newly allocated,

location.

Page 6 of 6

