
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Existential Types and Modules

Lecture 18 Thursday, April 4, 2013

1 Modules

Some languages, including C and FORTRAN, have a single global namespace. This can cause problems.

With large programs, a name collision is likely, that is, two different programmers (or pieces of code) at-

tempting to use the same name for different purposes. Also, components of a program may be more tightly

coupled, since two components are coupled simply by one using a name defined by the other.

Modular programming addresses these issues. A module is a collection of named entities that are related

to each other in some way. Modules provide separate namespaces: different modules have different name

spaces, and so can freely use names without worrying about name collisions.

Typically, a module can choose what names/entities to export (i.e., which names to allow to be used

outside of the module), and what to keep hidden. The exported entities are declared in an interface, and the

interface typically does not export details of the implementation. This means that different modules can

implement the same interface in different ways. Also, by hiding the details of module implementation, and

preventing access to these details except through the exported interface, programmers of modules can be

confident that code invariants are not broken.

Packages in Java are a form of modules. A package provides a separate namespace (we can have a

class called Foo in package p1 and package p2 without any conflicts). A package can hide details of its

implementation by using private and package-level visibility.

How do we access the names exported by a module? Given a module m that exports an entity names x,

common syntax for accessing x is m.x. However, if we are writing a program that uses module m heavily,

it is convenient to have a shorter way to refer to names. Many languages provide a mechanism to use all

exported names of a module using shorter notation. For example “withm do e” allows the names exported

by m to be used in e. You may have seen languages with syntax like “Openm”, or “importm”, or “usingm”.

We will first introduce existential types, a type mechanism that will help us understand modules. We will

then use existential types to help us understand a simple module system.

Lecture 18 Existential Types and Modules

2 Existential types

We extend the simply-typed lambda calculus with existential types (and records). An existential type is

written ∃X. τ , where type variable X may occur in τ . If a value has type ∃X. τ , it means that it is a pair

{τ ′, v} of a type τ ′ and a value v, such that v has type τ{τ ′/X} .

Thinking about the Curry-Howard isomorphism may provide some intuition for existential types. As

the notation and name suggest, the logical formula that corresponds to an existential type ∃X. τ is an

existential formula ∃X. φ, where X may occur in φ. In intuitionist logic, would would it mean for the

statement “there exists some X such that φ is true” to be true? In intuitionist logic, a statement is true only

if there is a proof for it. To prove “there exists some X such that φ is true” we must actually provide a

witness ψ, an entity that is a suitable replacement for X , and also, a proof that φ is true when we replace X

with witness ψ.

A value {τ ′, v} of type ∃X. τ exactly corresponds to a proof of an existential statement: type τ ′ is the

witness type, and v is a value with type τ{τ ′/X}.

We introduce a language construct to create existential values, and a construct to use existential values.

The syntax of the new language is given by the following grammar.

e ::= x | λx :τ. e | e1 e2 | n | e1 + e2

| { l1 = e1, . . . , ln = en } | e.l

| pack {τ1, e} as ∃X. τ2 | unpack {X,x} = e1 in e2

v ::= n | λx :τ. e | { l1 = v1, . . . , ln = vn } | pack {τ1, v} as ∃X. τ2

τ ::= int | τ1 → τ2 | { l1 :τ1, . . . , ln :τn } | X | ∃X. τ

Note that in this grammar, we annotate existential values with their existential type. The construct

to create an existential value, pack {τ1, e} as ∃X. τ2, is often called packing, and the construct to use an

existential value is called unpacking.

Before we present the operational semantics and typing rules, let’s see some examples to get an intuition

for packing and unpacking.

Here we create an existential value that implements a counter, without revealing details of its imple-

Page 2 of 7

Lecture 18 Existential Types and Modules

mentation.

let counterADT =

pack

{int, { new = 0,get = λi : int. i, inc = λi : int. i+ 1 } }

as

∃Counter. { new : Counter,get : Counter→ int, inc : Counter→ Counter }

in . . .

The abstract type name is Counter, and its concrete representation is int. The type of the variable

counterADT is ∃Counter. { new : Counter,get : Counter→ int, inc : Counter→ Counter }.

We can use the existential value counterADT as follows.

unpack {C, x} = counterADT in let y :C = x.new in x.get (x.inc (x.inc y))

Note that we annotate the pack construct with the existential type. That is, we explicitly state the type

∃Counter. Why is this? Without this annotation, we would not know which occurrences of the witness

type are intended to be replaced with the type variable, and which are intended to be left as the witness

type. In the counter example above, the type of expressions λi : int. i and λi : int. i+ 1 are both int→ int, but

one is the implementation of get, of type Counter→ int and the other is the implementation of inc, of type

Counter→ Counter.

We now define the operational semantics. We add two new evaluation contexts, and one evaluation rule

for unpacking an existential value.

E ::= · · · | pack {τ1, E} as ∃X. τ2 | unpack {X,x} = E in e

unpack {X,x} = (pack {τ1, v} as ∃Y. τ2) in e −→ e{v/x}{τ1/X}

The new typing rules make sure that existential values are used correctly. Note that code using an

existential value (e in unpack {X,x} = e1 in e2) does not know the witness type of the existential value of

type ∃X. τ1.

∆,Γ ` e :τ2{τ1/X}

∆,Γ ` pack {τ1, e} as ∃X. τ2 :∃X. τ2

∆,Γ ` e1 :∃X. τ1 ∆ ∪ {X},Γ, x :τ1 ` e2 :τ2 ∆ ` τ2 ok

∆,Γ ` unpack {X,x} = e1 in e2 :τ2

Page 3 of 7

Lecture 18 Existential Types and Modules

∆ ∪ {X} ` τ ok

∆ ` ∃X. τ ok

Note that we define well-formedness of existential types, similar to well-formedness of universal types.

In the typing rule for unpack {X,x} = e1 in e2, why do we need the premise ∆ ` τ2 ok?

3 A simple module mechanism

Let’s see a simple module mechanism.

e ::= x | λx :τ. e | e1 e2 | n | e1 + e2

| module implements τ { type X1 = τ1, . . . , Xm = τm; val x1 = e1, . . . , xn = en }

| e.x | open e1 in e2

v ::= n | λx :τ. e | module implements τ { type X1 = τ1, . . . , Xm = τm; val x1 = v1, . . . , xn = vn }

τ ::= int | x :τ1 → τ2 | X | interface { type X1, . . . , Xm; val x1 :τ1, . . . , xn :τn } | e.X

This module system provides a way to define modules module implements τ { . . . }. A module defini-

tion declares a number of type variables X1, . . . , Xm, along with witness types for these type variables, and

also associates values with names x1, . . . , xn. A module can export the type variables and (a subset of) the

named values, by declaring its interface using the interface type interface { . . . }.

We also provide a way to access the values associated with names in a module: in the expression e.x,

expression e is intended to evaluate to a module, and e.x will evaluate to whatever value the module

associates with the name x. Similarly, type variables declared in a module can be referred to using the

dependent type e.X , where e is intended to denote a module.

For convenience, we provide an easier way to access names exported by a module. In the expression

open e1 in e2, expression e1 evaluates to a module, and in expression e2, all names exported by e1 are in

scope, meaning that e2 can refer to a name x without needing to prefix it with the module, e1.x.

Because a module may export only a subset of the names it defines, the module allow information

hiding: details of the module implementation are not available to clients of the module.

Page 4 of 7

Lecture 18 Existential Types and Modules

Let’s consider our example for a simple counter in our new module language.

let cm =

module

implements interface { type CTR; val new :CTR,get :CTR→ int, inc :CTR→ CTR }

{ type CTR = int; val new = 1,get = λi :CTR. i, inc = λi ::CTR. i+ 1 }

in

let c :cm.CTR = cm.new in cm.get (cm.inc c)

In the code above, we are accessing the names exported by the module cm using the e.x notation. We

can use the open construct to make this a little more convenient.

let cm =

. . .

in open cm in

let c :CTR = new in get (inc c)

3.1 Operational semantics

We define a large-step operational semantics for the language. Because interesting things are going on with

names and scope, (due to the open construct), we use an environment semantics. An environment ρ maps

variables to values. The operational semantics maps 〈e, ρ〉, an expression e and environment ρ to a value v.

The evaluation of functions deserves special mention. Configuration 〈λx : τ. e, ρ〉 is a function λx : τ. e,

defined in environment ρ, and evaluates to the closure (λx : τ. e, ρ). A closure consists of code along with

values for all free variables that appear in the code. Note than when we apply a function, we evaluate

the function body using the environment from the closure (i.e., the lexical environment), as opposed to the

environment in use at the function application (the dynamic environment).

The evaluation of a module simply evaluates the expressions that names in the module are mapped to.

Accessing a module name e.x just evaluates to the value that the module e associated with the name x.

Opening a module, open e1 in e2, evaluates e1 to a module, and then adds all of the names that module

exports to the environment in which e2 is evaluated.

〈x, ρ〉 ⇓ ρ(x) 〈n, ρ〉 ⇓ n

〈e1, ρ〉 ⇓ n1 〈e2, ρ〉 ⇓ n2

〈e1 + e2, ρ〉 ⇓ n
n = n1 + n2

Page 5 of 7

Lecture 18 Existential Types and Modules

〈λx :τ. e, ρ〉 ⇓ (λx :τ. e, ρ)

〈e1, ρ〉 ⇓ (λx :τ. e, ρlex) 〈e2, ρ〉 ⇓ v2 〈e, ρlex[x 7→ v2]〉 ⇓ v

〈e1 e2, ρ〉 ⇓ v

〈ei, ρ[x1 7→ v1, . . . , xi−1 7→ vi−1]〉 ⇓ vi

〈module implements τ { type X1 = τ1, . . . , Xm = τm; val x1 = e1, . . . , xn = en }, ρ〉 ⇓

module implements τ { type X1 = τ1, . . . , Xm = τm; val x1 = v1, . . . , xn = vn }

〈e, ρ〉 ⇓ module implements τ { type X1 = τ1, . . . , Xm = τm; val x1 = v1, . . . , xn = vn }

〈e.xi, ρ〉 ⇓ vi

〈e1, ρ〉 ⇓ module implements interface { type X1, . . . , Xm; val y1 :τ1, . . . , yo :τo }

{ type X1 = τ1, . . . , Xm = τm; val x1 = v1, . . . , xn = vn }

∀j, k. yj = xk ⇒ wj = vk

〈e2, ρ[y1 7→ w1, . . . , yo 7→ wo]〉 ⇓ v

〈open e1 in e2, ρ〉 ⇓ v

3.2 Typing rules

We provide, but do not discuss, typing rules for the modules.

∆,Γ ` x :Γ(x) ∆,Γ ` n : int

∆,Γ ` e1 : int ∆,Γ ` e2 : int

∆,Γ ` e1 + e2 : int

∆,Γ, x :τ ` e :τ2

∆,Γ ` λx :τ. e :x :τ1 → τ2

∆,Γ ` e1 :x :τ1 → τ2 ∆,Γ ` e2 :τ1

∆,Γ ` e1 e2 :τ2{e2/x}

τ ≡ interface { type X1, . . . , Xm; val y1 :τ ′′1 , . . . , yo :τ ′′o }

∀i. ∆,Γ[x1 7→ τ ′1, . . . , xi−1 7→ τ ′i−1] ` ei{τ1/X1} . . . {τm/Xm} :τ ′i

∀j, k. xj = yk ⇒ τ ′′k {τ1/X1} . . . {τm/Xm} = τ ′j

∆,Γ ` module implements τ { type X1 = τ1, . . . , Xm = τm; val x1 = e1, . . . , xn = en } :τ

∆,Γ ` e : interface { type X1, . . . , Xm; val x1 :τ1, . . . , xn :τn }

∆,Γ ` e.xi :τi{e.X1/X1} . . . {e.Xm/Xm}

Page 6 of 7

Lecture 18 Existential Types and Modules

∆,Γ ` e1 : interface { type X1, . . . , Xm; val x1 :τ1, . . . , xn :τn }

∆ ∪ {X1, . . . , Xm},Γ[x1 :τ1, . . . , xn :τn] ` e2 :τ

∆,Γ ` open e1 in e2 :τ

∆,Γ ` X ok
X ∈ ∆

∆,Γ ` int ok

∆,Γ ` τ1 ok ∆,Γ[x :τ1] ` τ2 ok

∆,Γ ` x :τ1 → τ2 ok

∆ ∪ {X1, . . . , Xm},Γ[x1 :τ1, . . . , xi−1 :τi−1] ` τi ok

∆,Γ ` interface { type X1, . . . , Xm; val x1 :τ1, . . . , xn :τn } ok

∆,Γ ` e : interface { type X1, . . . , Xm; val x1 :τ1, . . . , xn :τn }

∆,Γ ` e.Xi ok

Page 7 of 7

