
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Objects

Lecture 21 Tuesday, April 16, 2013

1 Objects and Object-Oriented Programming

An object is an entity with both data and code. Typically, objects encapsulate some or all of their data and
functionality. That is, they hide away details of their implementation, and instead present some simplified
view to clients. A key idea of objects is that they provide a uniform way to encapsulate arbitrary func-
tionility/complexity: objects can represent very simple combinations of data and functionality (such as an
integer, or a string), to very complex combinations (such as a database).

The data encapsulated by an object are typically called fields (also known as member variables, or instance
variables), and the procedures of an object are typically called methods (aka member functions). An object-
oriented program consists of different objects, that interact with each other by calling methods, also known
as sending messages between objects.

Objects were originally introduced in the Simula programming language, in the 1960s, as a means to
help write simluation programs. That is, objects were used as a convenient way to model the behavior
of real-world entities. This is perhaps one of the reasons for the success of object-oriented design and
programming: objects provide a way to structure and model the interaction of potentially complex systems,
and varying levels of abstraction.

Many languages have object-oriented features. The following diagram shows some object oriented lan-
guages, with some indications of genealogy. (The diagram is by no means exhaustive. Genealogy informa-
tion should be taken with a grain of salt; ML and C are shown in the diagram but are not OO languages.)

ECMAScript

Simula

Smalltalk

Ruby

Objective C

Java

C++

Self

C#

JavaScript

Scala OCaml

ML

C

1.1 Object-oriented concepts

Mitchell descirbes four basic concepts of object-oriented programming languages:

1. Dynamic lookup (aka dynamic dispatch). When a message is sent to an object, the code to execute
is determined by the way the object is implemented, and not by some static property of the pointer
to the object. That is, different objects can respond to the same message in different ways. In Java
and Smalltalk, method dispatch is dynamic (except for static methods in Java). In C++, only virtual
member functions are selected dynamically.

2. Abstraction. Objects can hide implementation details from clients. This is similar to existential types,
which could be used to hide both code and data from clients. In Java, fields and methods can be de-
clared private, meaning that those fields and methods are accessible only within the implementation,

Lecture 21 Objects

and not to clients of an object. In some object-oriented languages, all fields are private, and can only
be accessed through public methods.

3. Subtyping. Like we have seen previously, if an object x has all of the (public) functionality of an object
y, then object x should be able to be used wherever object y can be used. Subtyping provides both
re-use and extensibility. That is, subtyping permits uniform operations over different objects, and in
addition, allows us to extend the functionality of a program by adding new objects that are subtypes
of existing objects.

4. Inheritance. Inheritance allows new objects to be defined from existing objects. While this can be seen
as a form of code re-use, it also provides an extension mechanism: by inheriting code, but overriding
some of the code, we can change the behavior of existing objects.

Note that inheritance is not the same as subtyping. We can think of subtyping as a relation on the
interfaces that objects present to clients, and think of inheritance as a relation on the implementation
of objects. In Java, these notions are conflated, but C++ keeps these notions separate: a C++ class can
declare a “private base class”, that is, inheriting the behavior of another class, but not revealing that
fact to clients.

1.2 Classes vs. prototypes

A class is a construct that is used to describe code that is common to all objects of that class. Different
objects of the same class differ just in their state: all their code is common. Classes can be used to create
new instances, i.e., new objects of that class. Languages like Java and C++ use classes.

By contrast, in a prototype-based language, there are no classes. Instead, inheritance is achieved by
cloning exisiting objects, known as prototypes. Prototypes can be used to express class-like mechanisms:
instead of defining a template for an object (i.e., like a class), one can create, define, and specialize an object
first, and then treat it as a prototype for others like it, cloning the prototype as needed. Delegation can be
used to efficiently implement cloning: instead of creating a complete copy of the prototype, the new object
can simply delegate all messages to the prototype. The new object can be modified (adding or overriding
fields and methods) to specialize behavior. JavaScript is a prototype-based language.

2 Object encodings

We’ve just informally described object-oriented concepts. How do these concepts relate to language features
and mechanisms that we have already examined during this course?

2.1 Records

Records provide both dynamic lookup and subtyping. For dynamic lookup, given value v of record type,
the expression v.l will evaluate to a value determined by v, not by the record type. If v.l is a function, then
this is like dynamic dispatch: the code to invoke depends on the object v.

Moreover, we defined subtyping on record types, which permits both reuse and extension: code that
expects a value of type τ can be re-used with a value of any subtype of τ ; new subtypes can be created,
allowing code to be extended.

Recursive records allow us to express records that can perform functional updates.
For example, consider a representation of a 2 dimensional point, which has a method to move the point

in one dimension.

letrec new “ λi. λj. fix this. t x “ i, y “ j,mvx “ λd.new pthis.x` dq this.y u
in pnew 0 0q.mvx 10

In this example, we use a recursive function new to construct a record value. The record contains fields
x and y, which record the point’s coordinates, and a method mvx, which takes a number d as input, and re-
turns a point that is d units to the right of the original point. In order to construct the new point, the method

Page 2 of 5

Lecture 21 Objects

mvx calls the function new, and gives it the original x coordinate plus d, and the original y coordinate. To
access the original coordinates, the method mvx must access the fields x and y of the record of which it is a
field; we achieve this by using a fix point operator on the record, with the variable name this being used to
refer (recursively) to the record.

2.2 Existential types

Existential types can be used to enforce abstraction and information hiding. We saw this last lecture, when
we considered a simple module mechanism based on existential types, which allowed the module to export
an interface that abstracted the implementation details.

2.3 Other encodings

It is possible to combine recursive records and existential types: see “Comparing Object Encodings”, by
Bruce, Cardelli, and Pierce, Information and Computation 155(1/2):108–133, 1999. However, rather than
encoding objects on top of the lambda calculus, it is possible to directly define object calculi, simple lan-
guages that serve as a foundation for object-oriented languages (A Theory of Objects, by Abadi and Cardelli,
Springer 1996).

Let’s examine two object-oriented calculi. One is a model for JavaScript programs, the other a model of
Java programs.

3 The Essence of JavaScript

Let’s consider a calculus that captures the essence of JavaScript with the exception of eval commands. This
calculus is λJS , developed by Guha et al.1 at Brown University.

JavaScript is a language with a lot of quirks and surpising behavior.
Following the presentation by Guha et al., we will introduce the features of λJS incrementally.

3.1 Functions and objects

Let’s initially consider a calculus with numbers, strings, booleans, functions, objects, and special values null
and undefined.

c ::“ n | s | b | null | undefined

n P Z, s P String b P Boolean
v ::“ c | funcpx1, . . . , xnqt return e u | t s1 : v1, . . . , sn : vn u

e ::“ x | v | let x “ e1 in e2 | epe1, . . . , enq | e1re2s | e1re2s “ e3 | delete e1re2s

Value t s1 : v1, . . . , sn : vn u is an object with fields s1, . . . , sn, and field si has value vi.
Expression e1re2s evaluates e1 to an object, e2 to a string f , and the accesses field f of the object.

JavaScript allows field names to be dynamically computed. You can think of a normal field access e.x
as being syntactic shorthand for er“x”s. Expression e1re2s “ e3 updates a field of an object, and delete e1re2s
deletes a field from an object.

E ::“ r¨s | let x “ E in e | Epe1, . . . , enq | vpv1, . . . , vi´1, E, ei`1, . . . , enq

| t s1 : v1, . . . , si´1 : vi´1, si : E, si`1 : vi`1, . . . , sn : vn u

| Eres | vrEs | Ere2s “ e3 | v1rEs “ e3 | v1rv2s “ E | delete Eres | delete vrEs

1A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript. In Proceedings of the 24th European Conference on Object-
Oriented Programming, 2010.

Page 3 of 5

Lecture 21 Objects

let x “ v in e ãÑ etv{xu

pfuncpx1, . . . , xnqt return e uqpv1, . . . , vnq ãÑ etv1{x1u . . . tvn{xnu

t s1 : v1, . . . , sn : vn ursis ãÑ vi

s R ts1, . . . , snu

t s1 : v1, . . . , sn : vn urss ãÑ undefined

t s1 : v1, . . . , si : vi, . . . , sn : vn ursis “ v ãÑ t s1 : v1, . . . , si : v, . . . , sn : vn u

s R ts1, . . . , snu

t s1 : v1, . . . , sn : vn urss “ v ãÑ t s : v, s1 : v1, . . . , sn : vn u

delete t s1 : v1, . . . , si : vi, . . . , sn : vn ursis ãÑ t s1 : v1, . . . , si´1 : vi´1, si`1 : vi`1, . . . , sn : vn u

s R ts1, . . . , snu

delete t s1 : v1, . . . , sn : vn urss ãÑ t s1 : v1, . . . , sn : vn u

Some interesting things to note about JavaScript’s behavior: we don’t get stuck if we access a field of an
object that doesn’t exist. Instead, it returns the value undefined. Also, field update expression e1re2s “ e3
can also be used to create a new field. Also, deleting a field that doesn’t exist is fine: we don’t get stuck.

3.2 Mutable state

In our initial calculus above, there is no mutable state: objects and variables are pure. We add first-class
reference to allow mutable objects and imperative local variables to be modeled. The syntax and semantics
are similar to what we have used in class previously.

v ::“ ¨ ¨ ¨ | l

l P Locations
σ P Locations á Values
e ::“ ¨ ¨ ¨ | e1 :“ e2 | ref e |!e
E ::“ ¨ ¨ ¨ | E :“ e | v :“ E | ref E |!E

e ãÑ e1

xEres, σy ÝÑ xEre1s, σy xErref vs, σy ÝÑ xErls, σrl ÞÑ vsy
l R dompσq

xEr!ls, σy ÝÑ xErσplqs, σy

xErl :“ vs, σy ÝÑ xErvs, σrl ÞÑ vsy

Arrays in JavaScript are actually objects whose fields are called “1”, “2”, “3”, etc. This can lead to some
unexpected behavior in JavaScript.

3.3 Prototypes

In prototype-based object-oriented languages, objects can delegate their behavior to “prototypes”. Typi-
cally, prototypes are just objects, but are not used to store any particular state. Instead prototype objects
define structure and behavior that are common to some group of objects.

Page 4 of 5

Lecture 21 Objects

JavaScript is a prototype-based language. For example, in the following code, car is the prototype of
mycar. The prototype of an object is indicated using the special field name proto .

var car = { wheels:4 }
var mycar = { __proto__:car, name:"Fenry", model:"Honda Civic", year:1986 }

Prototypes affect field lookup, but not field update. That is, when looking up a field in an object, if the
field is not found, then the prototype will be examined, if the prototype exists. Field update, however, just
directly updates the object.

We assume that the proto field of an object is a reference to an object, and re-define the rules for field
lookup as follows.

t s1 : v1, . . . , sn : vn ursis ãÑ vi

s R ts1, . . . , snu “ proto ” R ts1, . . . , snu

t s1 : v1, . . . , sn : vn urss ãÑ undefined

s R ts1, . . . , snu Di.si “ “ proto ”^ vi “ null

t s1 : v1, . . . , sn : vn urss ãÑ undefined

s R ts1, . . . , snu Di.si “ “ proto ”^ vi “ l

t s1 : v1, . . . , sn : vn urss ãÑ p!lqrss

3.4 Relationship between JavaScript and λJS

JavaScript is signficantly more complicated than λJS . There are many details that this calculus glosses over.
For example, in methods of objects, there is an implicit variable called this, which refers to the current object.
Also, functions are actually objects, and can have fields. Also, JavaScript has a keywork new that allows new
objects to be created from functions. For example, in the following code, the line new Point(50, 100)
executes the function Point with this bound to a new object, and moreover sets the proto field of the
new object to the prototype field of the function/object Point.

function Point(x, y) {
this.x = x;
this.y = y

}
pt = new Point(50, 100)

There are many other features of JavaScript that are not directly handled by this caluclus, including many
control-flow constructs, global variables, some unintuitive behavior regarding scope of local variables, im-
plicit coercions between types (e.g., from numbers to strings, and vice-versa).

Guha et al. provide a traslation function from JavaScript to λJS . It is not possible to prove that this
translation is correct without providing a full formalization of all of JavaScript. However, they have used
test suites to show that the behavior of the translation function and the λJS evaluation is consistent with
three different JavaScript implementations (SpiderMonkey, V8, and Rhino).

Page 5 of 5

