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Lecture 24 Thursday, April 25, 2013

1 Communication between concurrent programs

Last lecture, we were introduced to the notions of concurrency and nondeterminism. We added these to
a familiar lambda calculus by augmenting it with a concurrency operator e;||ez. Concurrently evaluating
expressions were able to communicate by reading and writing shared memory.

Today, we will look at one of the other major mechanisms by which concurrent programming languages
allow for such communication: message passing. We have already seen message passing in this course, as a
mechanism for implementing objects.

1.1 Process Calculi

Throughout much of this course, we have focused on individual, isolated language features by adding
them to a small lambda calculus. For example, we added records to the lambda calculus in order to study
subtyping. To add records, we extended the notions of expressions and values with new forms for records.
We also had to extend the semantics of the language to describe how to compute with record creation and
projection, as well as our typing judgment.

While it would be possible to do the same for message passing, today we will do something different.
Rather than adding message passing primitives to an existing calculus, we will see that message passing
between concurrent processes is able to stand on its own as a model of computation. While the resulting
language will not be directly useful as a programming language (just as the pure lambda calculus is not),
we will see that it can be extended with all the other concepts we have studied thus far, much as the lambda
calculus may be.

Unlike the lambda calculus, which is essentially a canonical, minimal functional language, there is no
single preferred language for reasoning about communicating processes. Instead, there are many process
calculi which each emphasize different aspects or tradeoffs in this style of computation. We will single out
the join calculus, a process calculus which is in many ways reminiscent of ML.

2 The Join Calculus
2.1 Syntax

We first present the core syntax of the join calculus, in which there are three productions: processes P and
Q, join patterns J and J’, and definitions D and D’. z, v and so on are variables, or channel names. In both
processes and join patters, the notation v represents a tuple of names, of arbitrary (including empty) size.

P,Q :=x(v) | P|Q|defDinP |0
J = aloy | J|J
Du:=J>P|DAD

A process, denoted P or @, intuitively represents a single communicating entity. x(7) is a process which
sends a message on channel z; the message is the tuple ©. P|Q denotes the parallel composition of processes
P and Q. The process def D in P is our mechanism for defining new names in processes, similarly to how
let x = e; in ey binds the variable z in ey in the lambda calculus. Finally, 0 is a null or inert process.
Intuitively, 0 is a process which has halted its computation.
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Join patterns J are our mechanism for allowing concurrent computations to communicate or interact.
The join pattern x(7) (which looks just like the corresponding message send) represents the receipt of a
message U on the x channel. The joint patterns J|.J’ represents the receipt of multiple messages.

Finally, definitions D bind messages received to names in processes. For example, the definition c(xz, y)>>
P means that whenever a message is received on channel ¢, process P will be run, with the parameters = and
y set to the respective components of the message tuple. The definition ¢;{Z)|c2(y) > P is more interesting.
The pattern ¢1(Z)|co(y) represents the receipt of messages on both channels ¢; and co. Only then can process
P continue on.

In multiple definitions, such as def J; > Py A Jo > P» A -+ - in P, all of the channel names defined by the
Ji > P; are all mutually recursively bound in P and in each F;.

2.2 Semantics

To perform or reason about substitution in the lambda calculus, we had to compute the set of bound and
free variables in an expression. In the join calculus, things are slightly more complicated: we must keep
track of the free variables (fv) of definitions and processes; defined variables (dv) of join patterns and of
definitions; and the received variables (rv) of join patterns. These are computed as follows:

rv(x(v)) = {ulu € v}
rv(J|J) = rv(J) urv(J)

dv(a(v)) = {x}
dv(J|J") =dv(J) udv(J)

dv(J > P) = dv(J)
dv(D A D) =dv(D) udv(D’)

(J > P) = dv(J) U (fV(P) — rv(J))
V(D A D') = tv(D) U fv(D')

fv(2(D)) = {z} U {u|u € T}
(PIQ) = M(P) U v(Q)
fv(def D in P) = (fv(D) u fv(P)) — dv(D)

As with the concurrent lambda calculus we saw previously, defining a big-step operational or a denota-
tional semantics for this language would be difficult.

There is an operational semantics for the join calculus, featuring a single reduction rule. Much of the
work in presenting it is fairly tedious, as it involves a lot of machinery for keeping track of channel names.

Instead, we will look at a very different style of operational semantics: the reflexive chemical abstract
machine (RCHAM). This semantics is based on an analogy with chemical reactions. There is nondeterminacy
is the receipt of messages in the join calculus; this corresponds to the random motion of molecules in a
chemical solution. In this lecture we will not worry too much about the precise correspondence.

We write R - M, where R is a multiset of definitions and M is a multiset of processes, to represent a
current “solution”. Our rules are then between pairs of such solutions.

We will have two sorts of reductions: reversible ones, denoted by back-and-forth arrows = (with one
direction at a time denoted by the hooked arrows — and —); and irreversible ones, denoted by the standard
— arrow. In all of the following rules, only those elements of the multisets that participate in the rule are
shown; we elide showing all other elements for clarity. That is, the first pair of rules is really R — M,0 =
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R = M.
=0 = = (STR-NULL)
+ PlQ = FPQ (STR-JOIN)
DAD = D,D' + (STR-AND)
—defDinP = Dogy = Pogy (STR-DEF)
J> P Jow — J> P Poy (REACT)

In these rules, o4y and oy, represent arbitrary substitutions obeying some side conditions. In STR-DEF, ogy
substitutes fresh names for all of the channel names in dv(D). In REACT, oy, substitutes the received names
into the process P.

Let’s look at the intuitive meanings of each of theses rules. The STR-NULL rules mean that we can freely
create or destroy null processes in the solution. The STR-JOIN rules allow us to pull apart (or push back
together) concurrent processes. The STR-AND rules do the same for definitions. All the rules so far allow
us to break apart processes and definitions into individual “atoms”, rearrange them, and put them back
together into new configurations.

The other rules deal with namings. The STR-DEF rules allow processes to place new definitions into the
solution, or to capture existing ones in the opposite direction. The og, substitution and its side condition
only allows this to take place when no unintended variable capture (or unbinding, in the other direction)
will occur.

Finally, the one-way REACT rule describes the receipt of messages. Intuitively, if there are a number
of processes Joy, sending messages on some set of channels, and there is a definition which describes a
process to spawn upon receipt of those messages, then the REACT rule may fire, consuming the message
sends and substituting them into the new process. Here, the substitution oy, describes which channel names
to substitute for which formal parameters in the process.

2.3 Encodings and Extensions

As promised, the join calculus is an expressive enough model of computation to embed the simple lambda
calculus in. We do so via a CPS translation. The following encoding is for a call-by-value lambda calculus:

[[z]]v = U<I>
[Az. T, = def k{z, w) > [T]w in v{k)
[T Ul = def tdw)|uw) > wlw, vy in [T [U]w

Intuitively, [T], sends the value of T" along channel v. A value here is a process which will be sent an
argument value z and a continuation w along channel «.

Interestingly, we allow the translation to evaluate a function and its argument in parallel, and join the
results back together.

Given the ability to encode the lambda calculus in the join calculus, we can indirectly encode or ex-
tend the join calculus with all of the features we have amended the lambda calculus with: numerals and
arithmetic, state, records, etc. The join calculus can then be seen as the core of a more realistic concurrent
programming language, just as the lambda calculus is the core of functional programming languages.

2.4 Applications

The join calculus has been implemented for many real programming languages. As its syntax suggests,
there are implementations for ML, and in particular there is an extension of OCaml, cleverly named JoCaml.
There are also libraries implementing join patterns for Java, C++, and C# among others. Other process
calculi also see use as the basis for concurrency in languages such as Go and Erlang.

The join calculus (and other process calculi) have also been used to model concurrent systems besides
computer programs, such as the complex biochemical processes underlying the behavior of cells.
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