
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Records and subtyping

Lecture 15 Tuesday, March 25, 2014

1 Records

We have previously seen binary products, i.e., pairs of values. Binary products can be generalized in a
straightforward way to n-ary products, also called tuples. For example, 〈3, (), true, 42〉 is a 4-ary tuple con-
taining an integer, a unit value, a boolean value, and another integer. Its type is int× unit× bool× int.

Records are a generalization of tuples. We annotate each field of record with a label, drawn from some
set of labels L. For example, {foo = 32, bar = true} is a record value with an integer field labeled foo and a
boolean field labeled bar. The type of the record value is written {foo : int, bar :bool}.

We extend the syntax, operational semantics, and typing rules of the call-by-value lambda calculus to
support records.

l ∈ L
e ::= · · · | {l1 = e1, . . . , ln = en} | e.l
v ::= · · · | {l1 = v1, . . . , ln = vn}
τ ::= · · · | {l1 :τ1, . . . , ln :τn}

We add new evaluation contexts to evaluate the fields of records.

E ::= · · · | {l1 = v1, . . . , li−1 = vi−1, li = E, li+1 = ei+1, . . . , ln = en} | E.l

We also add a rule to access the field of a record.

{l1 = v1, . . . , ln = vn}.li −→ vi

Finally, we add new typing rules for records. Note that the order of labels is important: the type of the
record value {lat = −40, long = 175} is {lat : int, long : int}, which is different from {long : int, lat : int}, the
type of the record value {long = 175, lat = −40}. In many languages with records, the order of the labels is
not important; indeed, we will consider weakening this restriction in the next section.

∀i ∈ 1..n. Γ ` ei :τi

Γ ` {l1 = e1, . . . , ln = en} :{l1 :τ1, . . . , ln :τn}
Γ ` e :{l1 :τ1, . . . , ln :τn}

Γ ` e.li :τi

2 Subtyping

Subtyping is a key feature of object-oriented languages. Subtyping was first introduced in SIMULA, in-
vented by Norwegian researchers Dahl and Nygaard, and considered the first object-oriented programming
language.

The principle of subtyping is as follows. If τ1 is a subtype of τ2 (written τ1 ≤ τ2, and also sometimes as
τ1 ≤: τ2), then a program can use a value of type τ1 whenever it would use a value of type τ2. If τ1 ≤ τ2,
then τ1 is sometimes referred to as the subtype, and τ2 as the supertype.

We can express the principle of subtyping in a typing rule, often referred to as the “subsumption typing
rule” (since the supertype subsumes the subtype).

SUBSUMPTION
Γ ` e :τ τ ≤ τ ′

Γ ` e :τ ′

Lecture 15 Records and subtyping

The subsumption rule says that if e is of type τ , and τ is a subtype of τ ′, then e is also of type τ ′.
Recall that we provided an intuition for a type as a set of computational entities that share some common

property. Type τ is a subtype of type τ ′ if every computational entity in the set for τ can be regarded as a
computational entity in the set for τ ′.

So what types are in a subtype relation? We will define inference rules and axioms for the subtype
relation ≤.

The subtype relation is both reflexive and transitive. These properties both seem reasonable if we think
of subtyping as a subset relation. We add inference rules that express this.

τ ≤ τ
τ1 ≤ τ2 τ2 ≤ τ3

τ1 ≤ τ3

2.1 Subtyping for records

Consider records and record types. A record consists of a set of labeled fields. Its type includes the types
of the fields in the record. Let’s define the type Point to be the record type {x : int, y : int}, that contains two
fields x and y, both integers. That is:

Point = {x : int, y : int}.

Lets also define
Point3D = {x : int, y : int, z : int}

as the type of a record with three integer fields x, y and z.
Because Point3D contains all of the fields of Point, and those have the same type as in Point, it makes

sense to say that Point3D is a subtype of Point: Point3D ≤ Point.
Think about any code that used a value of type Point. This code could access the fields x and y, and

that’s pretty much all it could do with a value of type Point. A value of type Point3D has these same fields,
x and y, and so any piece of code that used a value of type Point could instead use a value of type Point3D.

We can write a subtyping rule for records.

{l1 :τ1, . . . , ln+k :τn+k} ≤ {l1 :τ1, . . . , ln :τn}
k ≥ 0

But why not let the corresponding fields be in a subtyping relation? For example, if τ1 ≤ τ2 and τ3 ≤ τ4,
then is {foo : τ1, bar : τ3} a subtype of {foo : τ2, bar : τ4}? Turns out that this is the case so long as the fields
of records are immutable. More on this when we consider subtyping for references.

Also, we could relax the requirement that the order of fields must be the same. The following is a more
permissive subtyping rule for records.

∀i ∈ 1..n. ∃j ∈ 1..m. l′i = lj ∧ τj ≤ τ ′i
{l1 :τ1, . . . , lm :τm} ≤ {l′1 :τ ′1, . . . , l

′
n :τ ′n}

2.2 Subtyping for products

Like records, we can allow the elements of a product to be in a subtyping relation.

τ1 ≤ τ ′1 τ2 ≤ τ ′2
τ1 × τ2 ≤ τ ′1 × τ ′2

Page 2 of 4

Lecture 15 Records and subtyping

2.3 Subtyping for functions

Consider two function types τ1 → τ2 and τ ′1 → τ ′2. What are the subtyping relations between τ1,, τ2, τ ′1,, and
τ ′2 that should be satisfied in order for τ1 → τ2 ≤ τ ′1 → τ ′2 to hold?

Consider the following expression:

G , λf :τ ′1 → τ ′2. λx :τ ′1. f x.

This function has type
(τ ′1 → τ ′2)→ τ ′1 → τ ′2.

Now suppose we had a function h :τ1 → τ2 such that τ1 → τ2 ≤ τ ′1 → τ ′2. By the subtyping principle, we
should be able to give h as an argument to G, and G should work fine. Suppose that v is a value of type τ ′1.
Then G h v will evaluate to h v, meaning that h will be passed a value of type τ1. Since h has type τ1 → τ2,
it must be the case that τ ′1 ≤ τ1. (What could go wrong if τ1 ≤ τ ′1?)

Furthermore, the result type ofG h v should be of type τ ′2 according to the type ofG, but h v will produce
a value of type τ2, as indicated by the type of h. So it must be the case that τ2 ≤ τ ′2.

Putting these two pieces together, we get the typing rule for function types.

τ ′1 ≤ τ1 τ2 ≤ τ ′2
τ1 → τ2 ≤ τ ′1 → τ ′2

Note that the subtyping relation between the argument and result types in the premise are in different
directions! The subtype relation for the result type is in the same direction as for the conclusion (primed
version is the supertype, non-primed version is the subtype); it is in the opposite direction for the argument
type. We say that subtyping for the function type is covariant in the result type, and contravariant in the
argument type.

2.4 Subtyping for locations

Suppose we have a location l of type τ ref, and a location l′ of type τ ′ ref. What should the relationship be
between τ and τ ′ in order to have τ ref ≤ τ ′ ref?

Let’s consider the following program R, that takes a location x of type τ ′ ref and reads from it.

R , λx :τ ′ ref. !x

The program R has the type τ ′ ref → τ ′. Suppose we gave R the location l as an argument. Then R l will
look up the value stored in l, and return a result of type τ (since l is type τ ref. Since R is meant to return a
result of type τ ′ ref, we thus want to have τ ≤ τ ′.

So this suggests that subtyping for reference types is covariant.
But consider the following program W , that takes a location x of type τ ′ ref, a value y of type τ ′, and

writes y to the location.
W , λx :τ ′ ref. λy :τ ′. x := y

This program has type τ ′ ref→ τ ′ → τ ′.
Suppose we have a value v of type τ ′, and consider the expressionW l v. This will evaluate to l := v, and

since l has type τ ref, it must be the case that v has type τ , and so τ ′ ≤ τ . But this suggests that subtyping
for reference types is contravariant!

In fact, subtyping for reference types must be invariant: reference type τ ref is a subtype of τ ′ ref if and
only if τ = τ ′.

Indeed, to be sound, subtyping for any mutable location must be invariant. Interestingly, in the Java
programming language, arrays are mutable locations but have covariant subtyping!

Suppose that we have two classes Person and Student such that Student extends Person (that is, Student is
a subtype of Person). The following Java code is accepted, since an array of Student is a subtype of an array
of Person, according to Java’s covariant subtyping for arrays.

Person[] arr = new Student[] { new Student(“Alice”) };

Page 3 of 4

Lecture 15 Records and subtyping

This is fine as long as we only read from arr. The following code executes without any problems, since arr[0]
is a Student which is a subtype of Person.

Person p = arr[0];

However, the following code, which attempts to update the array, has some issues.

arr[0] = new Person(“Bob”);

Even though the assignment is well-typed, it attempts to assign an object of type Person into an array of
Students! In Java, this produces an ArrayStoreException, indicating that the assignment to the array failed.

2.5 Bounded polymorphism

Polymorphism and subtyping can be combined. That is, we can change type abstraction to include an
upper bound on the types that can be used to instantiate the type variable: ∀X ≤ τ1. τ2. This means that X
can only be instantiated with a subtype of τ1.

Note that if there is a “top type” > (i.e., every type τ is a subtype of >), then ∀X. τ is equivalent to
∀X ≤ >. τ .

Subtyping and parametric polymorphism are largely orthogonal. We need to change the type variable
context ∆ so that it contains the bounds on type variables, so ∆ is now a sequence of elements of the form
X ≤ τ .

The syntax of expressions, values and types is now as follows.

e ::= n | x | λx :τ. e | e1 e2 | ΛX ≤ τ. e | e [τ]

v ::= n | λx :τ. e | ΛX ≤ τ. e
τ ::= int | τ1 → τ2 | X | ∀X. τ

The operational semantics are the same (modulo the minor changes to syntax). Most of the typing rules
remain the same. We present the rules for type abstraction, type application, and subsumption. Note that
type application requires that the instantiating type is a subtype of the declared bound on the type variable.
Note also that the subtyping relation now uses the type variable context ∆.

∆, X ≤ τ1,Γ ` e :τ2

∆,Γ ` ΛX ≤ τ1. e :∀X ≤ τ1. τ2
∆,Γ ` e :∀X ≤ τ1. τ2 ∆ ` τ ≤ τ1

∆,Γ ` e [τ] :τ2{τ/X}
∆,Γ ` e :τ ∆ ` τ ≤ τ ′

∆,Γ ` e :τ ′

The rule for subtyping a type variable simply uses the type variable context ∆.

∆ ` X ≤ τ
X ≤ τ ∈ ∆

The subtyping rule for polymorphic types is the most interesting. Going back to the subtyping principle,
∀X ≤ τ1. τ2 is a subtype of ∀X ≤ τ ′1. τ ′2 if whenever a value of type ∀X ≤ τ ′1. τ ′2 is expected, a value of type
∀X ≤ τ1. τ2 can be used instead. Intuitively, an expression of polymorphic type ∀X ≤ τ ′1. τ ′2 can be thought
of as a function from types to terms. That is, it takes a type as an argument, and returns an expression.
(By contrast, functions (also known as term abstractions) that we have seen previously are functions from
terms to terms.)

A term of type ∀X ≤ τ ′1. τ
′
2 may be instantiated with any type that is a subtype of τ ′1; for ∀X ≤ τ ′1. τ

′
2 to

be a subtype, it must also be able to be instantiated with any type that is a subtype of τ ′1, so we want τ ′1 to
be a subtype of τ1. That is, we are contravariant in the bound on the type variable. Also, when instantiated
on any type X that satisfies both constraints (i.e., X ≤ τ1 and X ≤ τ ′1), a value produced by an expression
of type τ2 should be usable at type τ ′2. So we want ∆, X ≤ τ ′1 ` τ2 ≤ τ ′2. The inference rule for subtyping on
polymorphic types is thus the following.

∆ ` τ ′1 ≤ τ1 ∆, X ≤ τ ′1 ` τ2 ≤ τ ′2
∆ ` ∀X ≤ τ1. τ2 ≤ ∀X ≤ τ ′1. τ ′2

Page 4 of 4

