
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Abstract interpretation

Lecture 21 Tuesday, April 15, 2014

1 Static program analyses

For the last few weeks, we have been considering type systems. The key advantage of type systems is
that they provide a static semantics to a program, allowing us to reason about all possible executions of
a program before actually running the program. However, in order to achieve this, type systems must
approximate the runtime behavior of a program. Type systems are (typically) flow-insensitive: the type of
a variable (i.e., the static information associated with the runtime value of a variable) is the same for the
entire execution of the program, regardless of which control flow path the program takes.

Abstract interpretation is another form of static semantics, allowing us to reason about the behavior of a
program before executing it.

Like type systems, abstract interpretation can be used to prove statically that various facts hold true
for all possible dynamic executions of a program. In this regard, they can provide greater assurance than
testing. Testing can verify the behavior of a program on one, or several, possible execution, but it is difficult
to use tests to provide assurance that all possible executions of a program will be acceptable.

2 Abstract interpretation

In abstract interpretation we define an abstract domain, an abstraction or approximation, of the real values
manipulated by a program, and define a semantics for the language that uses the abstract domain. The key
idea is that the abstract semantics for the language (which manipulates values from the abstract domain)
is a faithful approximation of the concrete semantics for the language (which manipulates values from the
concrete domain). By requiring the abstract domain to be “suitably finite” we can ensure that the abstract
interpretation of a program is guaranteed to terminate.

We consider abstract interpretation in IMP. Moreover, we’ll introduce the key ideas by considering an
analysis that computes the signs of variables.

We start by defining an abstract domain for integers, that captures their sign.

AbsInt = {pos, zero,neg , anyint}
In contrast to the concrete domain Int of possible integer values, the abstract domain AbsInt is clearly

finite. Furthermore, we can give a partial order to the elements of AbsInt as follows:

anyint

neg zero pos

In this diagram (which is called a Hasse diagram), if two elements are connected by an edge, then the
element higher up is a conservative approximation of the other element. We say that the element lower in
the diagram is more precise the element higher up, and write “x v y” to denote this . For example, pos is
more precise than anyint , and indeed, knowing that an integer is positive is more precise than just knowing
it is some integer.

The ordering is a partial order: it is reflexive, anti-symmetric, and transitive. Note that some elements of
a partial order may be incomparable. Indeed, pos and neg are incomparable: neither is more precise than
the other.

A partial order in which every pair of elements has a least upper bound is called a join semi-lattice. The
least upper bound of a pair of elements a and b is called the join of a and b, and is written a t b.

Lecture 21 Abstract interpretation

When we said earlier that the abstraction needs to be ”suitably finite”, what we really meant is that the
join semi-lattice of abstract values should have finite height; it may have an infinite number of elements,
but the height needs to be finite.

Given the abstract values AbsInt, we define abstract stores AbsStore to be functions from variables to
abstract values.

σ ∈ AbsStore = Var→ AbsInt

We can define a semantics for IMP that executes a program using the abstract store, and abstract values.
This is abstract interpretation: the analysis forgets the concrete values of variables, and instead uses an
approximation to their value; in this case, we are using the sign of integers.

Let’s start defining this semantics, using denotational semantics.

2.1 Arithmetic expressions

For an arithmetic expression, the analysis uses an abstract store to derive a sign for that expression. The
analysis tries to derive a precise sign for the expression. However, due to the lack of knowledge about
concrete values of variables, in certain cases it may be conservative and say that the sign of the expression
is unknown (represented as anyint). We express the analysis of arithmetic expressions using an abstract
denotation A′[[a]].

A′[[a]] :AbsStore→ AbsInt

A′[[n]]σ =


pos if n > 0

zero if n = 0

neg if n < 0

A′[[x]]σ = σ(x)

A′[[a1 + a2]] =



pos if (A′[[a1]]σ = pos ∧ A′[[a2]]σ ∈ {zero, pos})
∨(A′[[a1]]σ = zero ∧ A′[[a2]]σ = pos)

neg if (A′[[a1]]σ = neg ∧ A′[[a2]]σ ∈ {zero,neg})
∨(A′[[a1]]σ = zero ∧ A′[[a2]]σ = neg)

zero if A′[[a1]]σ = zero ∧ A′[[a2]]σ = zero

anyint otherwise

Note that all of these evaluations use just the information in the abstract store when reasoning about
variables. The evaluation has no knowledge about the concrete values of variables. In the last case, the
analysis cannot precisely determine the sign of the expression, and conservatively returns anyint .

2.2 Boolean expressions

We can also define a similar evaluation for boolean expressions. We use the following abstract domains for
booleans.

AbsBool = tru,fls, anybool

This domain includes the value anybool , indicating that the precise truth value of an expression cannot be
precisely determined. Again, we can define an ordering between these values and form a join semi-lattice
domain:

anybool

fls tru

Page 2 of 5

Lecture 21 Abstract interpretation

B′[[b]] :AbsStore→ AbsBool

B′[[true]]σ = tru

B′[[false]]σ = fls

The evaluation B′[[a1 < a2]]σ must evaluate the signs of subexpressions a1 and a2 (using the denotation for
arithmetic expressions) and try to determine the truth value of the comparison based on those signs.

B′[[a1 < a2]]σ =



tru if (A′[[a1]]σ = neg ∧ A′[[a2]]σ ∈ {zero, pos}
∨(A′[[a1]]σ = zero ∧ A′[[a2]]σ = pos)

fls if (A′[[a1]]σ = zero ∧ A′[[a2]]σ ∈ {zero,neg}
∨(A′[[a1]]σ = pos ∧ A′[[a2]]σ ∈ {zero,neg})

anybool otherwise

2.3 Commands

To finish up the analysis that determines the sign of variables, we must define how the analysis processes
commands. For each command c, we want to execute c in some abstract store before c, and determine an
abstract store after the command. At each point during the analysis of c, we will keep track of the current
abstraction at that point, but we will have no information about the concrete store (i.e., the concrete integer
values of variables). We express the analysis for a command c using an abstract denotation C′[[c]].

C′[[c]] :AbsStore→ AbsStore

Note that C′[[c]] is a total function, in contrast to the concrete semantics C[[c]], which is a partial function.
(Why?) The analysis of skip, assignment, and sequence is straightforward.

C′[[skip]]σ = σ

C′[[x := a]]σ = σ[x 7→ A′[[a]]σ]

C′[[c1; c2]]σ = C′[[c2]](C′[[c1]]σ)

More interesting is the analysis of an if command. If we can determine which branch is being taken given
the current sign information, then we only need to execute the appropriate branch. However, if we cannot
precisely determine the truth value of the condition, then we must conservatively analyze each branch in
turn and then combine the results:

C′[[if b then c1 else c2]]σ =


C′[[c1]]σ if B′[[b]]σ = tru

C′[[c2]]σ if B′[[b]]σ = fls

(C′[[c1]]σ) t (C′[[c2]]σ) if B′[[b]]σ = anybool

Note that the last case is the one that we usually expect in real programs – the case when we cannot
statically tell which branch is going to be executed (usually because the test depends on some input to the
program). The first two cases show that one branch is always taken; then, we can optimize the other branch
away, and replace the if command with branch being taken.

The join operation over two abstract stores, just takes the join of each variable. That is, suppose that
σ′′ = σ t σ′; then for any variable x, we define σ′′(x) = σ(x) t σ′(x).

Note that the semantics for a conditional yields the most precise sign of a variable given its signs on the
consequent and alternative of the conditional. If a variable x is positive on both branches, then x will map
to pos in the resulting abstract store; but if x has unknown sign on one branch, or if it has different signs on
the two branches, then x will map to anyint in the resulting abstract store.

Page 3 of 5

Lecture 21 Abstract interpretation

2.4 Example programs

Let’s consider a few examples. Let’s try the following sequence of assignments:

x := 4; y := −3; z := x+ y

If we start with a concrete store where all variables are initialized to zero (σ0 = [x 7→ 0, y 7→ 0, z 7→ 0]), then
the concrete execution of c yields:

C[[c]]σ = [x 7→ 4, y 7→ −3; z 7→ 1]

Now if we start with abstract store σ1 = [x 7→ zero, y 7→ zero, z 7→ zero] and we analyze the program using
the sign abstraction, we get:

C′[[c]]σ1 = [x 7→ pos, y 7→ neg ; z 7→ anyint]

Note that the analysis result C′[[c]]σ is faithful to the concrete result C[[c]]σ: the sign of each variable
correctly describe the actual value of that variable. However, the analysis may yield results that, despite
being correct, are not very accurate; in this case for z. This is the price to pay for restricting ourselves to the
abstract domain during the analysis.

Now consider a program with a conditional:

x := 4; y := 3; if x > y then x := x+ y else y := y − x

If we start with the same concrete store σ0, the program will take the true branch and yield:

C[[c]]σ0 = [x 7→ 7, y 7→ 4]

Starting with an abstract store σ2 = [x 7→ zero, y 7→ zero], we get the following. The first two assignments
will yield a store σ′

2 = [x 7→ pos, y 7→ pos]. Based on these signs, the analysis cannot determine whether the
test x > y succeeds. Therefore, it analyzes each branch. On the true branch, the analysis can determine that
x+ y is positive and maintain a positive sign for x:

C′[[x := x+ y]]σ′
2 = [x 7→ pos, y 7→ pos]

On the false branch, however, the analysis cannot determine the sign of y − x since both x and y are
positive, but their magnitudes are not known. Therefore, the analysis sets an unknown sign for y:

C′[[y := y − x]]σ′ = [x 7→ pos, y 7→ anyint]

Finally, the analysis combines the results from the two branches to get the following final result:

C′[[c]]σ = [x 7→ pos, y 7→ anyint]

So the analysis could successfully determine that x is positive at the end of the program, regardless of
the branch being taken; but it could not precisely determine the sign of y. As in the previous example, the
analysis result correctly models the signs of the values computed in the actual execution of the program.

2.5 Analysis of while loops

Consider analysis of a while loop while b do c. In the concrete semantics, we would repeatedly evaluate the
loop body c until the test b evaluates to false. Suppose we were executing the while loop with the abstract
semantics. If, in the abstract semantics, we evaluate b to tru , then we know we need to execute the loop
body. If, after executing the loop body zero or more times, b evaluates to the abstract value fls , then we
know that we can stop executing the loop. But what if after executing the loop body zero or more times, b
evaluates to anybool? That doesn’t tell us whether we need to execute the loop body again or not!

To get an intuition for the semantics of a while loop, lets think about what properties we want of the
abstract semantics. Intuitively, suppose we have some concrete store σ′

0, and we execute a program c, and it

Page 4 of 5

Lecture 21 Abstract interpretation

terminates with store σ′
1. And suppose that abstract store σ0 is a faithful approximation of σ′

0, and σ1 is the
result of executing our abstract semantics. Then σ1 should be a faithful approximation of σ′

1. The following
commutative diagram shows this graphically.

σ0 σ1

σ′
0 σ′

1

Abstract semantics

Concrete semantics

C′[[c]]

C[[c]]
faithful abstraction faithful abstraction

Let’s consider instantiating this with the while loop while b do c. For the concrete semantics to get from
store σ′

0 to σ′
1, the loop body is executed zero or more times. So, starting with an abstract store σ0, we want

to find a σ1 such that σ1 is an abstraction of executing the loop body zero or more times.
To make sure that it is a suitable abstraction after executing the loop body zero times, we need to make

sure that
σ0 v σ1.

To make sure it is a suitable abstraction after executing the loop body once, we need to make sure that

C′[[c]]σ0 v σ1.

Indeed, to make sure it is a suitable abstraction after executing the loop body n times, we need

C′[[c]]nσ0 v σ1.

Since, in a join semi-lattice, a t b v c if and only if a v c and b v c, we can state our requirements
succinctly: ⊔

i∈N
C′[[c]]iσ0 v σ1

Note that if σ1 maps every variable to anyint , then this constraint is satisfied. But such an abstract state
is useless: it tells us nothing about the sign of any variable. In fact, we want the most precise abstract store
σ1 that satisfies the requirements. That is, in fact,

⊔
i∈N C′[[c]]iσ0.

C′[[while b do c]]σ =
⊔
i∈N
C′[[c]]iσ

Note that σ1 =
⊔

i∈N C′[[c]]iσ0 is a fixed point of C′[[c]]; that is C′[[c]]σ1 = σ1. We have an efficient way to
find this fixed point:

C′[[while b do c]]σ = while (true)
σ′ = σ t C′[[c]]σ;
if σ′ = σ then

return σ
else
σ = σ′

This algorithm is guaranteed to terminate, since the abstract domain is of finite height. That is, each time
through the loop, either we have reached a fixed point (and σ′ = σ) or σ′ is less precise than σ for at least
one variable. But there are only a finite number of variables used in a program, and, with a finite-height
domain, only a finite number of times any given variable can be made less precise. Thus, we are guaranteed
to reach a fixed point eventually.

Page 5 of 5

