Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages
Concurrency
Lecture 24 Thursday, April 24, 2014

1 Concurrency

With increasingly parallel hardware, there is an corresponding increase in the need for concurrent programs
that can take advantage of this parallelism. However, writing correct concurrent programs can be difficult.
Language abstractions are a promising way to allow programmers to express concurrent computation in a
way that makes it easy (or at least, easier) for both the programmer and compiler to reasoning about the
computation.

In this lecture, we'll explore how to model concurrent execution, and investigate an effect system to
ensure that concurrent execution is deterministic despite threads potentially sharing memory.

1.1 A simple concurrent lambda calculus

Let’s consider a lambda calculus with a concurrent operator ||. That is, expression e ||ea will concurrently
evaluate e; and es. If expression e; evaluates to v; and es evaluates to vy, the result of evaluating e;||es will
be the pair (v1, v2).

We add first-class references, to make things interesting.

ex=z|n|Ar.e|ees|er|lea| (e1,e2) | #le| #2e|refe| le|e; :==es | L

vi=n|Az.e| (vy,v9) | £

We define a small step operational semantics for the language as follows. Most of the rules are standard.
The rules for the concurrent construct, however, are new.

E:=[]|FEe|vE|(Ee)| (v,E)|#1E|#2E |refE| |[E|E:=e|v:=F

(e,0) — e/, 0")

¢ ¢ dom(o)
(Ele],o0)y — (E[€'],0") {(Az.e)v,0y — (efv/z},0) (refv, o) — U o[l — v])
{00y — (v, 0 o) =v U= v,0) — (v, 0l — v]) (#1 (01, 02),0) — (v1, 0
<#2 (0177)2), U> - <027 U>
(e1,0) — (e, 0") (e2,0) —> (e, 0")
(e1llez, o) —> (eillea, 0”) (e1lle2, o) —> (erl|es, ") (ui|lvz, o) —> {(v1,v2),0)

Note that this operational semantics is nondeterministic. There are two rules for evaluating subexpres-
sions of the parallel e; ||e2. One rule evaluates one step of the left expression e;, and the other evaluates one
step of the right expression e,. (We could equivalently have added two more evaluation contexts, E||e and
e||E.) Indeed, this nondeterminism gets at the heart of concurrent execution.

Consider the following program, which models an account bank balance, with two concurrent deposits.

let bal = ref 0in (let y = (bal :=!bal + 25||bal :=!bal + 50) in !bal)

There are several possible final values that this program could evaluate to: 50, 25, and 75.

Lecture 24 Concurrency

In the absence of any synchronization mechanism, communication mechanism, or shared resource, the
concurrent evaluation of e; and e; does not allow e; and e; to communicate, or interfere with each other at
all. That s, it is pretty easy to execute e; and e; at the same time, since they cannot interfere with each other.
This is a good thing. Indeed, if we have a pure expression e in our language (i.e., no use of references) then
even though evaluation may be nondeterministic, the final result will always be the same. With side-effects,
however, the final result may differ, as shown above.

1.2 Effect system for determinism

Let’s consider a type system that ensures that when we execute a concurrent program, the result is always
deterministic. To do so, we will introduce two new concepts: memory regions and effects.

A memory region is a set of memory locations. For our purposes, every location ¢ will belong to exactly
one region, and we will annotated locations with the region to which they belong. For example, we will
write /£, to indicate that location ¢ belongs to region «. We will assume that the programmer provides us
with region annotations at allocation sites. We are going to use regions to help us track which locations a
program may read and write, in order to ensure determinism during evaluation. However, regions can be
used to help manage memory effectively (for example, deallocating an entire region at a time, instead of
individual locations), and it is often possible to infer regions of memory locations.

The modified grammar of the language, with region annotations, is as follows.

en=---|refyell,

vi=- | L,

A computational effect is an observable event that occurs during computation. The canonical example is
side-effects, such as reading or writing memory during execution or performing input or output (i.e., in-
teraction with the external environment). However, depending on what we regard as “observable”, it may
also include the termination behavior of a program, or whether a computation will produce an exception
or run-time error.

Whereas a type 7 describes the final value produced by a computation e, the effects of e describe ob-
servable events during the execution of e. An effect system describes or summarizes effects that may occur
during computation. (What do you think effects mean under the Curry-Howard isomorphism?) One use
of monads is to cleanly separate effectful computation from pure (i.e., non-effectful) computation.

For our language, we are interested in memory effects: that is, what memory locations a computation
may read or write during execution. We define a type and effect system to track these effects.

We write I, ¥ - e: 7> R,W to mean that expression under variable context I" and store typing ¥,
expression e has type 7, and that during evaluation of e, any location read will belong to a region in set R
(the read effects of), and any locations written will belong to a region in set W (the write effects of e).

We extend function types with read and write effects. A function type is now of the form 7 B A
function of this type takes as an argument a value of type 71, and produces a value of type 7; R and W
describe, respectively, the read and write effects that may occur during execution of the function.

. RW
T:::|nt|7'1—>T2‘T1><7'2‘Tr6fa
D(z) =7 lMe—r7],2F+e:7" =R W
[Y - niint>g, g IYrax:7>0, O F,E}—)\x:T.e:TMT’>®,@
RW

I'Yre:t——> 7R, Wy IS ey:7>Re, Ws I'Y+erTs>RW

I''Yhrere:T">RIURRUR W uWo uW I Xrrefye:rref, =R W
I''Yre:rref, =R W I'Yre:rtrefy,=Ri, Wy I''YF ey:7>Ro, Wo
'Y He:r=Ru{a}, W 'Y kei=e:7>R; U Ry, W1 UWh U {a}

Page 2 of 3

Lecture 24 Concurrency

F,EF€1371>R1,W1 F,EF@QZTQDRQ,WQ

Y(l,) = T ref,

F,Ek@a:TrefQ>@,@ Y+ (61,62):7'1 X T9 > R1 U R, W1 U Wy
YFermn xR W IYremn xm=RW
INYr+#lem=R W MY-#2eme=RW

The rule for dereferencing a location adds the appropriate region to the read effect. The rule for updating
locations adds the appropriate region to the write effect. The other rules just propagate read and write
effects as needed.

The rule for the concurrent operator (below) is the most interesting. A concurrent command e;||es is
well-typed only if the write effect of e; does not intersect with the read or write effects of e3, and vice versa.
That is, there is no region such that e; writes to that region, and e, reads or writes to the same region. This
prevents data races, i.e., two threads that are concurrently accessing the same location, and one of those
accesses is a write.

F,E|—€1:7'1>R1,W1 Wlﬂ(RQUWQ):@
'Y hFeymesRy, Wy Won (R1 U Wl) =

Y+ 61||€227’1 X o> R1 U Ro, Wy U Woy

What is type soundness for this type system? Intuitively, it extends our previous notion of type safety
(i.e., not getting stuck), with the notion that R and W correctly characterize the reads and writes that a pro-
gram may perform. We express this idea with the following theorem. (Note that we assume that evaluation
contexts include E|le and e||E.)

Theorem 1 (Type soundness). If - e:7 = R, W then for all stores o and o,
e if, for some evaluation context E, we have {e,oy —* (E[W,],c"), then a € R.
e if, for some evaluation context E, we have {e,oy —>* (E[ly :=v],0"), then a € W.
o if{e,oy —>* (e, o) then either ¢’ is a value or there exists ¢” and o” such that (¢, "y —> (", o").

The theorem says that if expression e is well typed, and, during its evaluation, it dereferences a location
belonging to region «, then the type judgment had « in the read effect of e. It also says that if evaluation
updates a location /,, then « is in the write effect of e. (We could also have tracked the allocation effect of e,
i.e., in which region e allocates new locations, but we don’t need to for our purposes.)

The following theorem says that a well-typed program is deterministic. If there are two executions, then
both executions produce the same value.

Theorem 2 (Determinism). IfT',3 - e:7 >R, W and {e,0) —* (vy,01) and e —* (va, o3) then v; = vs.

The proof of this theorem relies on the following key lemma, which says that if a well-typed concurrent
expression e ||eg can first take a step with es, and then take a step with e, then we can first step e; and then
ez, and end up at the same state.

Lemma 1. If for some 3, 7, R and W we have 5,3 \ e1||ea: 7 = R, W, then for all o such that T, % + o if
(eillea, o) —> {er|les, 0"y —> {el|les, o),

then there exists o™ such that

(e1llez, o) — (eillez, 0") — (eyllez, o”).

Intuitively, the proof works by showing that given any two executions of a program, they are both
equivalent to a third execution in which we always fully evaluate the left side of a concurrent operator first,
before starting to evaluate the right side of a concurrent operator. By transitivity, the two executions must
be equal, and produce equal values.

Page 3 of 3

