
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Abstractions for Concurrency

Lecture 18 Tuesday, April 7, 2015

1 Message passing

Last lecture we looked at a shared memory model of concurrency: different threads could concurrently
access the same memory locations. A shared memory model is commonly used in many programming
languages. However, shared memory can make it difficult to reason about the interaction between threads.

This lecture we consider a different model of concurrency: message passing. In this model, threads
communicate by sending and receiving messages over channels. Channels are first-class values: they can
be created at runtime, and used as values, including being passed as messages over channels.

Several languages use message passing, including Erlang, Go, Rust, Racket, X10, Smalltalk, F#, Concur-
rent ML (CML), and others.

The following grammar describes our language.

c P ChanId
e ::“ λx :τ. e | x | e1 e2 | n | e1 ` e2 | pq | µf. e

| c | spawn e | newchanτ | send e1 to e2 | recv from e

v ::“ n | c | pq | λx :τ. e

τ ::“ int | unit | τ chan | τ1 Ñ τ2

The language is a lambda calculus with integers, fixpoints (µf. e), and primitives for creating threads,
and creating and using channels. Primitive spawn e creates a new thread, and expression e will execute
in the new thread. A new channel can be created with primitive newchanτ . The type annotation τ will be
used to enforce that the new channel is used to send and receive values of type τ .

Expression send e1 to e2 computes e1 to a value v, computes e2 to a channel c, and sends v over channel
c. The send “blocks” until some other thread executes a recv on the same channel, and then evaluates to the
unit value pq. That is, execution of the send e1 to e2 expression doesn’t complete until some thread receives
the value. Expression recv from e evaluates e to a channel c and then blocks until it receives a value on
channel c. The expression evaluates to the value received.

The type system for this language expresses some aspects of the intended behavior of these new primi-
tives.

Γ $ e :τ

Γ $ spawn e :unit Γ $ newchanτ :τ chan
Γ $ e1 :τ Γ $ e2 :τ chan

Γ $ send e1 to e2 :unit
Γ $ e :τ chan

Γ $ recv from e :τ

1.1 Operational semantics

A configuration is now a list of expressions, one expression for each thread. That is, configuration xe1, . . . , eny
represents the concurrent execution of n threads.

We use two judgements to define the operational semantics, one to indicate how a configuration (i.e., a
list of threads) takes a step, and one to indicate how an individual thread takes a step. We use judgment
xe1, . . . , eny ùñ xe11, . . . , e

1
my to indicate that configuration xe1, . . . , eny can take a small step to xe11, . . . , e1my

and we write e ÝÑ e1 to indicate that thread e can take a small step to e1. For clarity, we present the entire
operational semantics for the language here.

We first present the inference rules for the thread judgment e ÝÑ e1.

E ::“ r¨s | E e | v E | E ` e | v ` E | send E to e | send v to E | recv from E

Lecture 18 Abstractions for Concurrency

e ÝÑ e1

Eres ÝÑ Ere1s pλx :τ. eq v ÝÑ etv{xu n1 ` n2 ÝÑ m
m “ n1 ` n2

newchanτ ÝÑ c
c is fresh

We now present the rules for judgment xe1, . . . , eny ùñ xe11, . . . , e
1
my. As a notational convenience, we

write xe1, . . . , enyi ÞÑe1 as shorthand for the configuration xe1, . . . , ei´1, e
1, ei`1, . . . , eny, i.e., where the ith

thread is replaced with expression e1.

ei ÝÑ e1i

xe1, . . . , eny ùñ xe1, . . . , enyi ÞÑe1
i

ei “ Erspawn es
xe1, . . . , eny ùñ xe1, . . . , en, eyi ÞÑErpqs

ei “ Eirsend v to cs ej “ Ejrrecv from cs

xe1, . . . , eny ùñ xe1, . . . , enyiÞÑEirpqs,j ÞÑEjrvs

The first rule for configurations states allows a thread of the configuration to take a step. This rule is
nondeterministic: any thread that can take a step is allowed to. That is, we are not modeling any scheduler
that restricts the order in which threads may execute.

The next rule describes spawning a new thread (spawn e), which is added to the end of the list of threads.
The last rule handles a matching send and receive on the same channel. The thread evaluating the receive
term evaluates to the value sent by the other thread. This semantics enforces blocking, in that the thread
sending cannot complete the send operation until some other thread executes a receive, and vice versa.

1.2 Example

For convenience, we write e1; e2 as shorthand for let x “ e1 in e2 where x R FV pe2q. (This notation is only
useful in a language with side-effects. Why?)

The follow program creates a new channel, spawns a thread that sends an integer value on the channel,
and the original thread receives the value and adds 7 to it.

let c “ newchanint in
spawn psend 35 to cq;
recv from c` 7

The final configuration for this program will be x42, pqy. Make sure you understand how this configura-
tion is derived from an initial configuration that contains a single thread that executes the program above.

What about the following program? What does it do?

let c “ newchanint in
spawn pµf. psend 35 to c; fq;
recv from c` recv from c` recv from c

Note that even though there is no shared memory, the language is still non-deterministic. Consider the
following program, where 2 threads are executing a receive instruction, and one thread is executing a send,
all on the same channel. What are the possible final configurations?

let c “ newchanint in
spawn p3` recv from cq;

spawn p5` recv from cq;

send 15 to c

Page 2 of 5

Lecture 18 Abstractions for Concurrency

2 First-class synchronization

Sending and receiving on channels as described above is synchronous. This is often desirable, but some-
times we would like asynchronous sends and receives. For example, suppose we wanted to know when a
message was received on either channel c or channel d; it can be awkward to achieve this when sends and
receives are synchronous.

Motivated by this need for asynchrony, we introduce events, which are abstract representations of syn-
chronous operations. By having appropriate primitive operations on events, we can express asynchronous
communication, and also other interesting synchronization patterns. Events, and the operations on them,
come from Concurrent ML (CML), developed by John Reppy in the 80s and 90s. Events can be thought of
as decoupling the description of a synchronous operation (e.g., “send value v to channel c”) from the act of
synchronizing on the operation.

We extend our concurrent language above with a new type τ event, which represents events. Intuitively,
a value of type τ event is a synchronous operation that will yield a value of type τ when it is synchronized
upon.

Given a channel c of type τ chan, we can construct an event of type τ event for the primitive syn-
chronous operators recvEvt and sendEvt. Intuitively, if event v is constructed using recvEvt from c, then v
will have a value of type τ available once a receive event of c occurs, i.e., once we have received a value on
c. Before receiving a value on c, event v does not have a value of type τ available. The primitive operation
sync v synchronizes on event v: it will block until event v has a value available, and will then evaluate to
the received value.

Similarly, if event w is constructed using sendEvt a to c, then w will have a value of type unit available
once value a has been successfully sent over channel c. And, sync w will block until the send has occurred
(and will then evaluate to the unit value pq).

Finally, given two events v and w, both of type τ event, primitive operation choose v w produces a
new event that has a value available when either v or w has a value available. For example, synchronizing
on choose precvEvt from cq precvEvt from dq will block until a value is received on either channel c or on
channel d.

The syntax of expressions and types is extended as follows.

e ::“ ¨ ¨ ¨ | recvEvt from e | sendEvt e1 to e2 | sync e | choose e1 e2
τ ::“ ¨ ¨ ¨ | τ event

The additional typing rules for events are as follows.

Γ $ e :τ chan
Γ $ recvEvt from e :τ event

Γ $ e1 :τ Γ $ e2 :τ chan
Γ $ sendEvt e1 to e2 :unit event

Γ $ e :τ event
Γ $ sync e :τ

Γ $ e1 :τ event Γ $ e2 :τ event
Γ $ choose e1 e2 :τ event

Before we see the formal semantics for events, let’s consider some examples.
The following program sends 42 on a channel, does some other stuff, and then synchronizes on the

event.

let c “ newchanint in
spawn pdo some long computation; recv from cq;

let w “ sendEvt 42 to c in
do some other computation;

sync w;

do more stuff after the send finishes

Page 3 of 5

Lecture 18 Abstractions for Concurrency

Here’s a more interesting example, where the main thread spawns three of threads that search (very
inefficiently!) for a multiple of 42, and then the main thread blocks until one of the spawned threads
succeeds.

let f “ λc : int chan. µg. λx : int. if ppx mod 42q “ 0q psend x to cq pg px` 3qq in
let c1 “ newchanint in
let c2 “ newchanint in
let c3 “ newchanint in
spawn pf c1 43q;

spawn pf c2 44q;

spawn pf c3 45q;

let d “ choose precvEvt from c1q pchoose precvEvt from c2q precvEvt from c3qq in
sync d

The choose operation allows the main thread to synchronize on any of the three threads, i.e., find the
first solution to the search problem.

2.1 Translational semantics

We define the semantics of the new events and primitives by a translation to our calculus with blocking
sends and receives. The translation is type directed, as we need to know the types of expressions in order
to perform the translation correctly (specifically, in order to add the correct type annotations). We write
T rre :τ ss to indicate that we are translating expression e of type τ .

The idea behind the translation is as follows. An event of type τ event is translated to a value with type
pτ chanq chan, i.e., a channel that we will send a τ chan value over to it. The guarantee is that when the
event occurs (i.e., when the value of type τ is available), the value will be sent over the channel that was
passed in. Thus, we translate the sync e operation to create a new channel of τ , and pass that to the event,
and then wait to receive a value over that channel. For a choose primitive, we create a channel that will
accept a τ -channel, and send that τ -channel to both of the events.

For convenience we use e1; e2 as shorthand for let x “ e1 in e2 where x R FV pe2q.

T rrrecvEvt from e :τ eventss “ let c “ T rre :τ chanss in
let d “ newchanτ chan in
spawn plet x “ recv from c in let y “ recv from d in send x to yq;
d

T rrsendEvt e1 to e2 :τ eventss “ let v “ T rre1 :τ ss in
let c “ T rre2 :τ chanss in
let d “ newchanunit chan in
spawn plet x “ send v to c in let y “ recv from d in send x to yq;
d

T rrsync e :τ ss “ let d “ T rre :τ eventss in
let c “ newchanτ in
send c to d;

recv from c

T rrchoose e1 e2 :τ eventss “ let c “ T rre1 :τ eventss in

Page 4 of 5

Lecture 18 Abstractions for Concurrency

let d “ T rre2 :τ eventss in
let x “ newchanτ chan in
spawn plet y “ recv from x in

spawn psend y to cq;
send y to dq;

x

Page 5 of 5

