
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Dynamic types

Lecture 19 Thursday, April 9, 2015

1 Error-propagating semantics

For the last few weeks, we have been studying type systems. As we have seen, types can be useful for
reasoning about a program’s execution (before ever actually executing the program!) and also for restricting
the use of values or computations (for example, using existential types to provide encapsulation).

However, many currently popular languages (including JavaScript, Perl, PHP, Python, Ruby, and Scheme)
do not have static type systems. None-the-less, during execution these languages manipulate values of dif-
ferent types, but when a value is used in an inappropriate way, the program does not get stuck, but instead
causes an error at runtime.

To model these dynamic type errors, let’s extend an (untyped) lambda calculus with a special Err value.

e ::= x | λx. e | e1 e2 | n | e1 + e2 | Err
v ::= n | λx. e | Err

Note that Err is not part of the “surface syntax”, i.e., the source program will not contain Err, but instead
this special value will only arise during execution. (This is similar to locations `, which are created by
allocation, but do not appear in source programs.)

The intention is that if we dynamically encounter a type error (e.g., try to add two functions together, or
apply an integer as if it were a function), we will produce the Err value.

E ::= E e | v E | E + e | v + E

e −→ e′

E[e] −→ E[e′] (λx. e) v −→ e{v/x}
v 6= Err

n1 + n2 −→ n
n = n1 + n2

v1 v2 −→ Err
v1 6= λx. e

v1 + v2 −→ Err
v1 or v2 not an integer

We also need some rules to propagate errors. For example, if the argument to a function is an error.

(λx. e) Err −→ Err

Let’s see an example of a program executing.

42 + ((λf. λn. f (n+ 3)) (λx. x) (λx. x))

−→42 + ((λn. (λx. x) (n+ 3)) (λx. x))

−→42 + ((λx. x) ((λx. x) + 3))

−→42 + ((λx. x) Err)

−→42 + Err

−→Err

Note that once an error has occurred in a subexpression, the error will propagate up to the top level.
In our simple calculus, it is easy for us to determine syntactically whether a particular value is an integer

or a function, and thus to figure out whether it is being used appropriately. In an implementation, however,

Lecture 19 Dynamic types

we may need to ensure that at run time we have some way of distinguishing values of different types. For
example, we wouldn’t be able to implement this error-propagating semantics if both integers and functions
were represented using 32 bits with no way to distinguish them (e.g., 32-bit signed integers, and 32-bit
pointers to function bodies).

Given that we need this run-time information to distinguish values of different types, we could provide
primitives to allow the programmer to query the type of a value. This would allow a careful or paranoid
programmer to avoid dynamic type errors. We extend the language with booleans, conditionals, and prim-
itives to check whether a value is an integer or a function.

e ::= · · · | true | false | if e1 then e2 else e3 | is int? e | is fun? e | is bool? e
v ::= · · · | true | false
E ::= · · · | if E then e2 else e3 | is int? E | is fun? E | is bool? E

if true then e2 else e3 −→ e2 if false then e2 else e3 −→ e3

if v then e2 else e3 −→ Err
v 6= true and v 6= false

is int? n −→ true is int? v −→ false
v not an integer and v 6= Err

is fun? λx. e −→ true

is fun? v −→ false
v 6= λx. e and v 6= Err

is bool? v −→ true
v = true or v = false

is bool? v −→ false
v 6∈ {true, false,Err}

Again, we need some additional rules to propagate errors.

is int? Err −→ Err is fun? Err −→ Err is bool? Err −→ Err

As a concluding remark in this section, notice that instead of duplicating almost all of our inference
rules to propagate errors one evaluation context frame per evaluation step, a single rule would be sufficient
to immediately abort evaluation with an error:

e −→ Err

E[e] −→ Err

When an error occurs, this rule discards the remainder of the program (i.e., the context E) and returns the
error immediately as the result of the evaluation of the program. On one hand, this alternative formulation
simplifies the semantics of our small calculus. On the other hand, it complicates the extension of the calculus
with exception handlers (which we discuss next). Thus for the remainder of the lecture we stick to rules
that propagate errors one evaluation context frame per evaluation step.

2 Exception handling

As mentioned above, once an error has occurred in a subexpression, it propagates up to the top level.
However, if a programmer knows how to handle an error, then we should perhaps allow the programmer
to “catch” or handle the error. Indeed, let’s give the programmer an explicit mechanism to raise an error.
This is similar to an exception mechanism, where exceptions can be raised (also known as “throwing” an
exception), and then caught by handlers. We could extend the language to have different kinds of errors,
or exceptions, that can be raised, and extend our handler mechanism to selectively catch errors. Let’s not
go quite that far, but we will add values to errors.

Page 2 of 7

Lecture 19 Dynamic types

e ::= · · · | try e1 catch x. e2 | raise e
v ::= · · · | Err v
E ::= · · · | try E catch x. e2 | raise E

The raise primitive raises an error, and try e1 catch x. e2 will evaluation e1, and evaluate e2 with x bound
to value v only if e1 evaluates to Err v.

raise v −→ Err v
v 6= Err v′

raise (Err v) −→ Err v

try Err v catch x. e2 −→ e2{v/x} try v catch x. e2 −→ v
v 6= Err v′

We give new rules for creating errors, so that when evaluation raises an error, it has a value associated
with it. Here we use the integer zero to indicate that a non-function value was applied, integer 1 to indicate
that a non-integer value was used as an operand for addition, and integer 2 to indicate that a non-boolean
value was used as the test for a conditional. Of course, in a more expressive language, we may use strings
to describe the errors.

v1 v2 −→ Err 0
v1 6= λx. e and v1 6= Err v

(Err v1) v2 −→ Err v1

v1 + v2 −→ Err 1
v1 or v2 not an integer and v1 6= Err v and v2 6= Err v′

(Err v1) + v2 −→ Err v1

n1 + Err v −→ Err v if v then e2 else e3 −→ Err 2
v 6= true and v 6= false and v 6= Err v′

if Err v then e2 else e3 −→ Err v

(We would, of course, need to also modify the previous rules we presented in Section 1 to account for
the fact that Err now has a value associated with it. This is straightforward, and we omit the details.)

Consider the following program:

let foo = λx. if is int? x then x+ 7 else raise (x+ 1)

in foo (λy. y)

What happens when we execute it?

3 Contracts

We introduced primitive operations to distinguish integers, booleans, and functions. These operations
permit a defensive programmer to insert checks that ensure that values are of the expected type at a given
point of the program execution.

However, introducing these checks into a program is not always easy or possible. First, programmers
must work hard to insert checks at the right places. Second, they must work even harder to maintain
checking code as programs evolve. Third, missing checks may lead to type errors that go undetected until
a latter step in the execution of a program. As a result, programmers may end up looking at the wrong
place for a bug after a check raises an error. Fourth, for programs that expect functions as arguments, it is
not possible for programmers to modify the functions-arguments and inject checks in them. To partially
cope with this latter problem, programmers must insert even more subtle checks to their code to make sure
that the functions their code consumes behave as expected (consider how the process of inserting checks

Page 3 of 7

Lecture 19 Dynamic types

becomes more and more complicated as programs consume functions that consume functions that consume
functions etc.).

The following example demonstrates some of the issues we discuss above.

let double = λf. f (f 0) in
let pos = λi. if i < 0 then false else true in
double pos

Function double takes in a function f , applies it to zero, and applies f again to the result. Clearly, double
is expecting f to be a function that accepts integers, and returns integers. Function pos , however, takes an
integer and returns a boolean. Let’s see what happens when we run the program.

double pos

−→pos (pos 0)

−→∗pos true
−→if true < 0 then false else true

−→∗Err 1

When we run the program, we get a runtime error in the (second) execution of pos when we try to check
whether true is a negative number (the error comes with code 1 to indicate that an arithmetic operation
failed). Consider what would be required to debug this error. First, we would need to realize that the error
occurred in the execution of pos , due to the argument to pos being inappropriate. Then we need to figure
out that the call that passed the wrong argument occurred in double . Then we need to figure out that the
argument was the result of calling f 0, then we need to figure out that f was instantiated with pos . Then,
we need to look into the code of pos to see why the result is not an integer. *phew*.

Even in this simple situation, the debugging process requires quite some work. Exactly because we
haven’t inserted the necessary checks, the actual type error occurs in a place not directly related to the
real source of the error. Assume, now, that we are the authors of double and that the previous example is
the result of a third-party (another programmer) that tries to use our function with their implementation
of pos . Let’s see how the example would look like, if we had programmed defensively and inserted all
the necessary checks in the body of double to help the third-party programmer detect the type error as
accurately and as early as possible.

let double = λf. if is fun? f then

let x = f 0 in
let y = f (if is int? x then x else raise 1) in
if is int? y then y else raise 1

else raise 0 in
let pos = λi. if i < 0 then false else true in
double pos

Now double has all the necessary checks and the example raises an error when the first call to pos returns.
That is, because of the checks we inserted, we can at least be sure that nothing is wrong with our imple-
mentation of double . However, our previous one-line implementation of double has been replaced with a
much more complicated version. Imagine how much more obscure and cluttered the new version would
look like if double was doing something more complicated... If only there was a mechanism that (i) let us
state a specification for double (i.e., that it is a function that consumes a function f from integers to integers
and returns an integer) and (ii) injected automatically the implementation of double with all the necessary
checks.

Page 4 of 7

Lecture 19 Dynamic types

Programming languages researchers have developed a language feature that does exactly that: con-
tracts. Contracts originate from the programming language Eiffel where they became the corner-stone of
the Design by Contract methodology, a methodology that advocates that programmers should start cod-
ing by first writing a contract for their code and then code against it. Nowadays, many languages come
with built-in or library support for contracts (e.g. Java, Javascript, Python, Ruby, PHP, Racket, Common
Lisp). These contracts can describe the specifications not only of functions but also of classes, objects and
other language features. In the remainder of this section, we introduce contracts for higher-order functions
through a simple calculus.1

A flat contract is simply a function that accepts a value, and returns true if the value meets the contract
(i.e., is good, or acceptable), and returns false otherwise. A monitor monitor(e1, e2) combines a computation
e1 with a contract e2 and will evaluate e1 and e2 to values v1 and v2, and then apply the contract v2 to the
value v1. If the contract says that v1 is acceptable, then execution continues using v1; otherwise a run time
error is raised.

Flat contracts allow us to check that values are integers, booleans, etc.2 However, flat contracts are’t
suitable for ensuring that functions accept and produce values of appropriate types.

We introduce a function contract e1 7−→ e2, which we will use to monitor evaluation of functions. Expres-
sions e1 and e2 are contracts, and when we apply a function to an argument v, we will use contract e1 to
make sure that v is an appropriate argument, and, if the evaluation of the function application terminates,
then we will use contract e2 to check that the result is appropriate.

The following describes the syntax and semantics for extending our language with function contracts
and monitors.

e ::= · · · | e1 7−→ e2 | monitor(e1, e2)

v ::= · · · | v1 7−→ v2 | monitor(v, v1 7−→ v2)

E ::= · · · | E 7−→ e | v 7−→ E | monitor(e, E) | monitor(E, v)

(monitor(λx. e, v1 7−→ v2)) v
′ −→ monitor((λx. e (monitor(v′, v1))), v2)

(monitor(v, v1 7−→ v2)) v
′ −→ raise 3

v 6= λx. e

monitor(v, v′) −→ if v′ v then v else raise 3
v′ 6= v1 7−→ v2

Intuitively, when we have a function application λx. e that is being monitored by contract v1 7−→
v2, we first make sure that argument v passes contract v1 (using monitor(v1, v)), apply the function to
the result, and make sure that the result of the function application will have contract v2 called on it
(monitor((v (v1 v

′)), v2)).
We also need some rules to propagate error values.

(Err v 7−→ e) −→ Err v (e 7−→ Err v) −→ Err v monitor(Err v, e) −→ Err v

monitor(e,Err v) −→ Err v

Let’s take a look at our double example again, this time using a function contract to ensure that double
takes as input, a function from integers to integers, and returns an integer. We also put a function contract
on pos to show that it is a function from integers to booleans. That is, we are making the specification of
both double and pos explicit in the code, via contracts, and are checking these specifications as the program
executes.

1For more information, see Contracts for Higher-Order Functions by Findler and Felleisen, in Proceedings of the Seventh ACM SIGPLAN
International Conference on Functional Programming, 2002.

2In fact, contracts can go beyond simple static type checking, and check arbitrary properties, for example, that an integer is even.
For the purposes of this class, we’ll just consider type-checking-like properties.

Page 5 of 7

Lecture 19 Dynamic types

let double = monitor(λf. f (f 0), (is int? 7−→ is int?) 7−→ is int?) in
let pos = monitor(λi. if i < 0 then false else true, is int? 7−→ is bool?) in
double pos

Note that the contract for double is (is int? 7−→ is int?) 7−→ is int? , indicating that it takes as an argument
a value satisfying function contract is int? 7−→ is int? and will return a value satisfying the flat contract
is int? . Similarly, the contract for pos indicates that it takes an integer as an argument and returns a boolean.

Let’s consider the execution of this program.

double pos

=(monitor(λf. f (f 0), (is int? 7−→ is int?) 7−→ is int?)) pos

−→monitor((λf. f (f 0)) (monitor(pos, is int? 7−→ is int?)), is int?)

=monitor((λf. f (f 0))

(monitor(monitor(λi. if i < 0 then false else true, is int? 7−→ is bool?), is int? 7−→ is int?)), is int?)

−→monitor((M (M 0)), is int?)

where M = monitor(monitor(λi. if i < 0 then false else true, is int? 7−→ is bool?), is int? 7−→ is int?).
Let’s consider the evaluation of M 0.

M 0

=(monitor(N, is int? 7−→ is int?)) 0

where N = monitor(λi. if i < 0 then false else true, is int? 7−→ is bool?)

−→monitor(N monitor(0, is int?), is int?)

−→∗monitor(N 0, is int?)

−→monitor(monitor((λi. if i < 0 then false else true) monitor(0, is int?), is bool?), is int?)

−→∗monitor(monitor((λi. if i < 0 then false else true) 0, is bool?), is int?)

−→monitor(monitor((if 0 < 0 then false else true), is bool?), is int?)

−→monitor(monitor(true, is bool?), is int?)

−→∗monitor(true, is int?)

−→∗Err 3

So what happened here? Again, we got a run time error as a result of executing this program. But
note that with minimum changes to the code of the initial example, we got an error as informative as in
the version where we manually injected the checks. And we achieved this without having to tedioulsy add
checks all over our example: contracts enforced automatically and correctly our specification for double and
pos .

3.1 Blame

In the example above, the function contract for double helped us correctly and with minimum effort detect
that pos 0 does not evaluate to an integer. However, our calculus for contracts does not provide any infor-
mation about the source of the contract error. In particular, which part of our program should we blame for
this error? Where in the code should we start our debugging effort from to fix the problem? That is, did the
developer of function pos implement that function incorrectly? Or was it the case that function double was
using its argument f incorrectly?

Assigning blame in our simple example may seem easy but is not. In a higher order setting blame
assignment becomes quickly subtle. Since a function can pass from one piece of code to another, the code

Page 6 of 7

Lecture 19 Dynamic types

that ends up applying arguments to a function may be unaware of the function’s contract. That is the code
during whose execution the contract error is raised may not be the culprit of the contract violation. For
instance, assume that our running example consists of three different pieces of code: double , pos and the
“main” code of the program that applies double to pos . The contract violation occurs when we evaluate the
body of double but of course, the error is not double’s fault. The contract of double states that its argument
should be a function from integers to integers and double uses it as such. So is it pos’s fault that it is
not a function that returns integers? No, pos’s contract specifies that pos should return a boolean, as pos
does. Then, if both functions involved are innocent, which piece of code should we blame? The answer is
that we should blame “main” because it is the piece of code that brought two functions together without
respecting their contracts. Put differently, a contract is a binding agreement between the provider of a
function and a piece of code that decides to use it. And this agreement binds the user code even if the user
code passes the function to a third piece of code. In practical terms, this interpretation of blame helps us
avoid spending time trying to find a bug in double and pos that do nothing more that behave according to
their specifications. Instead, blame guides us to reconsider the correctness of the faulty “main” code.

We can extend our simple contracts calculus to keep track of blame, and assign blame correctly upon
contract violations. Intuitively, all a monitor needs to do is keep track of two entities: a label p representing
the provider of the code that it is monitoring (i.e., who is producing the value), and a label n representing
the context that chooses to use the code with the contract. The idea is that if a function is being monitored,
then n is responsible for any code n passes the function to and may apply arguments to the function. We
can think of these labels p and n as being module names, or separate pieces of code. In our example, as we
discuss above, there are three entities involved, and thus three different labels: one label for code from the
function double , one label for code from the function pos , and one label for the “main” code.

The rules for blame-tracking monitors are as follows:3

(monitor(λx. e, v1 7−→ v2, p, n)) v
′ −→ monitor((λx. e) monitor(v′, v1, n, p), v2, p, n)

(monitor(v, v1 7−→ v2, p, n)) v
′ −→ raise “Blame p”

v 6= λx. e

monitor(v, v′, p, n) −→ if v′ v then v else raise “Blame p”
v′ 6= v1 7−→ v2

The key things to note is that for a monitored function application (monitor(v, v1 7−→ v2, p, n)) v
′, if v′

does not satisfy contract v1, then n will be blamed, i.e., the code responsible for providing to v arguments
that satisfy v1. As in our example, n may not be the immediate context that provides v′ but rather the code
that agreed to v’s contract. By contrast, if the result of the function application doesn’t satisfy contract v2,
then p will be blamed.

As a final note, where do the labels come from? It is not the programmer’s job to identify the labels for
the monitor. Rather, the language compiler and runtime is responsible for selecting the labels. The positive
party p for a monitor can be identified immediately: it is the label of the code where the monitor is defined.
Identification of the negative party n for a monitor is delayed until a value is used. That is, it is when a
monitored function is applied, that the negative label is set to be the context that uses of the function. In
our example, for functions double and pos , this context is the “main” code, i.e., the code that applies double
to pos (given these labels, the example raises a contract error that blames “main” as we expect).

3Of course, we need to extend the syntax of monitors to include blame labels: monitor(e, e, x, x). Also we add strings to our values
so that we can throw informative exceptions upon contract violations.

Page 7 of 7

