Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages Parametric polymorphism, records, subtyping, Curry-howard Isomorphism, Existential types Section and Practice Problems

Monday March 30, 2015

1 Parametric polymorphism

- (a) For each of the following System F expressions, is the expression well-typed, and if so, what type does it have? (If you are unsure, try to construct a typing derivation. Make sure you understand the typing rules.)
 - $\Lambda A. \lambda x : A \rightarrow \text{int.} 42$
 - $\lambda y : \forall X. \ X \to X. \ (y \ [int]) \ 17$
 - $\Lambda Y. \Lambda Z. \lambda f: Y \to Z. \lambda a: Y. f a$
 - $\Lambda A. \Lambda B. \Lambda C. \lambda f: A \to B \to C. \lambda b: B. \lambda a: A. f a b$
- (b) For each of the following types, write an expression with that type.
 - $\forall X. X \to (X \to X)$
 - $(\forall C. \forall D. C \to D) \to (\forall E. \text{ int } \to E)$
 - $\forall X. X \to (\forall Y. Y \to X)$

2 Records and Subtyping

(a) Assume that we have a language with references and records. Write an expression with type

 $\{ cell : int ref, inc : unit \rightarrow int \}$

such that invoking the function in the field *inc* will increment the contents of the reference in the field *cell*.

Assuming that the variable y is bound to your expression, write an expression that increments the contents of the cell twice.

(b) The following expression is well-typed (with type **int**). Show its typing derivation. (Note: you will need to use the subsumption rule.)

 $(\lambda x: \{ dogs : int, cats : int \}$. $x.dogs + x.cats) \{ dogs = 2, cats = 7, mice = 19 \}$

3 Curry-Howard Isomorphism

The following logical formulas are tautologies, i.e., they are true. For each tautology, state the corresponding type, and come up with a term that has the corresponding type.

For example, for the logical formula $\forall \phi. \phi \implies \phi$, the corresponding type is $\forall X. X \rightarrow X$, and a term with that type is $\Lambda X. \lambda x : X. x$. Another example: for the logical formula $\tau_1 \wedge \tau_2 \implies \tau_1$, the corresponding type is $\tau_1 \times \tau_2 \rightarrow \tau_1$, and a term with that type is $\lambda x : \tau_1 \times \tau_2. \#1 x$.

You may assume that the lambda calculus you are using for terms includes integers, functions, products, sums, universal types and existential types.

(a) $\forall \phi. \forall \psi. \phi \land \psi \implies \psi \lor \phi$

- (b) $\forall \phi. \forall \psi. \forall \chi. (\phi \land \psi \implies \chi) \implies (\phi \implies \chi))$
- (c) $\exists \phi. \forall \psi. \psi \implies \phi$
- (d) $\tau \implies (\forall \phi. \phi \implies \tau)$
- (e) $(\forall \phi. \phi \implies \tau) \implies \tau$

4 Existential types

- (a) Write a term with type $\exists C$. { *produce* : **int** $\rightarrow C$, *consume* : $C \rightarrow$ **bool** }. Moreover, ensure that calling the function *produce* will produce a value of type C such that passing the value as an argument to *consume* will return true if and only if the argument to *produce* was 42. (Assume that you have an integer comparison operator in the language.)
- (b) Do the same as in part (a) above, but now use a different witness type.
- (c) Assuming you have a value v of type $\exists C$. { *produce* : **int** $\rightarrow C$, *consume* : $C \rightarrow$ **bool** }, use v to "produce" and "consume" a value (i.e., make sure you know how to use the unpack $\{X, x\} = e_1$ in e_2 expression.