
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Small-step semantics; Inductive definitions and proofs

Lecture 2 Thursday, January 28, 2016

1 Small-step operational semantics

At this point we have defined the syntax of our simple arithmetic language. We have some informal,
intuitive notion of what programs in this language mean. For example, the program 7+ (4× 2) should
equal 15, and the program foo := 6+ 1; 2× 3× foo should equal 42.

We would like now to define formal semantics for this language.
Operational semantics describe how a program would execute on an abstract machine. A small-step opera-

tional semantics describe how such an execution in terms of successive reductions of an expression, until we
reach a number, which represents the result of the computation.

The state of the abstract machine is usually referred to as a configuration, and for our language it must
include two pieces of information:

• a store (aka environment or state), which assigns integer values to variables. During program execu-
tion, we will refer to the store to determine the values associated with variables, and also update the
store to reflect assignment of new values to variables.

• the expression left to evaluate.

Thus, the domain of stores is functions from Var to Int (written Var → Int), and the domain of configu-
rations is pairs of expressions and stores.

Config = Exp × Store
Store = Var → Int

We will denote configurations using angle brackets. For instance, ⟨(foo+ 2)× (bar + 1), σ⟩, where σ is a
store and (foo+ 2)× (bar + 1) is an expression that uses two variables, foo and bar.

The small-step operational semantics for our language is a relation −→⊆ Config×Config that describes
how one configuration transitions to a new configuration. That is, the relation −→ shows us how to evaluate
programs, one step at a time. We use infix notation for the relation −→. That is, given any two configura-
tions ⟨e1, σ1⟩ and ⟨e2, σ2⟩, if (⟨e1, σ1⟩, ⟨e2, σ2⟩) is in the relation −→, then we write ⟨e1, σ1⟩ −→ ⟨e2, σ2⟩.

For example, we have ⟨(4+ 2)× y, σ⟩ −→ ⟨6× y, σ⟩. That is, we can evaluate the configuration ⟨(4+ 2)× y, σ⟩
by one step, to get the configuration ⟨6× y, σ⟩.

Now defining the semantics of the language boils down to defining the relation −→ that describes the
transitions between machine configurations.

One issue here is that the domain of integers is infinite, and so is the domain of expressions. Therefore,
there is an infinite number of possible machine configurations, and an infinite number of possible one-step
transitions. We need to use a finite description for the infinite set of transitions.

We can compactly describe the transition function −→ using inference rules:

VAR
⟨x, σ⟩ −→ ⟨n, σ⟩

where n = σ(x)

LADD
⟨e1, σ⟩ −→ ⟨e′1, σ′⟩

⟨e1 + e2, σ⟩ −→ ⟨e′1 + e2, σ
′⟩

RADD
⟨e2, σ⟩ −→ ⟨e′2, σ′⟩

⟨n+ e2, σ⟩ −→ ⟨n+ e′2, σ
′⟩

Lecture 2 Small-step semantics; Inductive definitions and proofs

ADD
⟨n+m,σ⟩ −→ ⟨p, σ⟩

where p is the sum of n and m

LMUL
⟨e1, σ⟩ −→ ⟨e′1, σ′⟩

⟨e1 × e2, σ⟩ −→ ⟨e′1 × e2, σ
′⟩

RMUL
⟨e2, σ⟩ −→ ⟨e′2, σ′⟩

⟨n× e2, σ⟩ −→ ⟨n× e′2, σ
′⟩

MUL
⟨n×m,σ⟩ −→ ⟨p, σ⟩

where p is the product of n and m

ASG1
⟨e1, σ⟩ −→ ⟨e′1, σ′⟩

⟨x := e1; e2, σ⟩ −→ ⟨x := e′1; e2, σ
′⟩

ASG
⟨x := n; e2, σ⟩ −→ ⟨e2, σ[x 7→ n]⟩

The meaning of an inference rule is that if the fact above the line holds and the side conditions also hold,
then the fact below the line holds. The fact(s) above the line are called premises; the fact below the line is
called the conclusion. The rules without premises are axioms; and the rules with premises are inductive
rules.

Also, we use the notation σ[x 7→ n] for a store that maps the variable x to integer n, and maps every
other variable to whatever σ maps it to. More explicitly, if f is the function σ[x 7→ n], then we have

f(y) =

{
n if y = x

σ(y) otherwise

2 Using the Semantic Rules

Let’s see how we can use these rules. Suppose we want to evaluate expression (foo+ 2)× (bar + 1) in
a store σ where σ(foo) = 4 and σ(bar) = 3. That is, we want to find the transition for configuration
⟨(foo+ 2)× (bar + 1), σ⟩. For this, we look for a rule with this form of a configuration in the conclusion. By
inspecting the rules, we find that the only matching rule is LMUL, where e1 = foo+ 2, e2 = bar + 1, but e′1
is not yet known. We can instantiate the rule LMUL, replacing the metavariables e1 and e2 with appropriate
expressions.

LMUL
⟨foo+ 2, σ⟩ −→ ⟨e′1, σ⟩

⟨(foo+ 2)× (bar + 1), σ⟩ −→ ⟨e′1 × (bar + 1), σ⟩

Now we need to show that the premise actually holds and find out what e′1 is. We look for a rule whose
conclusion matches ⟨foo+ 2, σ⟩ −→ ⟨e′1, σ⟩. We find that LADD is the only matching rule:

LADD
⟨foo, σ⟩ −→ ⟨e′′1 , σ⟩

⟨foo+ 2, σ⟩ −→ ⟨e′′1+2, σ⟩

where e′1 = e′′1+2. We repeat this reasoning for ⟨foo, σ⟩ −→ ⟨e′′1 , σ⟩, and we find that the only applicable
rule is the axiom VAR:

VAR
⟨foo, σ⟩ −→ ⟨4, σ⟩

because we have σ(foo) = 4. Since this is an axiom and has no premises, there is nothing left to prove.
Hence, e′′ = 4 and e′1 = 4+ 2. We can put together the above pieces and build the following proof:

Page 2 of 5

Lecture 2 Small-step semantics; Inductive definitions and proofs

LMUL

LADD

VAR
⟨foo, σ⟩ −→ ⟨4, σ⟩

⟨foo+ 2, σ⟩ −→ ⟨4+ 2, σ⟩
⟨(foo+ 2)× (bar + 1), σ⟩ −→ ⟨(4+ 2)× (bar + 1), σ⟩

This proves that, given our inference rules, the one-step transition ⟨(foo+ 2)× (bar + 1), σ⟩ −→ ⟨(4+ 2)× (bar + 1), σ⟩
is possible. The above proof structure is called a “proof tree” or “derivation”. It is important to keep in mind
that proof trees must be finite for the conclusion to be valid.

We can use a similar reasoning to find out the next evaluation step:

LMUL

ADD
⟨4+ 2, σ⟩ −→ ⟨6, σ⟩

⟨(4+ 2)× (bar + 1), σ⟩ −→ ⟨6× (bar + 1), σ⟩

And we can continue this process. At the end, we can put together all of these transitions, to get a view
of the entire computation:

⟨(foo+ 2)× (bar + 1), σ⟩ −→⟨(4+ 2)× (bar + 1), σ⟩
−→⟨6× (bar + 1), σ⟩
−→⟨6× (3+ 1), σ⟩
−→⟨6× 4, σ⟩
−→⟨24, σ⟩

The result of the computation is a number, 24. The machine configuration that contains the final result
is the point where the evaluation stops; they are called final configurations. For our language of expressions,
the final configurations are of the form ⟨n, σ⟩ where n is a number and σ is a store.

We write −→∗ for the reflexive transitive closure of the relation −→. That is, if ⟨e, σ⟩ −→∗ ⟨e′, σ′⟩, then
using zero or more steps, we can evaluate the configuration ⟨e, σ⟩ to the configuration ⟨e′, σ′⟩. Thus, we can
write

⟨(foo+ 2)× (bar + 1), σ⟩ −→∗ ⟨24, σ⟩.

3 Expressing Program Properties

Now that we have defined our small-step operational semantics, we can formally express different proper-
ties of programs. For instance:

• Progress: For each store σ and expression e that is not an integer, there exists a possible transition for
⟨e, σ⟩:

∀e ∈ Exp. ∀σ ∈ Store. either e ∈ Int or ∃e′, σ′. ⟨e, σ⟩ −→ ⟨e′, σ′⟩

• Termination: The evaluation of each expression terminates:

∀e ∈ Exp. ∀σ0 ∈ Store. ∃σ ∈ Store. ∃n ∈ Int. ⟨e, σ0⟩ −→∗ ⟨n, σ⟩

• Deterministic Result: The evaluation result for any expression is deterministic:

∀e ∈ Exp. ∀σ0, σ, σ
′ ∈ Store. ∀n, n′ ∈ Int.

if ⟨e, σ0⟩ −→∗ ⟨n, σ⟩ and ⟨e, σ0⟩ −→∗ ⟨n′, σ′⟩ then n = n′ and σ = σ′.

How can we prove such kinds of properties? Inductive proofs allow us to prove statements such as the
properties above. We first introduce inductive sets, introduce inductive proofs, and then show how we can
prove progress (the first property above) using inductive techniques.

Page 3 of 5

Lecture 2 Small-step semantics; Inductive definitions and proofs

4 Inductive sets

Induction is an important concept in the theory of programming language. We have already seen it used to
define language syntax, and to define the small-step operational semantics for the arithmetic language.

An inductively defined set A is a set that is built using a set of axioms and inductive (inference) rules.
Axioms of the form

a ∈ A

indicate that a is in the set A. Inductive rules

a1 ∈ A . . . an ∈ A

a ∈ A

indicate that if a1, . . . , an are all elements of A, then a is also an element of A.
The set A is the set of all elements that can be inferred to belong to A using a (finite) number of applica-

tions of these rules, starting only from axioms. In other words, for each element a of A, we must be able to
construct a finite proof tree whose final conclusion is a ∈ A.

Example 1. The language of a grammar is an inductive set. For instance, the set of arithmetic expressions
can be described with 2 axioms, and 3 inductive rules:

VAR
x ∈ Exp

x ∈ Var INT
n ∈ Exp

n ∈ Int

ADD
e1 ∈ Exp e2 ∈ Exp

e1 + e2 ∈ Exp
MUL

e1 ∈ Exp e2 ∈ Exp
e1 × e2 ∈ Exp

ASS
e1 ∈ Exp e2 ∈ Exp
x := e1; e2 ∈ Exp

x ∈ Var

This is equivalent to the grammar e ::= x | n | e1 + e2 | e1 × e2 | x := e1; e2.
To show that (foo+3)× bar is an element of the set Exp, it suffices to show that foo+3 and bar are in the

set Exp, since the inference rule MUL can be used, with e1 ≡ foo+3 and e2 ≡ foo, and, since if the premises
foo+ 3 ∈ Exp and bar ∈ Exp are true, then the conclusion (foo+ 3)× bar ∈ Exp is true.

Similarly, we can use rule ADD to show that if foo ∈ Exp and 3 ∈ Exp, then (foo+ 3) ∈ Exp. We can use
axiom VAR (twice) to show that foo ∈ Exp and bar ∈ Exp and rule INT to show that 3 ∈ Exp. We can put
these all together into a derivation whose conclusion is (foo+ 3)× bar ∈ Exp:

MUL

ADD

VAR
foo ∈ Exp

INT
3 ∈ Exp

(foo+ 3) ∈ Exp
VAR

bar ∈ Exp
(foo+ 3)× bar ∈ Exp

Example 2. The natural numbers can be inductively defined:

0 ∈ N
n ∈ N

succ(n) ∈ N

where succ(n) is the successor of n.

Example 3. The small-step evaluation relation −→ is an inductively defined set. The definition of this set
is given by the semantic rules.

Example 4. The transitive, reflexive closure −→∗ (i.e., the multi-step evaluation relation) can be inductively
defined:

⟨e, σ⟩ −→∗ ⟨e, σ⟩
⟨e, σ⟩ −→ ⟨e′, σ′⟩ ⟨e′, σ′⟩ −→∗ ⟨e′′, σ′′⟩

⟨e, σ⟩ −→∗ ⟨e′′, σ′′⟩

Page 4 of 5

Lecture 2 Small-step semantics; Inductive definitions and proofs

5 Inductive proofs

We can prove facts about elements of an inductive set using an inductive reasoning that follows the struc-
ture of the set definition.

5.1 Mathematical induction

You have probably seen proofs by induction over the natural numbers, called mathematical induction. In such
proofs, we typically want to prove that some property P holds for all natural numbers, that is, ∀n ∈ N. P (n).
A proof by induction works by first proving that P (0) holds, and then proving for all m ∈ N, if P (m) then
P (m+ 1). The principle of mathematical induction can be stated succinctly as

P (0) and (∀m ∈ N. P (m) =⇒ P (m+ 1)) =⇒ ∀n ∈ N. P (n).

The assertion that P (0) is the basis of the induction (also called the base case). Establishing that P (m) =⇒
P (m+1) is called inductive step, or the inductive case. While proving the inductive step, the assumption that
P (m) holds is called the inductive hypothesis.

5.2 Structural induction

Given an inductively defined set A, to prove that property P holds for all elements of A, we need to show:

1. Base cases: For each axiom

a ∈ A ,

P (a) holds.

2. Inductive cases: For each inference rule

a1 ∈ A . . . an ∈ A

a ∈ A ,

if P (a1) and . . . and P (an) then P (a).

If the set A is the set of natural numbers (see Example 2 above), then the requirements given above for
proving that P holds for all elements of A are equivalent to mathematical induction.

If A describes a syntactic set, then we refer to induction following the requirements above as structural
induction. If A is an operational semantics relation (such as the small-step operational semantics relation
−→) then such induction is called induction on derivations. We will see examples of structural induction and
induction on derivations throughout the course.

In the next lecture, we will consider some examples of proving properties of inductive sets using induc-
tive proofs.

Page 5 of 5

