Large-step semantics, continued ## Lecture 4 Thursday, February 4, 2016 Last lecture we saw inference rules for a large-step semantics for our arithmetic language. To see how we use these rules, here is a proof tree that shows that $\langle \text{foo} := 3; \text{foo} \times \text{bar}, \sigma \rangle \Downarrow \langle 21, \sigma' \rangle$ for a store σ such that $\sigma(\text{bar}) = 7$, and $\sigma' = \sigma[\text{foo} \mapsto 3]$. $$Asg_{Lrg} = \frac{Int_{Lrg} \frac{Var_{Lrg} \frac{Var_{Lrg} \frac{Var_{Lrg} \sqrt{\langle foo,\sigma' \rangle \Downarrow \langle 3,\sigma' \rangle}}{\langle foo \times bar,\sigma' \rangle \Downarrow \langle 21,\sigma' \rangle}}{\langle foo \times bar,\sigma' \rangle \Downarrow \langle 21,\sigma' \rangle}}{\langle foo \times bar,\sigma' \rangle \Downarrow \langle 21,\sigma' \rangle}$$ A closer look to this structure reveals the relation between small step and large-step evaluation: a depth-first traversal of the large-step proof tree yields the sequence of one-step transitions in small-step evaluation. ## 1 Equivalence of semantics So far, we have specified the semantics of our language of arithmetic expressions in two different ways: small-step operational semantics and large-step operational semantics. Are they expressing the same meaning of arithmetic expressions? Can we show that they express the same thing? **Theorem** (Equivalence of semantics). For all expressions e, stores σ and σ' , and integers n, we have: $$\langle e, \sigma \rangle \Downarrow \langle n, \sigma' \rangle \iff \langle e, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle.$$ Proof sketch. $\bullet \implies$. We proceed by structural induction on expressions e. The inductive hypothesis is: $$P(e) = \forall \sigma, \sigma' \in \mathbf{Store}. \ \forall n \in \mathbf{Int}. \ \langle e, \sigma \rangle \Downarrow \langle n, \sigma' \rangle \Longrightarrow \langle e, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$$ We have to consider each of the possible axioms and inference rules for constructing an expression. - Case $e \equiv n$. Here, we are consider the case where expression e is equal to some integer n. But then $\langle n, \sigma \rangle \longrightarrow^* \langle n, \sigma \rangle$ holds trivially because of reflexivity of \longrightarrow^* . - Case $e \equiv x$. Here, we are considering the case where the expression e is equal to some variable x. Assume that for some σ , σ' , and n we have $\langle x,\sigma\rangle \Downarrow \langle n,\sigma'\rangle$. That means that there is some derivation using the axioms and inference rules of the large-step operational semantics, whose conclusion is $\langle x,\sigma\rangle \Downarrow \langle n,\sigma'\rangle$. There is only one rule whose conclusion could look like this, the rule Var_{Lrg} . That rule requires that $n=\sigma(x)$, and that $\sigma'=\sigma$. (This reasoning is an example of *inversion*: using the inference rules in reverse. That is, we know that some conclusion holds— $\langle x,\sigma\rangle \Downarrow \langle n,\sigma'\rangle$ —and we examine the inference rules to determine which rule must have been used in the derivation, and thus which premises must be true, and which side conditions satisfied.) Since $n = \sigma(x)$ we know that $\langle x, \sigma \rangle \longrightarrow \langle n, \sigma \rangle$ also holds, by using the small-step axiom VAR. So we can conclude that $\langle x, \sigma \rangle \longrightarrow^* \langle n, \sigma \rangle$ holds, which is what we needed to show. - Case $e \equiv e_1 + e_2$. This is an inductive case. Expressions e_1 and e_2 are subexpressions of e, and so we can assume that $P(e_1)$ and $P(e_2)$ hold. We need to show that P(e) holds. Let's write out $P(e_1)$, $P(e_2)$, and P(e) explicitly. $$P(e_1) = \forall n, \sigma, \sigma' : \langle e_1, \sigma \rangle \Downarrow \langle n, \sigma' \rangle \Longrightarrow \langle e_1, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$$ $$P(e_2) = \forall n, \sigma, \sigma' : \langle e_2, \sigma \rangle \Downarrow \langle n, \sigma' \rangle \Longrightarrow \langle e_2, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$$ $$P(e) = \forall n, \sigma, \sigma' : \langle e_1 + e_2, \sigma \rangle \Downarrow \langle n, \sigma' \rangle \Longrightarrow \langle e_1 + e_2, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$$ Assume that for some σ, σ' and n we have $\langle e_1 + e_2, \sigma \rangle \Downarrow \langle n, \sigma' \rangle$. We now need to show that $\langle e_1 + e_2, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$. We assumed that $\langle e_1 + e_2, \sigma \rangle \Downarrow \langle n, \sigma' \rangle$. Let's use inversion again: there is some derivation whose conclusion is $\langle e_1 + e_2, \sigma \rangle \Downarrow \langle n, \sigma' \rangle$. By looking at the large-step semantic rules, we see that only one rule could possible have a conclusion of this form: the rule ADD_{LRG} . So that means that the last rule use in the derivation was ADD_{LRG} . But in order to use the rule ADD_{LRG} , it must be the case that $\langle e_1, \sigma \rangle \Downarrow \langle n_1, \sigma'' \rangle$ and $\langle e_2, \sigma'' \rangle \Downarrow \langle n_2, \sigma' \rangle$ hold for some n_1 and n_2 such that $n = n_1 + n_2$ (i.e., there is a derivation whose conclusion is $\langle e_1, \sigma \rangle \Downarrow \langle n_1, \sigma'' \rangle$ and a derivation whose conclusion is $\langle e_2, \sigma'' \rangle \Downarrow \langle n_2, \sigma' \rangle$). Using the inductive hypothesis $P(e_1)$, since $\langle e_1, \sigma \rangle \Downarrow \langle n_1, \sigma'' \rangle$, we must have $\langle e_1, \sigma \rangle \longrightarrow^* \langle n_1, \sigma'' \rangle$. Similarly, by $P(e_2)$, we have $\langle e_2, \sigma'' \rangle \longrightarrow^* \langle n_2, \sigma \rangle$. By Lemma 1 below, we have $$\langle e_1 + e_2, \sigma \rangle \longrightarrow^* \langle n_1 + e_2, \sigma'' \rangle$$ and by another application of Lemma 1 we have $$\langle n_1 + e_2, \sigma'' \rangle \longrightarrow^* \langle n_1 + n_2, \sigma' \rangle$$ and by the rule ADD we have $$\langle n_1 + n_2, \sigma' \rangle \longrightarrow \langle n, \sigma' \rangle.$$ Thus, we have $\langle e_1 + e_2, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$, which proves this case. - Case $e \equiv e_1 \times e_2$. Similar to the case $e = e_1 + e_2$ above. - Case $e \equiv x := e_1; e_2$. Omitted. Try it as an exercise. - \Leftarrow . We proceed by mathematical induction on the number of steps $\langle e, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$. - **Base case.** If $\langle e,\sigma\rangle \longrightarrow^* \langle n,\sigma'\rangle$ in zero steps, then we must have $e\equiv n$ and $\sigma'=\sigma$. Then, $\langle n,\sigma\rangle \Downarrow \langle n,\sigma\rangle$ by the large-step operational semantics rule ${\rm INT_{LRG}}$. - **Inductive case.** Assume that $\langle e, \sigma \rangle \longrightarrow \langle e'', \sigma'' \rangle \longrightarrow^* \langle n, \sigma' \rangle$, and that (the inductive hypothesis) $\langle e'', \sigma'' \rangle \Downarrow \langle n, \sigma' \rangle$. That is, $\langle e'', \sigma'' \rangle \longrightarrow^* \langle n, \sigma' \rangle$ takes m steps, and we assume that the property holds for it $(\langle e'', \sigma'' \rangle \Downarrow \langle n, \sigma' \rangle)$, and we are considering $\langle e, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$, which takes m+1 steps. We need to show that $\langle e, \sigma \rangle \Downarrow \langle n, \sigma' \rangle$. This follows immediately from Lemma 2 below. **Lemma 1.** If $\langle e, \sigma \rangle \longrightarrow^* \langle n, \sigma' \rangle$ then for all n_1, e_2 the following hold. - $\langle e + e_2, \sigma \rangle \longrightarrow^* \langle n + e_2, \sigma' \rangle$ - $\langle e \times e_2, \sigma \rangle \longrightarrow^* \langle n \times e_2, \sigma' \rangle$ - $\langle n_1 + e, \sigma \rangle \longrightarrow^* \langle n_1 + n, \sigma' \rangle$ - $\langle n_1 \times e, \sigma \rangle \longrightarrow^* \langle n_1 \times n, \sigma' \rangle$ *Proof.* By (mathematical) induction on the number of evaluation steps in \longrightarrow^* . **Lemma 2.** For all e, e', σ , and $n, if \langle e, \sigma \rangle \longrightarrow \langle e', \sigma'' \rangle$ and $\langle e', \sigma'' \rangle \Downarrow \langle n, \sigma' \rangle$, then $\langle e, \sigma \rangle \Downarrow \langle n, \sigma' \rangle$.