Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages
Denotational semantics

Lecture 6 Thursdays, February 11, 2016

1 Denotational semantics

We have seen two operational models for programming languages: small-step and large-step. We now
consider a different semantic model, called denotational semantics.

The idea in denotational semantics is to express the meaning of a program as the mathematical function
that expresses what the program computes. We can think of a program c as a function from stores to stores:
given an an initial store, the program produces a final store. For example, the program foo := bar + 1 can
be thought of as a function that when given an input store o, produces a final store ¢’ that is identical to o
except that it maps foo to the integer o(bar) + 1; that is, ¢’ = o[foo — o(bar) + 1].

We are going to model programs as functions from input stores to output stores. As opposed to op-
erational models, which tell us how programs execute, the denotational model shows us what programs
compute.

For a program c (a piece of syntax), we write C[c] for the denotation of ¢, that is, the mathematical function
that c represents:

C[c] : Store — Store.

Note that C[c] is actually a partial function (as opposed to a total function), because the program may
not terminate for certain input stores; C[c| is not defined for those inputs, since they have no corresponding
output stores.

We write C[c]o for the result of applying the function C[¢] to the store 0. That is, if f is the function C[c],
then we write C[c]o to mean the same thing as f(o).

We must also model expressions as functions, this time from stores to the values they represent. We will
write A[a] for the denotation of arithmetic expression a, and B[b] for the denotation of boolean expression
b. Note that A[a] and B[b] are total functions.

Ala] : Store — Int
B[b] : Store — {true, false}

Now we want to define these functions. To make it easier to write down these definitions, we will
express (partial) functions as sets of pairs. More precisely, we will represent a partial map f : A —~ Basa
set of pairs F' = {(a,b) | a € Aand b = f(a) € B} such that, for each a € A, there is at most one pair of the
form (a, _) in the set. Hence (a,b) € F' is the same as b = f(a).

We can now define denotations for IMP. We start with the denotations of expressions:

Aln] ={(o,n)}

Alz] = {(o,0(2))}
Alar + a2] = {(o,n) | (0,n1) € AJa1] A (o,n2) € Alaz] An =nq + na}
Alar x az] = {(o,n) | (o,n1) € AJa1] A (o,n2) € Alaz] An =n1 X na}

B[true] = {(
Blfalse] = {(c, false)}
Bla; < az] = {(o,true) | (o,n1) € Afa1] A (o,n2) € Afas] Any <mns} U
{(o,false) | (o,n1) € Ala1] A (0,n2) € AJaz] Ani > na}

Lecture 6 Denotational semantics

The denotations for commands are as follows:

C[skip] = {(0,0)}
Clz :=a] = {(o, 0]z — n]) | (6,n) € Ala]}
Cler;ca] = {(o,0") | Fo". ((0,0") € Cl[er] A (0”,0") € Cle2])}

Note that C[eci; 2] = Cle2] o Clei], where o is the composition of relations. (Composition of relations is
defined as follows: if Ry C Ax Band Ry C Bx C then RyoR; C AxCis RooRy = {(a,c) | 3b € B.(a,b) €
R1 A (b,¢) € Ra}.) If Ceq] and C[ez] are total functions, then o is function composition.

C[if b then c; else 3] = {(0,0") | (o,true) € B[b] A (0,0") € Cler]} U
{(0,0") | (0,false) € B[b] A (0,0") € C[ca] }
Clwhile bdo c] = {(0,0) | (0,false) € B[b]} U
{(o,0") | (o,true) € B[b] AJo". ((c,0") € C[c] A (¢”, ") € C[while bdo c])}

But now we’ve got a problem: the last “definition” is not really a definition, it expresses C[while b do]
in terms of itself! It is not a definition, but a recursive equation. What we want is the solution to this
equation, i.e., we want to find a function f, such that f satisfies the following equation, and we will take
the semantics of a while loop to be that function f.

f=A{(0,0) | (o,false) € B[b]} U
{(c,0") | (o,true) € B[b] Ao”. ((0,0") € C[c] A (c”,0") € f)}

1.1 Fixed points

We gave a recursive equation that the function C[while b do ¢] must satisfy.
To understand some of the issues involved, let’s consider a simpler example. Consider the following
equation for a function f : N — N.

0 ifz=0
f(x) = {f(ac —1)+2x—1 otherwise w

This is not a definition for f, but rather an equation that we want f to satisfy. What function, or func-
tions, satisfy this equation for f? The only solution to this equation is the function f(z) = z2.

In general, there may be no solutions for a recursive equation (e.g., there are no functions g : N — N that
satisfy the recursive equation g(z) = g(x) + 1), or multiple solutions (e.g., find two functions g : R — R that
satisfy g(z) = 4g(32)).

We can compute solutions to such equations by building successive approximations. Each approxima-
tion is closer and closer to the solution. To solve the recursive equation for f, we start with the partial
function fy = 0 (i.e., fo is the empty relation; it is a partial function with the empty set for its domain). We

compute successive approximations using the recursive equation.

Page 2 of 4

Lecture 6 Denotational semantics

0
0 ifz=20
fo x—1)+2x—1 otherwise
{

frd (7

_Jo ifz=0

N filz)+ 2z —1 otherwise

={(0,0),

40 ifz=0

N f (x—1)+2x—1 otherwise
= {(0, :1),(2,4)}

This sequence of successive approximations f; gradually builds the function f(z) = 2.

We can model this process of successive approximations using a higher-order function F that take one
approximation fj, and returns the next approximation fj:

F:(N=N)= (N—=N)

where

f,(x):{o ifz =0

flx—=1)+2x—1 otherwise

A solution to the recursive equation (1) is a function f such that f = F(f). In general, given a function
F:A— A wehave that a € Ais a fixed point of F if F(a) = a. We also write a = fix(F') to indicate that a is
a fixed point of F.

So the solution to the recursive equation (1) is a fixed-point of the higher-order function F. We can
compute this fixed point iteratively, starting with fy = () and at each iteration computing fi+1 = F(fi). The
fixed point is the limit of this process:

f=fix(F)
=foUfivufeU fsU
=QUF0)UF(F0)UFFF@D)U...

~Uro
i>0

1.2 Fixed-point semantics for loops

Returning to our original problem: we want to find C[while b do ¢], the (partial) function from stores to
stores that is the denotation of the loop while b do ¢. We will do this by expressing C[while b do] as the
fixed point of a higher-order function Fj ..

F, . : (Store — Store) — (Store — Store)

Fyo(f) ={(0,0) | (0, false) € B[o]} U
{(0,0") | (o,true) € B[b] AJo". ((o,0") € C[c] A (6”,0") € f)}

Page 3 of 4

Lecture 6 Denotational semantics

Compare the definition of our higher-order function F; . to our recursive equation for C[while b do].
The higher-order function F; . takes in the partial function f, and acts like one iteration of the while

loop, except that, instead of invoking itself when it needs to go around the loop again, it instead calls f.
We can now define the semantics of the while loop:

C[while bdo] = | F,..*(0)
i>0
=QuU Fbﬁc(@) U Fb,c(Fb,c((Z))) U Fb,c(Fbﬁc(Fb,c((Z)))) U...
= ﬁX(F{hC)

Let’s consider an example: while foo < bar do foo := foo + 1. Here b = foo < bar and ¢ = foo := foo + 1.

Fy.c(0) ={(0,0) | (c,false) € B[b]} U
{(o,0") | (o,true) € B[b] A Jo”. ((6,0") € C[c] A (¢”,0") € 0)}
= {(0,0) | o(foo) > o(bar)}

F,. .2 (0) = {(0,0) | (o, false) € B[b]} U
{(o,0") | (0,true) € B[b] A Jo". ((6,0") € C[c] A (¢”,0") € F) ()}
={(o,0) | o(foo) > o(bar)} U
{(0,0[foo — o(foo) + 1]) | o(foo) < o(bar) A o(foo) + 1 > o(bar)}

But if o(foo) < o(bar) A o(foo) + 1 > o(bar) then o(foo) + 1 = o(bar), so we can simplify further:

={(0,0) | o(foo) > o(bar)} U
{(0,0[foo — o(foo) + 1]) | o(foo) + 1 = o(bar)}

F.20) ={(0,0) | (0, false) € B[b]} U
{(0,0") | (0,true) € B[b] AJo". ((0,0") € C[c] A (0”,0") € Fy, .2 (D))}
= {(o,0) | o(foo) > o(bar)} U
{(0,0[foo — o(foo) +1]) | o(foo) + 1 = o(bar)} U
{(o, o[foo — o(foo) + 2]) | o(foo) + 2 = o(bar)}

..M (0) = {(0,0) | o(foo) > o(bar)} U
{(0, o[foo — o(foo) + 1]) | o(foo) + 1 = o(bar)} U
{(0, g[foo — o(foo) + 2]) | o(foo) + 2 = o(bar)} U
{(o, o[foo — o (foo) + 3]) | o(foo) + 3 = o(bar)}

If we take the union of all F}, ./(}), we get the expected semantics of the loop.

C[while foo < bar do foo := foo + 1] = {(0,0) | o(foo) > o(bar)} U
{(0, o[foo — o(foo) + n]) | o(foo) + n = o(bar) An > 1}

Page 4 of 4

