
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Type inference

Lecture 14 Thursday, March 10, 2016

1 Type inference

In the simply typed lambda calculus, we must explicitly state the type of function arguments: λx :τ. e. This
explicitness makes it possible to type check functions.

Γ, x :τ ⊢ e :τ ′

Γ ⊢ λx :τ. e :τ → τ ′

Suppose we didn’t want to provide type annotations for function arguments. Consider the typing rule
for functions without type annotations.

Γ, x :τ ⊢ e :τ ′

Γ ⊢ λx. e :τ → τ ′

The type-checking algorithm would need to guess or somehow know what type τ to put into the type
context.

Can we still type check our program without these type annotations? For the simply typed lambda cal-
culus (and many of the extensions we have considered so far), the answer is yes: we can infer or reconstruct
the types of a program.

Let’s consider an example to see how this type inference could work.

λa. λb. λc. if a (b+ 1) then b else c

Since the variable b is used in an addition, the type of b must be int. The variable a must be some kind
of function, since it is applied to the expression b+1. Since a has a function type, the type of the expression
b+1 (i.e., int) must be a’s argument type. Moreover, the result of the function application (a (b+1)) is used
as the test of a conditional, so it better be the case that the result type of a is also bool. So the type of a
should be int → bool. Both branches of a conditional should return values of the same type, so the type of
c must be the same as the type of b, namely int.

We can write the expression with the reconstructed types:

λa : int → bool. λb : int. λc : int. if a (b+ 1) then b else c

1.1 Constraint-based typing

We now present an algorithm that, when given a typing context Γ and an expression e, produces a set of
constraints—equations between types (including type variables)—that must be satisfied in order for e to be
well-typed in Γ.

We first introduce type variables, which are just placeholders for types. We use X and Y to range over
type variables.

The language we will consider is the lambda calculus with integer constants and addition. We assume
that all function definitions contain a type annotation for the argument, but this type may simply be a type
variable X .

e ::= x | λx :τ. e | e1 e2 | n | e1 + e2

τ ::= int | X | τ1 → τ2

Lecture 14 Type inference

To formally define type inference, we introduce a new typing relation:

Γ ⊢ e :τ ▷ C

Intuitively, if Γ ⊢ e : τ ▷ C, then expression e has type τ provided that every constraint in the set C is
satisfied. Constraints are of the form τ1 = τ2.

We define the judgment Γ ⊢ e : τ ▷ C with inference rules and axioms. When read from bottom to top,
these inference rules provide a procedure that, given Γ and e, calculates τ and C such that Γ ⊢ e :τ ▷ C.

CT-VAR
Γ ⊢ x :τ ▷ ∅

x :τ ∈ Γ CT-INT
Γ ⊢ n : int ▷ ∅

CT-ADD
Γ ⊢ e1 :τ1 ▷ C1 Γ ⊢ e2 :τ2 ▷ C2

Γ ⊢ e1 + e2 : int ▷ C1 ∪ C2 ∪ {τ1 = int, τ2 = int}

CT-ABS
Γ, x :τ1 ⊢ e :τ2 ▷ C

Γ ⊢ λx :τ1. e :τ1 → τ2 ▷ C
CT-APP

Γ ⊢ e1 :τ1 ▷ C1 Γ ⊢ e2 :τ2 ▷ C2

C ′ = C1 ∪ C2 ∪ {τ1 = τ2 → X}
Γ ⊢ e1 e2 :X ▷ C ′ X is fresh

Note that we must be careful with the choice of fresh type variables. We have omitted some of the
technical details that ensure the fresh type variables in the rule CT-APP are chosen appropriately.

Let’s see an example of using this typing judgment to produce a set of constraints. Consider the program
λa :X.λb :Y. 2 + (a (b+ 3)).

a :X, b :Y ⊢ 2: int ▷ ∅
a :X, b :Y ⊢ a :X ▷ ∅

a :X, b :Y ⊢ b :Y ▷ ∅ a :X, b :Y ⊢ 3: int ▷ ∅
a :X, b :Y ⊢ b+ 3: int ▷ {Y = int, int = int}

a :X, b :Y ⊢ a (b+ 3):Z ▷ {X = int → Z, Y = int, int = int}
a :X, b :Y ⊢ 2 + (a (b+ 3)) : int ▷ {Z = int, X = int → Z, Y = int, int = int}

a :X ⊢ λb :Y. 2 + (a (b+ 3)) :Y → int ▷ {Z = int, X = int → Z, Y = int, int = int}
⊢ λa :X.λb :Y. 2 + (a (b+ 3)) :X → Y → int ▷ {Z = int,X = int → Z, Y = int, int = int}

The typing derivation means that expression λa : X.λb : Y. 2 + (a (b + 3)) : X → (Y → int) has type
X → Y → int provided that we can satisfy the constraints Z = int, X = int → Z, Y = int, and int = int.

1.2 Unification

So what does it mean for a set of constraints to be satisfied? To answer this question, we define type substi-
tutions (or just substitutions, when it’s clear from context).

1.2.1 Type substitution

A type substitution is a finite map from type variables to types. For example, we write [X 7→ int, Y 7→
int → int] for the substitution that maps type variable X to int, and type variable Y to int → int.

Note that the same variable could occur in both the domain and range of a substitution. In that case,
the intention is that all substitutions are performed simultaneously. For example the substitution [X 7→
int, Y 7→ int → X] maps Y to int → X (not to int → int).

Page 2 of 4

Lecture 14 Type inference

More formally, we define substitution of type variables as follows.

σ(X) =

{
τ if X 7→ τ ∈ σ

X if X not in the domain of σ

σ(int) = int
σ(τ → τ ′) = σ(τ) → σ(τ ′)

Note that we don’t need to worry about avoiding variable capture, since there are no constructs in the
language that bind type variables. (We’ll soon see more sophisticated typing constructs that introduce
binders for type variables.)

We can extend substitution to constraints, and sets of constraints in the obvious way:

σ(τ1 = τ2) = σ(τ1) = σ(τ2)

σ(C) = {σ(c) | c ∈ C}

Given two substitutions σ and σ′, we write σ ◦ σ′ for the composition of the substitutions: σ ◦ σ′(τ) =
σ(σ′(τ)).

1.2.2 Unification

Constraints are of the form τ = τ ′. We say that a substitution σ unifies constraint τ = τ ′ if σ(τ) is the same
as σ(τ ′). We say that substitution σ satisfies (or unifies) set of constraints C if σ unifies every constraint in C.

For example, the substitution σ = [X 7→ int, Y 7→ int → int] unifies the constraint X → (X →
int) = int → Y , since

σ(X → (X → int)) = int → (int → int) = σ(int → Y)

So to solve a set of constraints C, we need to find a substitution that unifies C. More specifically, suppose
that Γ ⊢ e :τ ▷C. Expression e is typable if and only if there is a substitution σ that satisfies C, and moreover,
the type of e is σ(τ). If there are no substitutions that satisfy C, then we know that e is not typable.

1.2.3 Unification algorithm

To calculate solutions to constraint sets, we use the idea, due to Hindley and Milner, of using unification to
check that the set of solutions is non-empty, and to find a “best” solution (from which all other solutions
can be easily generated).

The algorithm for unification is defined as follows.

unify(∅) = [] (the empty substitution)
unify({τ = τ ′} ∪ C ′) = if τ = τ ′ then

unify(C ′)

else if τ = X and X not a free variable of τ ′ then
unify([X 7→ τ ′](C ′)) ◦ [X 7→ τ ′]

else if τ ′ = X and X not a free variable of τ then
unify([X 7→ τ](C ′)) ◦ [X 7→ τ]

else if τ = τo → τ1 and τ ′ = τ ′o → τ ′1 then
unify(C ′ ∪ {τ0 = τ ′0, τ1 = τ ′1})

else
fail

Page 3 of 4

Lecture 14 Type inference

The check that X is not a free variable of the other type ensures that the algorithm doesn’t produce a
cyclic substitution (e.g., X 7→ (X → X)), which doesn’t make sense with the finite types that we currently
have.

The unification algorithm always terminates. (How would you go about proving this?) Moreover, it
produces a solution if and only if a solution exists. The solution found is the most general solution, in the
sense that if σ = unify(C) and σ′ is a solution to C, then there is some σ′′ such that σ′ = σ′′ ◦ σ.

Page 4 of 4

