
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Abstract register machines

Lecture 23 Tuesday, April 19, 2016

1 Why abstract machines?

So far in the class, we have seen a variety of language features. To give a precise meaning to each feature, we
have designed a calculus of a small language that has the feature and described the operational semantics
of the calculus with a set of inference rules. Thus our calculi have given us a formal way to explain the
meaning of any program of each language, including programs that contain the feature of interest.

However, our calculi do not explain how to easily and efficiently translate the operational semantics
of each language to a correct interpreter for the language. To that end, in this lecture, we examine how
we can translate the operational semantics of a language calculus into an abstract register machine. An
abstract register machine deconstructs methodically each step of the operational semantics into a different
task represented as a separate machine register. Thus an abstract machine for a language calculus provides
a provably correct blueprint for an interpreter for the language. At the same time, the abstract machine
reveals sources of inefficiency in the way we perform execution steps. Thus we can further refine the
configuration of the machine’s registers to derive a more efficient abstract machine, i.e., a more efficient
and correct blueprint for an interpreter for the language.

2 The CC machine

Consider the following calculus for a simple language:

e ::= x | λx. e | e1 e2 | n | δ(e1, ..., em)

v ::= n | λx. e

E ::= [·] | E e | v E | δ(n1, ..., nm, E, e1, ..., ek)

e −→ e′

E[e] −→ E[e′] (λx. e) v −→ e{v/x}
δ(n1, ..., nm) = n

δ(n1, ..., nm) −→ n

The only aspect of this calculus that is different to similar calculi we have seen before is the δ operator.
In previous calculi, we had operators such as +, −, etc. The δ operator stands for any of these arithmetic
operators, i.e., it is a syntactic abstraction for n-ary arithmetic operators. Of course programmers that write
programs in our simple language do not use δ but a specific operation arithmetic operator. For example in
the following small program, the programmer uses + to add two numbers: ((λf. λx. f x) λy. (y+y)) (1+20).

Now let’s evaluate the above small program and discuss some facts about the evaluation process:

((λf. λx. f x) λy. (y + y)) (1 + 20)

−→ (λx. (λy. (y + y)) x) (1 + 20)

−→ (λx. (λy. (y + y)) x) 21

−→ (λy. (y + y)) 21

−→ 21 + 21

−→ 42

Lecture 23 Abstract register machines

Notice that each evaluation step consists in reality of three distinct sub-steps. First, we test if the expres-
sion we are about to evaluate is a value. If it is, we have evaluated the expression fully and we stop the
evaluation. If not we apply the first rule of the semantics and we split the expression in two parts: an eval-
uation context and an expression that we can reduce with one of the other rules. This second expression
is also know as a redex. Then, we inspect the shape of the redex (is it a function application or a use of
an arithmetic operator?) and we apply the corresponding rule. Finally, we plug the result of this last rule
application into the evaluation context and we get back the next expression we need to evaluate. Of course,
we repeat this process to perform the next evaluation step until we end up with the value result of the
program.

This analysis reveals one subtle point about how we can translate our semantics for the language to an
interpreter. An evaluation step is more complicated than it seems and thus an interpreter writer should
tease out each sub-step into a separate function that can be re-used over and over again.

Furthermore, the analysis reveals a point of inefficiency in the way we perform evaluation steps. In an
evaluation trace, we repeatedly split an expression into an evaluation context and a redex. Often, though,
this is not necessary. It is common that in one step we use an evaluation context and then in the next one
we end up using the same evaluation context or one that is easy to construct from an evaluation context
we used previously. For instance in the following example the evaluation context (1+ [·]) is the same in the
first two steps of the evaluation trace :

1 + (λx. (λy. 41) 42) 42

−→ 1 + (λy. 41) 42

−→ 1 + 41

As a first step to deal with the above two issues in the description of the semantics of the language, we
introduce our first abstract register machine: the CC machine. The machine is an automaton with infinite
number of states. Each state of the machine is a pair of two pieces of data: the current expression we
evaluate and its evaluation context. We call the first piece of data the control register and the second the
context register. The goal of the two registers is to keep redexes and evaluation contexts separate so that we
avoid the repeated at each step deconstruction of our program to a redex and an evaluation context. The
initial state of the machine has the program we want to evaluate as its control and the empty evaluation
context ([·]) as its context. Each evaluation step corresponds now to a transition from one state to another.
Here are the rules that describe the possible transitions of the CC machine:

⟨e, E⟩ −→CC ⟨e′, E′⟩

⟨e1 e2, E⟩ −→CC ⟨e1, E[[·] e2]⟩ if e1 ̸= v
⟨v1 e2, E⟩ −→CC ⟨e2, E[v1 [·]]⟩ if e2 ̸= v

⟨δ(n1, ..., nm, e, e1, ..., ek), E⟩ −→CC ⟨e,E[δ(n1, ..., nm, [·], e1, ..., ek)]⟩ if e ̸= n
⟨(λx. e) v,E⟩ −→CC ⟨e{v/x}, E⟩

⟨δ(n1, ..., nm), E⟩ −→CC ⟨n,E⟩ where δ(n1, ..., nm) = n
⟨v,E[[·] e]⟩ −→CC ⟨v e,E⟩

⟨v2, E[v1 [·]]⟩ −→CC ⟨v1 v2, E⟩
⟨n,E[δ(n1, ..., nm, [·], e1, ..., ek)]⟩ −→CC ⟨δ(n1, ..., nm, n, e1, ..., ek), E⟩

The first rule fires when the current state’s control is an application where the function part has not been
evaluated to a value. Its result is a new state where its control is the function part of the application and its
context is the context of the previous state composed with the appropriate application evaluation context
frame. The second rule is symmetric for the argument of an application and fires when we have fully
evaluated the function part of the application but not its argument. The third rule is similar to the second
one except it kicks off the evaluation of the first argument of an arithmetic operator that has not been fully
evaluated. The fourth and fifth rules perform the β- and δ-reductions the same way as the corresponding
inference rules from the beginning of the section. The last three rules help the machine resume evaluation

Page 2 of 7

Lecture 23 Abstract register machines

when the control register of the machine holds a value. In all of the last three rules, the machine uses the
inner-most frame of the context together with the control value to construct the new control expression.

Let’s go back to the first example of this section and derive its evaluation context under the CC machine
semantics.

⟨((λf. λx. f x) λy. (y + y)) (1 + 20) , [·]⟩
−→CC ⟨(λf. λx. f x) λy. (y + y) , [·] (1 + 20)⟩
−→CC ⟨λx. (λy. (y + y)) x , [·] (1 + 20)⟩
−→CC ⟨(λx. (λy. (y + y)) x) (1 + 20) , [·]⟩
−→CC ⟨1 + 20 , (λx. (λy. (y + y)) x) [·]⟩
−→CC ⟨21 , (λx. (λy. (y + y)) x) [·]⟩
−→CC ⟨(λx. (λy. y + y) x) 21 , [·]⟩
−→CC ⟨(λy. y + y) 21 , [·]⟩
−→CC ⟨21 + 21 , [·]⟩
−→CC ⟨42 , [·]⟩

Observe now the evaluation trace and in particular the underlined state. This state is the result of applying
the sixth rule of the machine. The effect of this rule is that it reconstructs the application we are trying to
evaluate to allow us to apply the first rule of the machine and proceed to evaluate the argument part of
the application. Thus the underlined term is really an intermediate term due to the way we have designed
the CC machine. Such terms show up again and again every time we try to evaluate an application or an
arithmetic operation. But are these intermediate terms significant for the evaluation of a program? No, they
are just the result of administrative steps, a technicality that introduces inefficiency in the CC machine.

To eradicate the intermediate terms, we introduce a new simplified CC machine, the SCC machine. Its
state shape is the same as that of the CC machine, but its rules are slightly different:

⟨e,E⟩ −→SCC ⟨e′, E′⟩

⟨e1 e2, E⟩ −→SCC ⟨e1, E[[·] e2]⟩
⟨δ(e, e1, ..., e2), E⟩ −→SCC ⟨e,E[δ([·], e1, ..., en)]⟩

⟨v,E[[·] e]⟩ −→SCC ⟨e,E[v [·]]⟩
⟨n,E[δ(n1, ..., nm, [·])]⟩ −→SCC ⟨n′, E⟩ where δ(n1, ..., nm, n) = n′

⟨v,E[λx. e [·]]⟩ −→SCC ⟨e{v/x}, E⟩
⟨n,E[δ(n1, ..., nm, [·], e, e1, ..., ek)]⟩ −→SCC ⟨e,E[δ(n1, ..., nm, n, [·], e1, ..., ek)]⟩

The first two rules start the evaluation of applications and arithmetic operations by placing their first
sub-expression in the control register and the rest in the context register as a frame that extents the current
context. The third and fourth rules continue the evaluation after the machine has fully evaluated a sub-
expression of an application or an arithmetic operator. They pull out of the context the next sub-expression
we have not evaluated yet, place it in the control register and push the evaluated sub-expression appro-
priately in the context register by modifying the innermost evaluation context frame of the context register.
Notice how these rules avoid the redundant intermediate terms of the CC machine by shifting the control
directly to the next sub-expression we need to evaluate. The last two rules perform the β- and δ-reductions
but with a spin. Once we have evaluated all the sub-expressions of an application or an arithmetic oper-
ation, the rule performs the corresponding reduction without re-constructing a redex. Instead it uses the
information from the innermost context frame to produce the result, places the result in the control register
and pops the frame from the context register.

Here is the evaluation trace of our running example under the SCC machine semantics:

Page 3 of 7

Lecture 23 Abstract register machines

⟨((λf. λx. f x) λy. (y + y)) (1 + 20) , [·]⟩
−→SCC ⟨(λf. λx. f x) λy. (y + y) , [·] (1 + 20)⟩
−→SCC ⟨λf. λx. f x , ([·] λy. (y + y)) (1 + 20)⟩
−→SCC ⟨λy. (y + y) , (λf. λx. f x [·]) (1 + 20)⟩
−→SCC ⟨λx. (λy. (y + y)) x , [·] (1 + 20)⟩
−→SCC ⟨1 + 20 , (λx. (λy. (y + y)) x) [·]⟩
−→SCC ⟨1 , (λx. (λy. (y + y)) x) ([·] + 20)⟩
−→SCC ⟨20 , (λx. (λy. (y + y)) x) (1 + [·])⟩
−→SCC ⟨21 , (λx. (λy. (y + y)) x) [·]⟩
−→SCC ⟨(λy. y + y) 21 , [·]⟩
−→SCC ⟨λy. y + y , [·] 21⟩
−→SCC ⟨21 , (λy. y + y) [·]⟩
−→SCC ⟨21 + 21 , [·]⟩
−→SCC ⟨21 , 21 + [·]⟩
−→SCC ⟨21 , [·] + 21⟩
−→SCC ⟨42 , [·]⟩

As a final remark on SCC machines, note that in addition to removing unnecessary terms, they also
reduce the portion of the expression in the control register that we need to inspect to decide which rule to
apply next. Compare, for instance, the first rule of the CC and the SCC machine. The former requires a
check that the function part of the application is not a value, the second has no such restriction. In fact in
an SCC machine and in contrast to an CC, each rule only inspects the shape of the control register (is it an
application or is it a use of an arithmetic operator or is it a value?). Of course this leads to evaluation traces
with more steps than under CC semantics. However, these steps replace the extra checks on the contents
of the control register and transform them into explicit steps in the SCC machine. Thus the SCC brings us
even closer to the precise description of an interpreter for our language.

3 The CK machine

There are some unsatisfactory aspects in the way we evaluate programs in an SCC machine. Recall that we
introduced machines to avoid having to split our programs again and again into a redex and an evaluation
context. Does the SCC really achieve this goal? No. At each step we traverse the contents of the context
register, find its innermost frame and use it to decide what step to take next. So we have simply shifted the
problem of finding the next redex to the problem of finding the innermost frame of the current context.

But the SCC machine shows us the way to eliminate the issue. The solution is to change the represen-
tation of the context to make the innermost frame readily available. To that end we replace the context
register with a register that holds a stack of evaluation context frames. This structure is historically called
a continuation and by convention we use the Greek letter κ to range over continuations. The following
grammar defines formally the structure of continuations:

κ ::= mt | ⟨fun, λx. e, κ⟩ | ⟨arg, e, κ⟩ | ⟨δ, ⟨n, ..., n⟩, ⟨e, ..., e⟩, κ⟩

Each continuation corresponds to an evaluation context of our reduction semantics from the beginning
of the lecture notes. The empty continuation mt corresponds to the empty evaluation context [·]. The
⟨fun, λx. e, κ⟩ continuation corresponds to an evaluation context where the innermost frame is λx. e [·] and
the ⟨arg, e, κ⟩ continuation corresponds to an evaluation context where the innermost frame is [·] e. The
⟨δ, ⟨nm,, n1⟩, ⟨ek, ..., e1⟩, κ⟩ corresponds to an evaluation context where the innermost frame is
δ(n1,, nm, [·], e1, ..., ek).

There are three points worth making here. First, continuations turn the context inside out to make access
to the innermost frame instant. Second, the use of a linked data structure for continuations gives as a repre-
sentation of continuations that we can directly implement as a list. Third the ⟨δ, ⟨nm,, n1⟩, ⟨ek, ..., e1⟩, κ⟩
continuation separates the arguments of the operator that we have evaluated from those that we have not
yet and furthermore these arguments are stored in the continuation in reversed order for efficiency.

Page 4 of 7

Lecture 23 Abstract register machines

Notice that by replacing the context with a continuation, we change the shape of the state of our ma-
chine. Now we have a control register as before and a continuation register in each state. Thus the name of
the new machine is CK.

Here are the rules of the CK machine:

⟨e, κ⟩ −→CK ⟨e′, κ′⟩

⟨e1 e2, κ⟩ −→CK ⟨e1, ⟨arg, e2, κ⟩⟩
⟨δ(e, e1, ..., ek), κ⟩ −→CK ⟨e, ⟨δ, ⟨ ⟩, ⟨ek, ..., e1⟩, κ⟩⟩

⟨λx. e1, ⟨arg, e2, κ⟩⟩ −→CK ⟨e2, ⟨fun, λx. e1, κ⟩⟩
⟨v, ⟨fun, λx. e, κ⟩⟩ −→CK ⟨e{v/x}, κ⟩

⟨n, ⟨δ, ⟨nm, ..., n1⟩, ⟨e, ek, ..., e1⟩, κ⟩⟩ −→CK ⟨e, ⟨δ, ⟨n, nm, ..., n1⟩, ⟨ek, ..., e1⟩, κ⟩⟩
⟨n, ⟨δ, ⟨nm, ..., n1⟩, ⟨ ⟩, κ⟩⟩ −→CK ⟨n′, κ⟩ where δ(n1, ..., nm, n) = n′

The difference between the SCC machine and the CK machine is that we use a different data structure to
represent an evaluation context; the rules of the two machines are homomorphic.

Observe how our example evaluates under the CK semantics. Every step has a corresponding homo-
morphic step to the corresponding evaluation trace under the SCC semantics.

⟨((λf. λx. f x) λy. (y + y)) (1 + 20) ,mt⟩
−→CK ⟨(λf. λx. f x) λy. (y + y) , ⟨arg, 1 + 20,mt⟩⟩
−→CK ⟨λf. λx. f x , ⟨arg, λy. (y + y), ⟨arg, 1 + 20,mt⟩⟩⟩
−→CK ⟨λy. (y + y) , ⟨fun, λf. λx. f x, ⟨arg, 1 + 20,mt⟩⟩⟩
−→CK ⟨λx. (λy. (y + y)) x , ⟨arg, 1 + 20,mt⟩⟩
−→CK ⟨1 + 20 , ⟨fun, λx. (λy. (y + y)) x),mt⟩⟩
−→CK ⟨1 , ⟨+, ⟨ ⟩, ⟨20⟩, ⟨fun, λx. (λy. (y + y)) x,mt⟩⟩⟩
−→CK ⟨20 , ⟨+, ⟨1⟩, ⟨ ⟩, ⟨fun, λx. (λy. (y + y)) x,mt⟩⟩⟩
−→CK ⟨21 , ⟨fun, λx. (λy. (y + y)) x,mt⟩⟩
−→CK ⟨(λy. y + y) 21 ,mt⟩
−→CK ⟨λy. y + y , ⟨arg, 21,mt⟩⟩
−→CK ⟨21 , ⟨fun, λy. y + y),mt⟩⟩
−→CK ⟨21 + 21 ,mt⟩
−→CK ⟨21 , ⟨+, ⟨ ⟩, ⟨21⟩,mt⟩⟩
−→CK ⟨21 , ⟨+, ⟨21⟩, ⟨ ⟩,mt⟩⟩
−→CK ⟨42 ,mt⟩

4 The CEK machine

With the CK machine we have achieved the goal we stated at the beginning of the lecture notes; we can
efficiently decide what rule to apply at every step without having to traverse the contents of the control nor
the continuation register.

However, we have neglected a case where we still traverse the contents of the control register. This is the
substitution part of the β-reduction (and its equivalent rules in the SCC and CK machines). Substitution of
a value v for a free variable x in a term e requires traversing e, finding all free occurrences of x and replacing
them with v. A pretty expensive task... Furthermore, the result of substitution is an expression even larger
than the one we started with and that possibly leads to an even more expensive traversal during the next
substitution.

An approach to make substitutions more efficient is to delay them as much as we can, i.e., until we really
need to obtain the value associated with a free variable. In other words, we keep the substitution available
to the machine until a variable becomes the control expression of the machine in which case we lookup
the variable in the substitution. Thus, in this setting, the contents of the control register of our machine
is no longer just an expression. Instead it is a pair of an expression, possibly with free variables, and a
substitution that associates at least the free variables of the expression to values. The resulting structure is

Page 5 of 7

Lecture 23 Abstract register machines

known as a closure while the conventional name of a substitution is an environment. Of course, environments
cannot map variables to plain values because if they did and we looked up the value of a variable in the
environment we would introduce back to the control register a plain expression. Thus environments map
variables to closures. A similar change to the definition of continuations is also necessary. We call the new
machine CEK because it combines a control and continuation register with an environment. The following
grammar formally describes the definitions for closures (c and v), continuations and CEK machine states:

c ∈ {⟨e, E⟩ | FV(e) ⊆ dom(E)}
v ∈ {⟨v, E⟩ | FV(v) ⊆ dom(E)}
κ ::= mt | ⟨fun, v, κ⟩ | ⟨arg, c, κ⟩ | ⟨δ, ⟨v,, v⟩, ⟨c, ..., c⟩, κ⟩

SCEK ::= ⟨c, κ⟩

Before delving into the details of the CEK machine, we need to formally define environments. An
environment is a finite mapping from variable to closures. This implies that we can see an environment
either as a set or as a function:

E = {x1=c1, ..., xn=cn}
a finite function: for all i ̸= j and 1 ≤ i, j ≤ n, xi ̸= xj

In both cases, we can define for an environment E its domain dom(E) and its update function E [x 7→ v].
The first has the obvious meaning while the second produces a new environment E ′ that maps x to v
and any other variable in the domain of E to the same value as E . Finally, observe that the definitions of
environments, closures and continuations are mutually recursive.

Now we can move to the rules for the CEK machine:

⟨c, κ⟩ −→CEK ⟨c′, κ′⟩

⟨⟨e1 e2, E⟩, κ⟩ −→CEK ⟨⟨e1, E⟩, ⟨arg, ⟨e2, E⟩, κ⟩⟩
⟨⟨δ(e, e1, ..., ek), E⟩, κ⟩ −→CEK ⟨⟨e, E⟩, ⟨δ, ⟨ ⟩, ⟨⟨ek, E⟩, ...⟨e1, E⟩⟩, κ⟩⟩

⟨⟨λx. e1, E1⟩, ⟨arg, ⟨e2, E2⟩, κ⟩⟩ −→CEK ⟨⟨e2, E2⟩, ⟨fun, ⟨λx. e1, E1⟩, κ⟩⟩
⟨v, ⟨fun, ⟨λx. e, E⟩, κ⟩⟩ −→CEK ⟨⟨e, E [x 7→ v]⟩, κ⟩

⟨v, ⟨δ, ⟨vm, ..., v1⟩, ⟨c, ck, ..., c1⟩, κ⟩⟩ −→CEK ⟨c, ⟨δ, ⟨v, vm, ..., v1⟩, ⟨ck, ..., c1⟩, κ⟩⟩
⟨⟨n, E⟩, ⟨δ, ⟨⟨nm, Em⟩, ..., ⟨n1, E1⟩⟩, ⟨ ⟩, κ⟩⟩ −→CEK ⟨⟨n′, ∅⟩, κ⟩ where δ(n1, ..., nm, n) = n′

⟨⟨x, E⟩, κ⟩ −→CEK ⟨v, κ⟩ where E(x) = v

These rules are quite similar to those of the CK machine except that expressions may contain free variables,
the β-reduction rule updates the environment instead of performing a substitution and, when the control
is a variable we look up its value in the current environment.

Page 6 of 7

Lecture 23 Abstract register machines

Here is how our running example evaluates under the CEK semantics:

⟨⟨((λf. λx. f x) λy. (y + y)) (1 + 20), ∅⟩ ,mt⟩
−→CEK ⟨⟨(λf. λx. f x) λy. (y + y) , ∅⟩ , ⟨arg, ⟨1 + 20, ∅⟩,mt⟩⟩
−→CEK ⟨⟨λf. λx. f x , ∅⟩ , ⟨arg, ⟨λy. (y + y), ∅⟩, ⟨arg, ⟨1 + 20, ∅⟩,mt⟩⟩⟩
−→CEK ⟨⟨λy. (y + y) , ∅⟩ , ⟨fun, ⟨λf. λx. f x, ∅⟩, ⟨arg, ⟨1 + 20, ∅⟩,mt⟩⟩⟩
−→CEK ⟨⟨λx. f x , {f=⟨λy. (y + y), ∅⟩}⟩ , ⟨arg, ⟨1 + 20, ∅⟩,mt⟩⟩
−→CEK ⟨⟨1 + 20 , ∅⟩ , ⟨fun, ⟨λx. f x, {f=⟨λy. (y + y), ∅⟩}⟩,mt⟩⟩
−→CEK ⟨⟨1 , ∅⟩ , ⟨+, ⟨ ⟩, ⟨⟨20, ∅⟩⟩, ⟨fun, ⟨λx. f x, {f=⟨λy. (y + y), ∅⟩}⟩,mt⟩⟩⟩
−→CEK ⟨⟨20 , ∅⟩ , ⟨+, ⟨⟨1, ∅⟩⟩, ⟨ ⟩, ⟨fun, ⟨λx. f x, {f=⟨λy. (y + y), ∅⟩}⟩,mt⟩⟩⟩
−→CEK ⟨⟨21 , ∅⟩ , ⟨fun, ⟨λx. f x, {f=⟨λy. (y + y), ∅⟩}⟩,mt⟩⟩
−→CEK ⟨⟨f x , {f=⟨λy. (y + y), ∅⟩, x=⟨21, ∅⟩}⟩,mt⟩
−→CEK ⟨⟨f , {f=⟨λy. (y + y), ∅⟩, x=⟨21, ∅⟩}⟩, ⟨ arg, ⟨x, {f=⟨λy. (y + y), ∅⟩, x=⟨21, ∅⟩}⟩,mt⟩⟩
−→CEK ⟨⟨λy. (y + y) , ∅⟩ , ⟨ arg, ⟨x, {f=⟨λy. (y + y), ∅⟩, x=⟨21, ∅⟩}⟩,mt⟩⟩
−→CEK ⟨⟨x , {f=⟨λy. (y + y), ∅⟩, x=⟨21, ∅⟩}⟩, ⟨fun, ⟨λy. (y + y), ∅⟩,mt⟩⟩
−→CEK ⟨⟨21 , ∅⟩ , ⟨fun, ⟨λy. (y + y), ∅⟩,mt⟩⟩
−→CEK ⟨⟨y + y , {y=⟨21, ∅⟩}⟩ ,mt⟩
−→CEK ⟨⟨y , {y=⟨21, ∅⟩}⟩ , ⟨+, ⟨ ⟩, ⟨y, {y=⟨21, ∅⟩}⟩,mt⟩⟩
−→CEK ⟨⟨21 , ∅⟩ , ⟨+, ⟨ ⟩, ⟨y, {y=⟨21, ∅⟩}⟩,mt⟩⟩
−→CEK ⟨⟨y , {y=⟨21, ∅⟩}⟩ , ⟨+, ⟨⟨21, ∅⟩⟩, ⟨ ⟩,mt⟩⟩
−→CEK ⟨⟨21 , ∅⟩ , ⟨+, ⟨⟨21, ∅⟩⟩, ⟨ ⟩,mt⟩⟩
−→CEK ⟨⟨42 , ∅⟩ ,mt⟩

As a final remark to the lecture notes, the methodical derivation of each machine makes us confident
of its correctness, i.e., that each machine semantics describes the same semantics as the reduction rules
from the beginning of the section. In fact, we can prove this property for each machine semantics and thus
establish that the machines are a sound basis for constructing an interpreter for our simple language.

Page 7 of 7

