
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Control-flow analysis

Lecture 24 Thursday, April 21, 2016

1 Dataflow analysis for functional programs

One way of thinking about types is that they are static approximations of the behavior of a program. For
example, if expression e has type int → int, then we know statically (i.e., without executing the expression)
that the execution of e will result in a function from integers to integers (provided the execution terminates).

There are in fact many kinds of static analyses that approximate the behavior of programs without actu-
ally executing them. Today we will consider control flow analysis, a program analysis that approximates the
order that individual expressions or commands are evaluated.

In a first-order language like IMP (i.e., a language where functions are not values), control flow analysis
is straightforward: the lexical structure of the program tells us the control flow structure. But in a functional
language, if we see a application f y, then control will jump to the function body of whatever function the
variable f evaluates to. This makes determining the control flow of a functional language more complex
than determining the control flow structure of a language like IMP, where functions are not first-class val-
ues. (Similar issues arise in object-oriented languages, where objects are first class and contain executable
code.)

We will consider the 0-CFA analysis. (CFA stands for Control-Flow Analysis; it is an instance of k-CFA
analysis, where the parameter k determines the precision of the analysis.) Like our type inference analysis,
we will generate a set of constraints from a program, and then find a solution to the set of constraints.

1.1 Labeled lambda calculus

Let’s consider a lambda calculus with integers. The syntax of the language is similar to what we’ve seen
before, but every expression in our source program will have a unique label. Labels are used to uniquely
identify program expressions. We use l to range over labels.

e ::= nl | xl | (λx. e)l | (e1 e2)l | (e1 + e2)
l

Every expression has a label, and we write labelof (e) for the label of expression e. For convenience, we
also write el to mean that l is a label such that labelof (e) = l.

Also, given a program e, we write exprof (e, l) for the (unique) subexpression e′ of e such that labelof (e′) =
l. That is exprof (e, l) allows us to get the expression associated with label l.

We will use a large-step environment semantics for this analysis. Environments ρ are maps from vari-
ables to values, and that judgment ⟨e, ρ⟩ ⇓ v means that expression e in environment ρ evaluates to value
v. Note that in an environment semantics, a function λx. e evaluates to a closure ((λx. e)l, ρlex), where
ρlex is the environment that was current when λx. e was evaluated. That is, ρlex binds the free vari-
ables (except x) in the function body e. We define the label of a closure to be the label of the function:
labelof (((λx. e)l, ρlex)) = l.

Values in our language are thus the following.

v ::= nl | ((λx. e)l, ρ)

⟨xl, ρ⟩ ⇓ ρ(x) ⟨nl, ρ⟩ ⇓ nl

⟨e1, ρ⟩ ⇓ nl1
1 ⟨e2, ρ⟩ ⇓ nl1

2

⟨(e1 + e2)
l, ρ⟩ ⇓ nl

n = n1 + n2

Lecture 24 Control-flow analysis

⟨(λx. e)l, ρ⟩ ⇓ ((λx. e)l, ρ)

⟨e1, ρ⟩ ⇓ ((λx. e)l1 , ρlex) ⟨e2, ρ⟩ ⇓ v2 ⟨e, ρlex[x 7→ v2]⟩ ⇓ v

⟨(e1 e2)l, ρ⟩ ⇓ v

Notice that every value is labeled with the label of the expression that created it. (For integer values, the
label is either the label of the integer literal that appeared in the source program, or the label of an addition.)

1.2 Analysis

The aim of our analysis is to approximate the values that expressions can evaluate to. Since functions are
values, this will also tell us about control flow, since given an application e1 e2, knowing which function
values expression e1 may evaluate to tells us about the possible control flow of the function application.

Our analysis will find a function C : Label → P(Label) that approximates for each label l the set of
values that the expression labeled l may evaluate to. Specifically, if l′ ∈ C(l), then the expression labeled l
may evaluate to a value labeled l′.

Our analysis will also find a function r : Var → P(Label) that for each variable x will approximate the
set of values that x may be bound to. That is, if l ∈ r(x) then the variable x may be bound to a value labeled
l. We assume without loss of generality that variable names in a program are unique. (If we don’t have this
assumption, the analysis will still work, it will just be less precise.)

Given a program e, we produce a set of constraints on functions C and r by examining the program.
Intuitively, if we can find functions C and r that satisfy the constraints, then C and r will give us correct
information about what values expressions and variables may evaluate to.

We generate the set of constraints using function C[[·]]e :Expr → P(Constraint). Here, e is the program
we are analyzing, and we use it in order to map labels to expressions. C[[·]]e is defined as follows.

C[[nl]]e = {l ∈ C(l)}
C[[(e1 + e2)

l]]e = C[[e1]]e ∪ C[[e2]]e ∪ {l ∈ C(l)}
C[[xl]]e = {r(x) ⊆ C(l)}

C[[(λx. e1)l]]e = {l ∈ C(l)} ∪ C[[e1]]e
C[[(el11 el22)

l]]e = C[[el11]]e ∪ C[[el22]]e
∪ {l′ ∈ C(l1) ⇒ C(l2) ⊆ r(x) | exprof (e, l′) = (λx. el00)

l′}

∪ {l′ ∈ C(l1) ⇒ C(l0) ⊆ C(l) | exprof (e, l′) = (λx. el00)
l′}

Let’s consider what each of these constraints mean. For values nl, (λx. e1)l and addition (e1 + e2)
l we

have constraint l ∈ C(l). This means that the expression labeled l may evaluate to a value labeled l, and, if
we look at the semantics, it is indeed the case.

C[[xl]]e produces the constraint r(x) ⊆ C(l), meaning that if x may be bound to a value labeled l′ (i.e.,
l′ ∈ r(x)), then the expression xl may evaluate to that value (i.e., l′ ∈ C(l).

The constraints for application (el11 el22)
l are most interesting. The conditional constraint l′ ∈ C(l1) ⇒

C(l2) ⊆ r(x) requires that if expression e1 may evaluate to function value (λx. el00)
l′ (i.e., l′ ∈ C(l1)), then x,

the argument of that function, may be bound to anything that e2 can evaluate to (i.e., C(l2) ⊆ r(x)).
Similarly, constraint l′ ∈ C(l1) ⇒ C(l0) ⊆ C(l) requires that if expression e1 may evaluate to function

value (λx. el00)
l′ (i.e., l′ ∈ C(l1)), then the application expression may evaluate to anything that function

body e0 may evaluate to (i.e., C(l0) ⊆ C(l)).

Solving these constraints is straightforward. We will start off with a very bad approximation to the
functions: C0(l) = ∅ for all labels l, and r0(x) = ∅ for all variables x. We will then iteratively improve these
approximations by adding labels to the sets to satisfy the constraints. We will keep iterating until we reach
a fixed point. Since there are only a finite number of labels, and in each iteration we only add labels to the
sets, we are guaranteed to reach a fixed point.

Page 2 of 7

Lecture 24 Control-flow analysis

C0 = λl. ∅
r0 = λx. ∅

Ci+1 = λl.Ci(l)

∪ {l | (l ∈ C(l)) ∈ C[[e]]e}

∪
∪

{ri(x) | (r(x) ⊆ C(l)) ∈ C[[e]]e}

∪
∪

{Ci(l0) | (l′ ∈ C(l1) ⇒ C(l0) ⊆ C(l)) ∈ C[[e]]e and l′ ∈ Ci(l1)}

ri+1 = λx. ri(x)

∪
∪

{Ci(l2) | (l′ ∈ C(l1) ⇒ C(l2) ⊆ r(x)) ∈ C[[e]]e and l′ ∈ Ci(l1)}

The least fixed point, which we will denote C∗ and r∗ is the bound of all of the approximations.

C∗ = λl.
∪
i∈N

Ci(l)

r∗ = λx.
∪
i∈N

ri(x)

1.3 Example

Let’s work through a simple example. Consider the following program.

e ≡ (((λa. a1)2 (λb. b3)4)5 996)7

The set of constraints for this simple program is as follows. (Exercise: make sure you understand how
these constraints were derived.)

C[[e]]e = { 2 ∈ C(2), 4 ∈ C(4), 6 ∈ C(6),

r(a) ⊆ C(1), r(b) ⊆ C(3),

2 ∈ C(5) ⇒ C(6) ⊆ r(a),

4 ∈ C(5) ⇒ C(6) ⊆ r(b),

2 ∈ C(5) ⇒ C(1) ⊆ C(7),

4 ∈ C(5) ⇒ C(3) ⊆ C(7),

2 ∈ C(2) ⇒ C(4) ⊆ r(a),

4 ∈ C(2) ⇒ C(4) ⊆ r(b),

2 ∈ C(2) ⇒ C(1) ⊆ C(5),

4 ∈ C(2) ⇒ C(3) ⊆ C(5) }

Let’s consider the result of solving it iteratively. In the following table, columns indicate the values of
Ci(l) and ri(x) over the various iterations.

Page 3 of 7

Lecture 24 Control-flow analysis

i Ci(1) Ci(2) Ci(3) Ci(4) Ci(5) Ci(6) Ci(7) ri(a) ri(b)
0
1 2 4 6
2 2 4 6 4
3 4 2 4 6 4
4 4 2 4 4 6 4
5 4 2 4 4 6 4 6
6 4 2 6 4 4 6 4 6
7 4 2 6 4 4 6 6 4 6
8 4 2 6 4 4 6 6 4 6

At the 8th iteration, we have C7 = C8 and r7 = r8, and we have reached a fixed point, and so C∗ = C8 and
r∗ = r8.

Let’s double check that this analysis returned reasonable results. For example, C∗(5) = {4}, meaning
that the expression ((λa. a1)2 (λb. b3)4)5 may evaluate it a value labeled 4, i.e., to the value (λb. b3)4. That is
indeed consistent with the actual execution of the program. Another example: C∗(7) = {6}, meaning that
the whole program may evaluate to a value labeled 6, i.e., to the labeled integer 996.

Note that 2 ̸∈ C∗(5). That is, the analysis correctly says that expression ((λa. a1)2 (λb. b3)4)5 can not
evaluate to (λa. a1)2.

1.4 Soundness

The analysis is sound, meaning that, given a program e0, if r∗ and C∗ satisfy the set of constraints C[[e0]]e0 ,
then C∗ conservatively describes what expressions may evaluate to, and r∗ conservatively describes what
variables may be bound to.

Theorem (Soundness). Let e0 be a program. Let r∗ and C∗ satisfy the set of constraints C[[e0]]e0 . If ⟨e0, ∅⟩ ⇓ v0 and
⟨e, ρ⟩ ⇓ v appears in the derivation of ⟨e0, ∅⟩ ⇓ v0, then labelof (v) ∈ C∗(labelof (e)).

In order to prove the soundness theorem, we need a stronger lemma. To state the lemma, we will extend
the set-constraint generation function to environments and closures.

C[[ρ]]e =
∪

x∈dom(ρ)

{C(labelof (ρ(x))) ⊆ r(x)} ∪ C[[ρ(x)]]e

C[[((λx. e1)l, ρ)]]e = C[[(λx. e1)l]]e ∪ C[[ρ]]e

With this extended definition in hand, we can state the lemma, which can then be proved by induction
on derivations ⟨e, ρ⟩ ⇓ v.

Lemma. Let e0 be a program, e an expression and ρ an environment. Let r∗ and C∗ satisfy the constraints C[[(e, ρ)]]e0 .
If ⟨e, ρ⟩ ⇓ v then labelof (v) ∈ C∗(labelof (e)) and r∗ and C∗ satisfy the constraints C[[v]]e0 .

1.5 1-CFA

The analysis described above, 0-CFA, is context insensitive: for a given subexpression in a function, it com-
putes the set of values the subexpression may evaluate to regardless of where the function is called from.

Consider the following program (where for clarity we use let-syntax and label only some of the subex-
pressions).

let id = λy. y in

let a = (id 191)3 in

(id 212)4

Page 4 of 7

Lecture 24 Control-flow analysis

Note that if we performed the 0-CFA analysis on this program, then r(y) = {1, 2} (i.e., y can be bound
to the integers 19 and 20), and so C(3) = {1, 2}, even though a can evaluate only to the integer 19.

We can improve the precision of CFA by distinguishing the different uses of variables and expressions
based on the context. Towards this end, we will modify the analysis so that it computes the sets r(x, c) and
C(l, c), where x ranges over program variables, l ranges over expression labels, and c ranges over contexts.
Also, instead of just tracking labels of values that can be computed, we will use pairs of labels and contexts.
That is, r(x, c) and C(l, c) will be sets of pairs (l′, c′).

For our purposes, we will regard the context of an expression as being the label of the expression that
called the current function. For example, in the program above, we would compute r(y, 3) and r(y, 4),
i.e., the possible values that variable y can be bound to when the function is called from call site 3, and
the the possible values that variable y can be bound to when the function is called from call site 4. By
distinguishing these different invocations of the identity function, we will correctly compute that variable
a can be bound only to the integer 19. (We also need to allow a special context, cinit , to be used for the
“top-level” expressions, i.e., expressions that are evaluated without any function being invoked.)

Our choice of context defines 1-CFA. In general, k-CFA is a control-flow analysis where the context is
the list of the k call-sites on the stack. There are also other kinds of context that can be considered, leading
to other kinds of control-flow analyses.

Let’s try an initial incorrect version of the constraints, to understand how the contexts work. (Don’t
worry if you don’t understand all the details of how these 1-CFA constraints work; focus on the high-level
ideas.)

C[[nl]]e = {∀c. (l, c) ∈ C(l, c)}
C[[(e1 + e2)

l]]e = C[[e1]]e ∪ C[[e2]]e ∪ {∀c. (l, c) ∈ C(l, c)}
C[[xl]]e = {∀c. r(x, c) ⊆ C(l, c)}

C[[(λx. e1)l]]e = {∀c. (l, c) ∈ C(l, c)} ∪ C[[e1]]e
C[[(el11 el22)

l]]e = C[[el11]]e ∪ C[[el22]]e
∪ {∀c. (l′, c′) ∈ C(l1, c) ⇒ C(l2, c) ⊆ r(x, l) | exprof (e, l′) = (λx. el00)

l′}

∪ {∀c. (l′, c′) ∈ C(l1, c) ⇒ C(l0, l) ⊆ C(l, c) | exprof (e, l′) = (λx. el00)
l′}

Observe in the constraints for application (el11 el22)
l, if e1 in context c might evaluate to (λx. el00)

l′ (i.e.,
(l′, c′) ∈ C(l1, c)) then the variable x in the context l (i.e., when it is called from the application labeled l)
may be bound to the result of evaluating el22 in context c (i.e., C(l2, c) ⊆ r(x, l)). Also, the evaluation of the
application may result in any value that the function body might evaluate to (i.e., C(l0, l) ⊆ C(l, c)).

These rules are, however, not quite correct. Consider the following program (where, again for clarity,
we use let-expressions and label only some of the expressions).

let f = λa. λb. al0 in

let g = (f 21)l2 in

(g 99)l1

When we analyze the call site l1, we will find that g can evaluate to the function λb. al0 , but when we
consider r(a, l1), we find that it is empty! The problem is that variable a was not defined in context l1, but
in context l2, that is, at the call site (f 21)l2 .

To address this issue, we will modify our sets and constraints to use a context environment that records in
which context each variable was defined. We use γ to range over context environments, which are just maps
from variables to the context in which the variable was defined. Also, in our set of values, instead of just
the labels of functions, we need to track closures, i.e., a pair of a function label and a context environment.
Our modified constraints are now the following.

Page 5 of 7

Lecture 24 Control-flow analysis

C[[nl]]e = {∀c, γ. (l, c) ∈ C(l, c, γ)}
C[[(e1 + e2)

l]]e = C[[e1]]e ∪ C[[e2]]e ∪ {∀c, γ. (l, c) ∈ C(l, c, γ)}
C[[xl]]e = {∀c, γ. r(x, γ(x)) ⊆ C(l, c, γ)}

C[[(λx. e1)l]]e = {∀c, γ. (l, c, γ) ∈ C(l, c, γ)} ∪ C[[e1]]e
C[[(el11 el22)

l]]e = C[[el11]]e ∪ C[[el22]]e
∪ {∀c, γ. (l′, c′, γ′) ∈ C(l1, c, γ) ⇒ C(l2, c, γ) ⊆ r(x, l) | exprof (e, l′) = (λx. el00)

l′}

∪ {∀c, γ. (l′, c′, γ′) ∈ C(l1, c, γ) ⇒ C(l0, l, γ
′[x 7→ l]) ⊆ C(l, c, γ) | exprof (e, l′) = (λx. el00)

l′}

Note that in the constraint generated for xl, we look up the possible values for x in the context in which
x was defined (i.e., r(x, γ(x)) ⊆ C(l, c, γ)).

Note also that in the constraints for a function, we use a closure. That is, supposing that we evaluate a
function (λx. e1)

l in context c where the free variables of λx. e1 are defined in contexts as described by γ,
then the expression may evaluate to a closure represented by (l, c, γ).

We use these closures in the rule for application, where given (el11 el22)
l, if e1 can evaluate to a function

(λx. el00)
l′ with lexical context environment γ′ (i.e., a closure represented by (l′, c′, γ′)), we are interested

in what the function body el00 can evaluate to in context γ′[x 7→ l], i.e., the context that extends the lexical
context with a mapping from variable x to context l, since variable x is defined in context l (via the constraint
that requires C(l2, c, γ) ⊆ r(x, l)).

There is an additional improvement we can make. We currently compute the set of values/labels that
an expression can evaluate to for all contexts and environments, even though it is typically the case that
most expressions will be evaluated only in a few contexts. We can see this inefficiency in, for example, the
constraint for (λx. e1)l where for all contexts c and environments γ we have (l, c, γ) ∈ C(l, c, γ).

To address this, we can track which expressions are “reachable” in which contexts and environments.
That is, we compute a predicate reachable(l, c, γ) which is true only if the expression labeled l may be evalu-
ated in context c with environment γ. We need to “seed” the analysis by asserting that the program itself is
reachable in the special initial context with an empty environment, i.e., reachable(labelof (e), cinit , ∅) holds,
where e is the program itself.

C[[nl]]e = {∀c, γ. reachable(l, c, γ) ⇒ (l, c) ∈ C(l, c, γ)}
C[[(e1 + e2)

l]]e = C[[e1]]e ∪ C[[e2]]e ∪ {∀c, γ. reachable(l, c, γ) ⇒ (l, c) ∈ C(l, c, γ)}
C[[xl]]e = {∀c, γ. reachable(l, c, γ) ⇒ r(x, γ(x)) ⊆ C(l, c, γ)}

C[[(λx. e1)l]]e = {∀c, γ. reachable(l, c, γ) ⇒ (l, c, γ) ∈ C(l, c, γ)} ∪ C[[e1]]e
C[[(el11 el22)

l]]e = C[[el11]]e ∪ C[[el22]]e
∪ {∀c, γ. reachable(l, c, γ) ∧ (l′, c′, γ′) ∈ C(l1, c, γ) ⇒ C(l2, c, γ) ⊆ r(x, l) | exprof (e, l′) = (λx. el00)

l′}
∪ {∀c, γ. reachable(l, c, γ) ∧ (l′, c′, γ′) ∈ C(l1, c, γ) ⇒

C(l0, l, γ
′[x 7→ l]) ⊆ C(l, c, γ) | exprof (e, l′) = (λx. el00)

l′}
∪ {∀c, γ. reachable(l, c, γ) ∧ (l′, c′, γ′) ∈ C(l1, c, γ) ⇒

reachable(l′′, l, γ′[x 7→ l]) ⊆ C(l, c, γ) | exprof (e, l′) = (λx. el00)
l′ , l′′ ∈ labelsin(el0)}

Page 6 of 7

Lecture 24 Control-flow analysis

where labelsin(e) is the set of labels that appears in expression e, and is defined as follows.

labelsin(nl) = {l}
labelsin(xl) = {l}

labelsin((λx. e)l) = {l} ∪ labelsin(e)

labelsin((e1 e2)
l) = {l} ∪ labelsin(e1) ∪ labelsin(e2)

labelsin((e1 + e2)
l) = {l} ∪ labelsin(e1) ∪ labelsin(e2)

Page 7 of 7

