Harvard School of Engineering and Applied Sciences - CS 152: Programming Languages
 More types
 Section and Practice Problems

Mar 10-11, 2016

1 Products and Sums

For these questions, use the lambda calculus with products and sums (Lecture 12, §1.1).
(a) Write a program that constructs two values of type int + (int \rightarrow int $)$, one using left injection, and one using right injection.
(b) Write a function that takes a value of type int + (int $\rightarrow \mathbf{i n t}$) and if the value is an integer, it adds 7 to $i t$, and if the value is a function it applies the function to 42 .
(c) Give a typing derivation for the following program.

$$
\lambda p:(\text { unit } \rightarrow \mathbf{i n t}) \times(\text { int } \rightarrow \text { int }) . \lambda x: \text { unit }+ \text { int. case } x \text { of } \# 1 p \mid \# 2 p
$$

(d) Write a program that uses the term in part (c) above to produce the value 42.

2 Recursion

(a) Use the $\mu x . e$ expression to write a function that takes a natural number n and returns the sum of all even natural numbers less than or equal to n. (You can assume you have appropriate integer comparison operators, and also a modulus operator.)
(b) Try executing your program by applying it to the number 5.
(c) Give a typing derivation for the following program. What happens if you execute the program?

$$
\mu p:(\text { int } \rightarrow \text { int }) \times(\text { int } \rightarrow \text { int }) \cdot(\lambda n: \text { int. } n+1, \# 1 p)
$$

3 References

(a) Give a typing derivation for the following program.

$$
\begin{aligned}
& \text { let } a: \text { int ref }=\text { ref } 4 \text { in } \\
& \text { let } b: \text { int ref }=\text { ref } \lambda x: \text { int. } x+38 \text { in } \\
& !b!a
\end{aligned}
$$

(b) Execute the program above for 4 small steps, to get configuration $\langle e, \sigma\rangle$. What is an appropriate Σ such that $\emptyset, \Sigma \vdash e: \tau$ and $\Sigma \vdash \sigma$?

