
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Type Inference; Parametric Polymorphism; Records and Subtyping
Section and Practice Problems

Mar 24-25, 2016

1 Type Inference

(a) Recall the constraint-based typing judgment Γ ⊢ e :τ ▷C. Give inference rules for products and sums.
That is, for the following expressions.

• (e1, e2)

• #1 e

• #2 e

• inlτ1+τ2 e

• inrτ1+τ2 e

• case e1 of e2 | e3

Answer:
Γ ⊢ e1 :τ1 ▷ C1 Γ ⊢ e2 :τ2 ▷ C2

Γ ⊢ (e1, e2) :τ1 × τ2 ▷ C1 ∪ C2

Γ ⊢ e :τ ▷ C

Γ ⊢ #1 e :X ▷ C ∪ {τ = X × Y }
X,Y are fresh

Γ ⊢ e :τ ▷ C

Γ ⊢ #2 e :Y ▷ C ∪ {τ = X × Y }
X,Y are fresh

Γ ⊢ e :τ ▷ C

Γ ⊢ inlτ1+τ2 e :τ1 + τ2 ▷ C ∪ {τ = τ1}
Γ ⊢ e :τ ▷ C

Γ ⊢ inrτ1+τ2 e :τ1 + τ2 ▷ C ∪ {τ = τ2}

Γ ⊢ e1 :τ1 ▷ C1 Γ ⊢ e2 :τ2 ▷ C2 Γ ⊢ e3 :τ3 ▷ C3

Γ ⊢ case e1 of e2 | e3 :Z ▷ C1 ∪ C2 ∪ C3 ∪ {τ1 = X + Y, τ2 = X → Z, τ3 = Y → Z}
X,Y, Z are fresh

(b) Determine a set of constraints C and type τ such that

⊢ λx :A. λy :B. (#1 y) + (x (#2 y)) + (x 2) :τ ▷ C

and give the derivation for it.

Answer:

C = {B = X × Y , X = int , B = Z ×W , A = W → U , U = int , A = int → V , V = int}
τ = A → B → int

To see how we got these constraints, we will consider the subexpressions in turn (rather than trying to typeset
a really really big derivation).



Type Inference; Parametric Polymorphism; Records and Subtyping
Section and Practice Problems

The expression #1 y requires us to add a constraint that the type of y (i.e., B) is equal to a product type for
some fresh variables X and Y , thus constraint B = X × Y . (And expression #1 y has type X .)

The expression (#2 y) similarly requires us to add a constraint that the type of y (i.e., B) is equal to a product
type for some fresh variables Z and W , thus constraint B = Z ×W . (And expression #2 y has type W .)

The expression x (#2 y) requires us to add a constraint that unifies the type of x (i.e., A) with a function type
W → U (where W is the type of #2 y and U is a fresh type variable).

The expression x 2 requires us to add a constraint that unifies the type of x (i.e., A) with a function type int → V
(where int is the type of expression 2 and V is a fresh type).

The addition operations leads us to add constraints X = int, U = int, and V = int (i.e., the types of expressions
(#1 y), (x (#2 y)) and (x 2) must all unify with int.

(c) Recall the unification algorithm from Lecture 14. What is the result of unify(C) for the set of con-
straints C from Question 1(b) above?

Answer: The result is a substitution equivalent to

[A 7→ int → int , B 7→ int × int , X 7→ int , Y 7→ int , Z 7→ int , W 7→ int , U 7→ int , V 7→ int]

2 Parametric polymorphism

(a) For each of the following System F expressions, is the expression well-typed, and if so, what type does
it have? (If you are unsure, try to construct a typing derivation. Make sure you understand the typing
rules.)

• ΛA. λx :A → int. 42

• λy :∀X. X → X. (y [int]) 17

• ΛY.ΛZ. λf :Y → Z. λa :Y. f a

• ΛA.ΛB.ΛC. λf :A → B → C. λb :B. λa :A. f a b

Answer:

• ΛA. λx :A → int. 42 has type
∀A. (A → int) → int

• λy :∀X. X → X. (y [int]) 17 has type

(∀X. X → X) → int

• ΛY.ΛZ. λf :Y → Z. λa :Y. f a has type

∀Y. ∀Z. (Y → Z) → Y → Z

• ΛA.ΛB.ΛC. λf :A → B → C. λb :B. λa :A. f a b has type

∀A. ∀B. ∀C. (A → B → C) → B → A → C

Page 2 of 5



Type Inference; Parametric Polymorphism; Records and Subtyping
Section and Practice Problems

(b) For each of the following types, write an expression with that type.

• ∀X. X → (X → X)

• (∀C. ∀D. C → D) → (∀E. int → E)

• ∀X. X → (∀Y. Y → X)

Answer:

• ∀X. X → (X → X) is the type of
ΛX. λx :X.λy :X. y

• (∀C. ∀D. C → D) → (∀E. int → E) is the type of

λf :∀C. ∀D. C → D.ΛE. λx : int. (f [int] [E]) x

• ∀X. X → (∀Y. Y → X) is the type of

ΛX. λx :X.ΛY. λy :Y. x

3 Records and Subtyping

(a) Assume that we have a language with references and records.

(i) Write an expression with type

{ cell : int ref, inc : unit → int }

such that invoking the function in the field inc will increment the contents of the reference in the
field cell.

Answer: The following expression has the appropriate type.

let x = ref 14 in
{ cell = x, inc = λu :unit. x := (!x+ 1) }

(ii) Assuming that the variable y is bound to your expression, write an expression that increments
the contents of the cell twice.

Answer:
let z = y.inc () in y.inc ()

(b) The following expression is well-typed (with type int). Show its typing derivation. (Note: you will
need to use the subsumption rule.)

(λx :{dogs : int, cats : int}. x.dogs + x.cats) {dogs = 2, cats = 7,mice = 19}

Page 3 of 5



Type Inference; Parametric Polymorphism; Records and Subtyping
Section and Practice Problems

Answer:

For brevity, let e1 ≡ λx :{dogs : int, cats : int}. x.dogs+x.cats) and let e2 ≡ {dogs = 2, cats = 7,mice = 19}.
The derivation has the following form.

T-APP

...1
⊢ e1 :{dogs : int, cats : int} → int

...2
⊢ e2 :{dogs : int, cats : int}

⊢ e1 e2 : int

The derivation of e1 is straight forward:

T-A
BS

T-A
DD

T-F
IE

LD

T-V
AR x

:{
do

gs
: i

nt, c
ats

: i
nt}

⊢
x
:{

do
gs
: i

nt, c
ats

: i
nt}

x
:{

do
gs
: i

nt, c
ats

: i
nt}

⊢
x.

do
gs
: in

t

T-F
IE

LD

T-V
AR x

:{
do

gs
: i

nt, c
ats

: i
nt}

⊢
x
:{

do
gs
: i

nt, c
ats

: i
nt}

x
:{

do
gs
: i

nt, c
ats

: i
nt}

⊢
x.

cat
s :

int

x
:{

do
gs
: i

nt, c
ats

: i
nt}

⊢
x.

do
gs
+
x.

cat
s :

int

⊢
e1
:{

do
gs
: i

nt, c
ats

: i
nt}

→
int

The derivation of e2 requires the use of subsumption, since we need to show that e2 ≡ {dogs = 2, cats =
7,mice = 19} has type {dogs : int, cats : int}.

Page 4 of 5



Type Inference; Parametric Polymorphism; Records and Subtyping
Section and Practice Problems

⊢ 2: int ⊢ 7: int ⊢ 19: int

⊢ {dogs = 2, cats = 7, mice = 19} :{dogs : int, cats : int, mice : int} {dogs : int, cats : int, mice : int} ≤ {dogs : int, cats : int}
⊢ {dogs = 2, cats = 7, mice = 19} :{dogs : int, cats : int}

Page 5 of 5


