Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Type Inference; Parametric Polymorphism; Records and Subtyping
Section and Practice Problems

Mar 24-25, 2016

1 Type Inference

(a) Recall the constraint-based typing judgment I' - e: 71> C. Give inference rules for products and sums.
That is, for the following expressions.
e (e1,62)
o #le
o H2e
[in|71+72 e

o iNry 4.,€

casee; Of ey | €3

Answer:
I'kep:mp>Ch FI—GQZTQDCQ
Tt (e1,e9):m1 X 2> C1 UCy
I'ker>C I'te:rnC
T X,Y are fresh T X, Y are fresh
PF#le: X>pCU{r=XxY} FF#2e:Y>CU{r=XxY}
I'ter>C I'ker>C
PHinl i, e +>CU{T =7} TEint e +m>CU{T =7}
I'tei:mnC I'tey:mp C I'kes:m3>C
L7 ! 222 3T X,Y, Z are fresh
F}—C339610f€2‘6322I>01U02U03U{7’1:X+K72:X—>Z,T3:Y—>Z}

(b) Determine a set of constraints C' and type 7 such that
F Az:AXy:B. (#1ly)+ (x (#2y) + (2) :7C

and give the derivation for it.

Answer:

C={B=XxY,X=int, B=ZxW, A=W >U,U=int, A=int—V V =int}
T=A— B —int

To see how we got these constraints, we will consider the subexpressions in turn (rather than trying to typeset
a really really big derivation).

Type Inference; Parametric Polymorphism; Records and Subtyping
Section and Practice Problems

The expression #1 y requires us to add a constraint that the type of y (i.e., B) is equal to a product type for
some fresh variables X and 'Y, thus constraint B = X x Y. (And expression #1 y has type X.)

The expression (#2 y) similarly requires us to add a constraint that the type of y (i.e., B) is equal to a product
type for some fresh variables Z and W, thus constraint B = Z x W. (And expression #2 y has type W.)

The expression x (#2 y) requires us to add a constraint that unifies the type of x (i.e., A) with a function type
W — U (where W is the type of #2 y and U is a fresh type variable).

The expression x 2 requires us to add a constraint that unifies the type of x (i.e., A) with a function type int — V'
(where int is the type of expression 2 and V' is a fresh type).

The addition operations leads us to add constraints X = int, U = int,and V = int(i.e., the types of expressions
(#1vy), (x (#2y)) and (x 2) must all unify with int

(c) Recall the unification algorithm from Lecture 14. What is the result of unify(C) for the set of con-
straints C' from Question 1(b) above?

Answer: The result is a substitution equivalent to

[A—int—int, B—intxint, X —int, Y —int, Z —int, W — int, U — int, V — int]

2 Parametric polymorphism

(a) For each of the following System F expressions, is the expression well-typed, and if so, what type does
it have? (If you are unsure, try to construct a typing derivation. Make sure you understand the typing
rules.)

o AA Xzx:A — int. 42

o \y:VX. X — X. (y[int]) 17

e AY AZXNf:Y = Z Xa:Y. fa

e M. AB.ACANf:A—= B —=C.A:B. Xa:A. fab

Answer:

o AA. Xx: A — int 42 has type
VA. (A — int) — int

o \y:VX. X — X.(y [inf]) 17 has type
VX. X - X) —int
o AY AZ XY = Z. Xa:Y. f a has type
VWY NZ (Y - 2Z2)=>Y = Z
o NM.AB.AC.Af:A— B — C.\b:B.Xa:A. f abhas type

VA.VB.YC.(A—-B—C)—-B—A—C

Page 2 of 5

Type Inference; Parametric Polymorphism; Records and Subtyping
Section and Practice Problems

(b) For each of the following types, write an expression with that type.

o VX. X — (X = X)
e (VC.VD.C — D) — (VE.int - E)
e VX. X —» (VY. Y = X)

Answer:

o VX. X — (X — X)) is the type of
AX dx: X Ay: Xy

e (VC.VD.C — D) — (VE. int — E) is the type of
A :VC.VD.C — D.AE. \x:int. (f [inf] [E]) =
o VX. X — (VY. Y — X) is the type of

AX Az: X.AY. \y:Y.x

3 Records and Subtyping
(a) Assume that we have a language with references and records.
(i) Write an expression with type
{ cell : intref,inc : unit — int }

such that invoking the function in the field inc will increment the contents of the reference in the
field cell.

Answer: The following expression has the appropriate type.

letx = refl4 in
{ cell =z, inc = Au:unit.z .= (lx + 1) }

(if) Assuming that the variable y is bound to your expression, write an expression that increments
the contents of the cell twice.

Answer:
let z = y.inc () iny.inc ()

(b) The following expression is well-typed (with type int). Show its typing derivation. (Note: you will
need to use the subsumption rule.)

(Az:{dogs : int, cats : int}. x.dogs + x.cats) {dogs = 2, cats = 7, mice = 19}

Page 3 of 5

Type Inference; Parametric Polymorphism; Records and Subtyping
Section and Practice Problems

Answer:

7, mice =

For brevity, let e; = \x:{dogs : int, cats : int}. x.dogs+x.cats) and let e; = {dogs = 2, cats = 7, mice = 19}.
The derivation has the following form.

51 2
F eq:{dogs : int, cats : int} — int F eq:{dogs : int, cats : int}

T-APpP

Fep 622int

The derivation of ey is straight forward:

The derivation of e requires the use of subsumption, since we need to show that e; = {dogs = 2,cats =

19} has type {dogs : int, cats : int}.

Page4 of 5

Type Inference; Parametric Polymorphism; Records and Subtyping
Section and Practice Problems

F2:int - 7:int + 19:int

- {dogs = 2, cats = 7, mice = 19} : {dogs : int, cats : int, mice : int} {dogs : int, cats : int, mice : int} < {dogs : int, cats : int}

F {dogs = 2, cats = 7, mice = 19} : {dogs : int, cats : int}

Page5of5

