
Harvard School of Engineering and Applied Sciences — CS 152: Programming Languages

Algebraic structures

Lecture 18 Thursday, March 29, 2018

In abstract algebra, algebraic structures are defined by a set of elements and operations on those ele-
ments that satisfy certain laws. Some of these algebraic structures have interesting and useful computa-
tional interpretations. In this lecture we will consider several algebraic structures (monoids, functors, and
monads), and consider the computational patterns that these algebraic structures capture. We will look at
Haskell, a functional programming language named after Haskell Curry, which provides support for defin-
ing and using such algebraic structures. Indeed, monads are central to practical programming in Haskell.
First, however, we consider type constructors, and see two new type constructors.

1 Type constructors

A type constructor allows us to create new types from existing types. We have already seen several different
type constructors, including product types, sum types, reference types, and parametric types.

The product type constructor × takes existing types τ1 and τ2 and constructs the product type τ1 × τ2
from them. Similarly, the sum type constructor + takes existing types τ1 and τ2 and constructs the product
type τ1 + τ2 from them.

We will briefly introduce list types and option types as more examples of type constructors.

1.1 Lists

A list type τ list is the type of lists with elements of type τ . We write [] for the empty list, and v1 :: v2 for
the list that contains value v1 as the first element, and v2 is the rest of the list. We also provide a way to
check whether a list is empty (isempty? e) and to get the head and the tail of a list (head e and tail e).

Assume that we have a call-by-value lambda calculus with booleans and a fixpoint operator µx : τ. e.
We extend the syntax and semantics of this language with lists as follows.

Expressions e ::= · · · | [] | e1 :: e2 | isempty? e | head e | tail e
Values v ::= · · · | [] | v1 :: v2

Types τ ::= · · · | τ list
Evaluation contexts E ::= · · · | E :: e | v :: E | isempty? E | head E | tail E

isempty? [] −→ true isempty? v1 :: v2 −→ false head v1 :: v2 −→ v1 tail v1 :: v2 −→ v2

Γ ` [] :τ list
Γ ` e1 :τ Γ ` e2 :τ list

Γ ` e1 :: e2 :τ list
Γ ` e :τ list

Γ ` isempty? e :bool
Γ ` e :τ list

Γ ` head e :τ

Γ ` e :τ list
Γ ` tail e :τ list

For example, we can define a function append that takes two lists and appends one to the other, as
follows.

append , µf :τ list→ τ list. λa :τ list. λb :τ list. if isempty? a then b else (head a) :: (f (tail a) b)

1.2 Options

A value of option type τ option is either a value v of type τ (indicated by value some v) or a distinguished
value none. Option types are used in practical functional programming languages: in OCaml option types

Lecture 18 Algebraic structures

are written ’a option, and in Haskell the option type is Maybe a. In Java, all class types are essentially
option types: a value of class C may be either null or an object of class C.

We will extend the syntax of a call-by-value lambda calculus with option types by adding none and
some e as new expressions. We will also provide a construct to use option values: case e1 of e2 | e3, where
e1 should evaluate to an option value, e2 and e3 are functions, and e2 will be applied to the unit value () if
e1 evaluates to none, and e3 will be applied to value v if e1 evaluates to some v.

Expressions e ::= · · · | none | some e | case e1 of e2 | e3
Values v ::= · · · | none | some v
Types τ ::= · · · | τ option
Evaluation contexts E ::= · · · | some E | case E of e2 | e3

We can think of type τ option as being syntactic sugar for the sum type unit + τ , and none and some e
as being syntactic sugar for inlunit+τ () and inrunit+τ e respectively.

2 Algebraic structures

2.1 Monoids

A monoid is a set T with a distinguished element called the unit (which we will denote u) and a single
operation multiply : T → T → T that satisfies the following laws.

∀x ∈ T. multiply x u = x Left identity
∀x ∈ T. multiply u x = x Right identity

∀x, y, z ∈ T. multiply x (multiply y z) = multiply (multiply x y) z Associativity

The first two laws indicate that the unit u is the identity (or unity) for multiply . The third law says
that the multiply operation is associative. The third law may look more familiar or natural if we use infix
notation for the multiply operator, instead of the prefix notation we have been using so far:

∀x, y, z ∈ T. x multiply (y multiply z) = (x multiply y) multiply z

For those familiar with abstract algebra, a monoid is essentially a group without an inverse operator.
If we regard the set of elements T as the set of values of a specific type τ , and the operator multiply as

being a function of type τ → τ → τ , then we have several examples of monoids readily at hand.

• Integers with multiplication. Here T is the set of values with type Int (i.e., the integer literals), and
the multiply operation is the function λa : Int. λb : Int. a× b (or, we can just treat × as an infix function),
and unit is the integer 1.

• Integers with addition. Here T is the set of values with type Int, and the multiply operation is the
function λa : Int. λb : Int. a + b, and unit is the integer 0. Note that the same underlying set can have
different operations that satisfy the monoid laws!

• Strings with concatenation. Here T is the set of values with type String, unit is the empty string, and
the multiply operation is the function λa : Int. λb : Int. a++b, where ++ denotes string concatenation.

• Lists with append. Let τ be some fixed type, and T is the set of values with type τ list, i.e., lists with
elements of type τ . The unit value is the empty list [], and the multiply operation is the function that
appends two lists, defined above.

Page 2 of 7

Lecture 18 Algebraic structures

2.2 Functors

A functor is an algebraic structure that associates with each set A a set TA. (To foreshadow how we will
interpret the computational content of functors, think of T as a type constructor.)

A functor has a single operation map : (A → B) → TA → TB that takes a function from A to B and
an element of TA and returns an element of TB . The operation map satisfies the following laws, where #
denotes function composition (i.e., (f # g)(x) = g(f(x))).

∀f ∈ A→ B, g ∈ B → C. (map f) # (map g) = map (f # g) Distributivity
map (λa :A. a) = (λa :TA. a) Identity

The first law says that composing map f and map g (and thus getting a function from TA to TC) is
equivalent to using map on the composition of f and g. The second law says that map of the identity
function λa :A. a must be the identify function.

We can think of TA as being a container that contains elements from the set A. Given a function that
transforms elements of A to elements of B, the operator map gives us a way to transform containers of A to
containers of B.

What examples do we have of functors in the programming language constructs we have seen so far?

• Options. Here T is the type constructor option, and a suitable function for the operation map is the
following function.

λf :τ1 → τ2. λa :τ option. case a of λx :unit.none|λv :τ. some (f v)

Note that if a is none, then the result of map f a is none. Otherwise, if a is some v, then the result is
some (f v).

Exercise: check to make sure that the laws are indeed satisfied.

• Lists. Here T is the type constructor list, and as the name suggests, a suitable function for the map
operator is the map function that you may be familiar with from OCaml’s standard list library.

map , λf :τ1 → τ2. µm :τ1 list→ τ2 list. λa :τ1 list. if isempty? a then a else (f head a) :: m (tail a)

Exercise: check to make sure that the laws are indeed satisfied.

2.3 Monads

Like functors, monads associate each set A with a set MA (think of M as a type construtor). The computa-
tional intuition behind a monad is that MA represents a computation that, if it terminates, will produce a
value of type A, and in addition, the computation may produce some side effects. Side effects may include
reading or writing memory, or throwing an exception.

A monad has two operations, called return and bind . Operation return has signature A→MA and bind
has signature MA → (A → MB) → MB . For the moment, let’s ignore the laws that these operators should
satisfy and instead focus on the intuition behind these operators.

Operation return takes a value of type A, and returns an element in MA that represents the value.
Operation bind can be thought of as doing the opposite: it takes a monadic value of typeMA, and a function
from A to MB , it “extracts” the underlying value of type A from the monadic value, and passes it to the
function, and produces a result of type MB .

It’s worth noting that if you flip the arguments of bind and you get something that looks very close to
functor. Indeed, every monad is a functor. (Exercise: why? Given a monad with operations return and
bind , show how to define the functor operation map.)

Page 3 of 7

Lecture 18 Algebraic structures

Let’s look briefly at the monad laws.

∀x ∈ A, f ∈ A→MB . bind (return x) f = f x Left identity
∀am ∈MA. bind am return = am Right identity

∀am ∈MA, f ∈ A→MB , f ∈ B →MC . bind (bind am f) g = bind am (λa :A. bind (f a) g) Associativity

These laws look a lot like the laws for monoid. This isn’t a coincidence. For those interested in digging
into such things, monads are monoids in the category of endofunctors.

Option monad. Let’s consider an example of a monad: the option type. For the purposes of this exam-
ples, let’s assume that the value none represents a failure, that is, the computation was unable to produce
a value of type τ (think of it as a very simple kind of exception, indicating that the computation couldn’t
produce a value, but terminated abnormally instead). In this setting, failure of the computation is a side
effect: something that may happen during the computation that is in addition (or instead of) the final value
of type τ .

Let’s instantiate the signatures of return and bind for the option monad.

return :τ → τ option
bind :τ1 option→ (τ1 → τ2 option)→ τ2 option

The return operation is defined as the function that simply takes a value x of type τ and returns some x.

return , λx :τ. some x

The bind operation is defined as follows.

bind , λam :τ1 option. λf :τ1 → τ2 option. case am of λx :unit.none | λa :τ1. f a

Let’s consider what bind does. Its first argument, ma, is a value of type τ1 option, that is, either a value
of type τ , or none, indicating failure. Function f takes a value of type τ1, and does some computation
using that value; if the computation fails, then f will return none; otherwise, f will return a τ2 value.
Function bind combines ma and f in the obvious way: if ma is none, then the whole thing evaluates to
none, otherwise, it takes the value a of type τ1 and runs the computation represented by f .

While the option monad gives an example of what bind and return mean computationally, it isn’t yet
clear why monads are an interesting and useful computational abstraction. To further understand the
benefits of monads, let’s consider their use in the Haskell programming language.

3 Algebraic Structures in Haskell

Haskell is a pure functional language. Haskell has a “call by need” evaluation order, also known as lazy
evaluation. Like call-by-name evaluation order, function arguments do not need to be evaluated to values
before the function is applied, and the argument is only evaluated if it is used in the function body. Un-
like call-by-name, call-by-need semantics evaluates an argument at most once (where as call-by-name may
evaluate an argument expression multiple times).

3.1 Type classes

Haskell has type classes: a mechanism to enable ad hoc polymorphism (see Lecture 14). A type class declares
common functions that all types within that class have.

We can use type classes to express the algebraic structures we defined earlier. For example, here is the
declaration of the type class for monoids. The declaration says that every type g that is a member of the
Monoid type class has values mempty and mappend, with types g and g→ g→ g respectively. These values
correspond to the unit value and multiply operation respectively. (Note that the type class does not express
the laws that should hold on mempty and mappend.)

Page 4 of 7

Lecture 18 Algebraic structures

class Monoid g where
mempty :: g
mappend :: g→ g→ g

We can tell Haskell that a given type is a member of a class type by declaring it an instance of the class.
The following code says that the types Int and String are monoids, and provides appropriate definitions of
mempty and mappend.

instance Monoid Int where
mempty = 0
mappend x y = x + y
−− mappend = (+)

instance Monoid String where
mempty = ''
mappend = (++)

We can write code that uses the overloading of functions provided by type classes. The following func-
tion mconcat has type [g]→ g (i.e., it is a function from a list of g to a g), provided that type g is an instance
of the type class Monoid.

mconcat :: (Monoid g)⇒ [g]→ g
mconcat [] = mempty
mconcat (x:xs) = x `mappend` mconcat xs

When we use mconcat, the Haskell type checker will ensure that the constraint Monoid g is satisfied,
and moreover, will use the type-class instance declarations to determine the appropriate values to use for
mempty and mappend. Thus Haskell is providing overloading of mempty and mappend.

mconcat [”hi”, ”there”]
mconcat [3,4,35]

Similarly, we can declare a type class that expresses the monad operations, and declare types to be in
that type class.

class Monad m where
return :: a→ m a
(>>=) :: m a→ (a→ m b)→ m b

The bind operator is written >>=, and used infix.

instance Monad Maybe where
return = Just
(>>=) e f =

case e of
Nothing→ Nothing
Just x→ f x

3.2 Using monads

Let’s see how we can use monads in computation. Let’s consider a simple example where we have a list
of pairs of Strings and Integers, representing a map from names to ages. Given two names (which may or
may not be in the map), we want to compute the difference in ages. Let’s first see how we could write this
function without using monads. (We don’t define the function lookup, but it has type a→ [(a, b)]→ Maybe b,
and returns Nothing if the name isn’t found in the list that represents the map.)

Page 5 of 7

Lecture 18 Algebraic structures

ageDiff :: String→ String→ [(String, Integer)]→ Maybe Integer
ageDiff n1 n2 ages =

case lookup n1 ages of
Nothing→ Nothing
Just a1→

case lookup n2 ages of
Nothing→ Nothing
Just n2→

Just (abs (a1 − a2))

This code is quite verbose. Each time we look up the age from a name, we have to handle the case where
the name wasn’t present in the map. Let’s use the fact that Maybe is a monad, and take advantage of the
bind operation.

ageDiff' :: String→ String→ [(String, Integer)]→ Maybe Integer
ageDiff' n1 n2 ages =

lookup n1 ages
>>=
\ a1→ lookup n2 ages

>>=
\ a2→ return (abs (a1 − a2))

Here, the bind operation took care of chaining together the computations, and only executed the next
computation if the previous one did not fail.

Haskell provides convenient syntax for using monads. We will cover this syntax a bit more in section,
but it allows us to write the example as

ageDiff'' :: String→ String→ [(String, Integer)]→ Maybe Integer
ageDiff'' n1 n2 ages = do {

a1← lookup n1 ages;
a2← lookup n2 ages;
return (abs (a1 − a2))
}

3.3 Why are monads so useful in Haskell?

Monads are central to practical programming in Haskell. There are several reasons why monads are so
useful in Haskell.

1. Haskell is a pure language: programs can not have arbitrary side effects. This can be very useful.
Consider an OCaml function (OCaml is not a pure language); when you execute this function, you
have no idea whether the function will print something out to the screen, whether it may write to a file,
whether it may throw an exception, etc. The type signature of the OCaml function does not describe
what the function does, simply the value that it may return. By contrast, in Haskell, a function from,
say, integers to integers, is guaranteed to have no side effects when you execute it. In Haskell, an
expression with type Integer→ Integer is not allowed to have any side effects.

But side effects are useful! We may want to write a function that performs input and output, or that
may raise an exception, or that may fail and return Nothing. Haskell’s type system allows side effects
through the use of monads. In Haskell, monadic types cleanly and clearly express the side effects
that a computation may have.

2. Monads force computation into sequence. To use the return and bind operations of a monad requires
choosing a sequence for computation. In the ageDiff examples above, using the monad requires us to
specify that lookup n1 ages happens before lookup n2 ages.

In general, forcing the programmer to specify a sequence for computation is great when the compu-
tations may have side effects (e.g., failure, writing to disk, etc.), as it ensures that there is a clearly de-

Page 6 of 7

Lecture 18 Algebraic structures

fined order that the side effects should happen in. In the ageDiff examples, the computation lookup n2 ages
happens only if lookup n1 ages does not fail.

3. Type classes enable us to capture the underlying structure of the computational pattern used in mon-
ads, and Haskell provides convenient syntax to generically exploit this structure. There are many
monads and language features in Haskell allow us to capture the essence of monadic computation,
and write reusable, readable code for monads.

Page 7 of 7

